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Abstract With huge data acquisition progresses re-

alized in the past decades and scanning systems now

able to produce high resolution point clouds, the digi-

tization of physical terrains becomes increasingly more

precise. Such extreme quantities of generated and mod-

eled data greatly impact computational performances

on many levels: storage media, memory requirements,

transfer capability, and finally simulation interactiv-

ity, necessary to exploit this instance of big data. Ef-

ficient representations and storage are thus becoming

“enabling technologies” in simulation science. We pro-

pose HexaShrink, an original decomposition scheme for

structured hexahedral volume meshes. The latter are

used for instance in biomedical engineering, materials

science, or geosciences. HexaShrink provides a compre-
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hensive framework allowing efficient mesh visualization

and storage. Its exactly reversible multiresolution de-

composition yields a hierarchy of meshes of increasing

levels of details, in terms of either geometry, continuous

or categorical properties of cells.

Starting with an overview of volume meshes com-

pression techniques, our contribution blends coherently

different multiresolution wavelet schemes. It results in

a global framework preserving discontinuities (faults)

across scales, implemented as a fully reversible upscal-

ing. Experimental results are provided on meshes of

varying complexity. They emphasize the consistency

of the proposed representation, in terms of visualiza-

tion, attribute downsampling and distribution at dif-

ferent resolutions. Finally, HexaShrink yields gains in

storage space when combined to lossless compression

techniques.

Keywords Multiscale methods · Reservoir simulation

grid · Hexahedral meshes · Corner point grid · Discrete

wavelet transform · Multiresolution · Categorical

properties · Geometrical discontinuities · Compression ·
Upscaling

1 Introduction

Simulation science makes use of meshes with increasing

precision. Among them, hexahedral meshes are com-

monly handled in biomedical engineering [2], compu-

tational materials science [3] and in geosciences. They

are for instance used by geologists to study flow sim-

ulations for reservoir modelling [4], and benefit from

an increasing interest for geologic model building [5,6].

Huge progresses in data acquisition, scanning systems

producing ultra-high resolution point clouds, provides
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increasingly more accurate digitization of physical ter-

rains. The tremendous quantity of data thus gener-

ated prominently impacts computational resources and

performances: memory size required for their storage

and visualization, but also their transmission and trans-

fer, and ultimately their processing. Consequently, it

greatly affects the overall simulation interactivity. This

trend affects the oil and gas sector at large [7].

We propose HexaShrink, an efficient multiscale rep-

resentation dedicated to hexahedral meshes with at-

tributes and discontinuities. HexaShrink combines four

wavelet-like decompositions to adapt to the heteroge-

nous nature of geoscience meshes. Geometrical, contin-

uous and categorical properties are consistently down-

sampled (upscaled in geoscience terms [8]) in an ex-

actly reversible manner. In addition to regular struc-

tures, HexaShrink also strives to manage mesh exter-

nalities like boundaries and borders tagged as inactive

cells for simulation purposes. It produces a hierarchy

of meshes at dyadic resolutions maintaining geomet-

rical coherency over scales, consistent with geomod-

eler/simulator upscaling operations [8]. It finally lends

itself to efficient lossless storage, in combination with

state-of-the-art compression algorithms.

The paper is structured as follows: Section 2 presents

the specificities of structured hexahedral meshes and

the discontinuities they may contain. Section 3 reviews

prior methods for volume mesh representation or com-

pression [9]. We introduce the HexaShrink structured

mesh representation in Section 4. We detail the four

main multiscale wavelet-like schemes that entail an ex-

actly invertible hierarchy of downsampled meshes, con-

sistently with respect to geometry and properties. A

special care is taken on the accurate representation of

faults and the management of mesh borders. Section

5 presents visual results, and evaluate the quality of

the HexaShrink with respect to categorical property co-

herency across scales, and dyadic upscaling by a geo-

modeler. An exhaustive evaluation obtained from com-

bining HexaShrink with different lossless compression

algorithms, at different resolution levels, shows the in-

terest of the proposed representation in terms of lossless

compression for storage. Finally, Section 6 summarizes

our contributions and proposes future works.

2 Volume meshes: a primer

2.1 Generic definitions

Volumetric or volume meshes (VM) discretize the inte-

rior structure of 3D objects. They partition their inner

space with a set of three-dimensional elements named

cells (or zones). While pyramid and triangular prism

partitions exist, most of the existing VMs are composed

of tetrahedral (4 faces) or hexahedral (6 faces) elements.

They are called tets, or hexes and bricks, respectively.

A VM composed of different kinds of cells, tetrahedra

and hexahedra for instance, is termed hybrid. A VM is

described by the location of vertices in 3D space (ge-

ometry) and the incidence information between cells,

edges, and vertices (connectivity). In function of the ap-

plication domain, VMs also contain physical properties

associated to vertices, edges, or cells. In geosciences,

properties can be scalar (like a single porosity value,

Figure 1) or vectorial (a vector of compositional pro-

portions in different rocks within a cell. . . ). We also

distinguish categorical or nominal variables (symbolic

and discrete values describing the composition of rocks:

sandstone (0), limestone (1), shale (2). . . ) from contin-

uous properties (saturation, porosity, permeability, or a

temperature taking values in a given range [−T[, T]]).

Fig. 1: Example of a VM used in geosciences (left); same

mesh with the associated porosity property (right).

Note that this mesh is hybrid and unstructured, with

both hexahedral and tetrahedral elements.

A non-degenerate hex has 6 faces named quads, 12

edges, and 8 vertices. Depending on incidence infor-

mation between cells, edges and vertices, hexahedral

meshes are either unstructured or structured. The de-

gree of an edge is the number of adjacent faces. An

hexahedral mesh is unstructured if cells are placed ir-

regularly in the volume domain, i.e., if degrees are not

the same for all edges of the same nature. Unstruc-

tured meshes have an important memory footprint, as

all the connectivity information must be described ex-

plicitly. However, they are well-suited to model complex

volumes, Computer-aided design (CAD) models for in-

stance, as shown in Figure 2.

Fig. 2: CAD model defined by an unstructured VM.

An hexahedral mesh is structured if cells are regu-

larly organized in the volume domain, i.e., if the degree

is equal to four for interior edges (inside the volume),
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and equal to two for border edges (on a border of the

volume). In that case, the set of hexahedral cells is topo-

logically aligned on a 3D Cartesian grid (see Figure 3).

Each vertex of the mesh can be associated to a node

of the grid. Hence, each cell can be indexed by only

one triplet (i, j, k), and the connectivity information

becomes implicit: only the position of the vertices is

needed to model the mesh.

Cell (elementary volume) 
(hexahedron, tetrahedron) 

Cell face 

Edge 

Node: grid vertices 

Grid 

Fig. 3: Structured hexahedral mesh of dimension

5× 4× 3.

2.2 Hexahedral meshes with geometrical

discontinuities

Hexahedral meshes in geosciences are generally struc-

tured, and thus based on a Cartesian grid. But these

meshes may contain geometrical discontinuities. They

correspond, for instance, to geological faults. It induces

a vertex disparity in space at the same node. The as-

sociation of one node of the Cartesian grid with 8 ver-

tices (one for each adjacent cell) handles this specificity.

Figure 4-(a) provides an illustration of a fault-free vol-

ume. On Figure 4-(b), we see that this structure allows

to describe for instance a vertical fault (by positioning

vertices differently about the node), while preserving

the Cartesian grid.

1 node with 1 vertex 

1 node with 2 equal vertices
1 node with 4 equal vertices
1 node with 8 equal vertices 

1 nœud à 4 sommets de position P 
et 4 sommets de position P’ 

(a) Free-fault area.

1 nœud à 2 sommets identiques 

1 nœud à 4 sommets identiques 

1 nœud à 1 sommet

1 nœud à 8 sommets identiques 

1 node with 4 vertices at position P
         and 4 vertices at position P’ 

(b) Area with a vertical
fault.

Fig. 4: A fault-free and a fault area.

The most popular data structure for structured hex-

ahedral meshes with geometrical discontinuities is the

Corner Point Grid [10,11] tessellation of an Euclidean

3D volume. This structure is often termed pillar grid. It

is based on a set of vertical or inclined pillars running

from the top to the bottom of the geological model.

A cell is defined by its 8 adjacent vertices (2 on each

adjacent pillars, see Figure 5), and the vertices of the

adjacent cells are described independently, in order to

model faults and gaps. Across the associated Cartesian

grid, each cell can be indexed by a triplet (i, j, k).

i 

j 

k 

Node (0,1,1) 

Hexahedral cell 
(0,0,0) 

Lower extremity of 
pillar (1,1) 

Pillar (0,1) 

Grid (i,j) 

Fig. 5: An hexahedron, according to the pillar grid

structure.

This pillar grid also allows to model geological col-

lapses (or erosion surfaces), by using degenerate cells,

i.e., cells with (at least) two vertices on one pillar lo-

cated at the same position (see Figure 6 for different

degenerate configurations).

(a) Single. (b) Two opposed. (c) Two adjacent.

Fig. 6: Degenerate hexahedral cells due to a single col-

lapsed pillar (a) or two different collapsed pillar loca-

tions (b), (c).

3 Mesh compression: an overview

We deal in this section mostly with the ontological de-

scription of volume meshes, leaving aside the specifici-

ties related to actual data format.

3.1 Basic techniques for mesh encoding

The most straightforward technique to encode a VM

is to use an indexed data structure: the list of all the
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vertex coordinates (three floating-point values, which

amounts to 96 bits par vertex), followed by their con-

nectivity. The connectivity is defined cell after cell, each

cell being defined by the set of indexes of the adjacent

vertices (8 integers per hex). Physical property encod-

ing depends on their nature: categorical/continuous,

dimension, associated to cells or vertices. They thus

only provide estimates of an actual compression perfor-

mance.

To reduce the memory footprint or make the trans-

mission of VMs faster, well-known techniques exist. The

simplest tool for the geometry is the quantization of

vertex coordinates. It consists of constraining the ver-

tex coordinates to a discrete and finite set of values.

Hence, it becomes possible to encode each coordinate

with an integer index, instead of a floating-point value.

It is common to quantize the coordinates with 12 or

16 bits, reducing the geometry information by a fac-

tor of 2.60 or 2 respectively. Quantization inevitably

introduces an irreversible loss in accuracy. Visualiza-

tion typically tolerates precision loss (as long as visual

distortion remains negligible), unlike some numerical

simulations requiring more precise computations.

Prediction (as well as related interpolative methods)

further improves the geometry compactness. Predic-

tive coding resorts to estimating the position of a ver-

tex from already encoded neighbor vertices. Prediction

errors (differences between predicted and actual posi-

tions) are generally smaller in amplitude and sparser,

which makes their entropy coding (which codes differ-

ently frequently occurring patterns) efficient [12, p. 63

sq.].

Regarding connectivity, when meshes are unstruc-

tured, the most frequent technique performs a traver-

sal of mesh elements (the process of visiting vertices),

and describes the incidence configurations with a re-

duced list of symbols. These symbols are then entropy

coded. When meshes are structured, the connectivity is

implicit, reducing its cost to zero. For such meshes, the

only additional information to encode are geometrical

discontinuities describing faults and gaps.

3.2 Volume mesh compression: prior works

The basic tools previously presented can be implemented

on the ontological structure of meshes, and improved in

many different ways. Their combination, with the as-

sistance of advanced compression techniques, permits

more efficient tetrahedral or hexahedral mesh coding.

Previously proposed algorithms are presented below,

classified into two categories: single-rate and progres-

sive/multiresolution.

3.2.1 Single-rate mesh compression

They lead to a compact mesh representation, most of

the time driven by efficient connectivity encoding. The

first method for tetrahedral meshes, Grow & Fold, was

presented by Szymczak and Rossignac [13] at the end

of the nineties. It is an extension of EdgeBreaker [14]

developed for triangle meshes. The method consists in

building a tetrahedral spanning tree from a root tetra-

hedron. The traversal is arbitrary among the three neigh-

boring tets (Section 2.1) of the cell currently processed,

and 3 bits are needed to encode each cell. The resulting

spanning tree does not retain the same topology as the

original mesh, because some vertices are replicated dur-

ing the traversal. “Fold” and “glue” techniques are thus

needed during encoding to restore the original mesh

from the tetrahedron tree. The additional cost is 4 bits,

leading to a total cost of 7 bits per tetrahedron.

The cut-border initiated in [15] was adapted to tetra-

hedral meshes [16]. It denotes the frontier between tetra-

hedra already encoded and those to encode. At each

iteration, either a triangle or an adjacent tetrahedron

is added to the cut-border. In this case, if the added

vertex is not already in the cut-border, this latter is

included by a connect operation, and is given a local

index. As the indexing is done locally, the integers to en-

code are very small, leading to a compact connectivity

representation. In addition, two methods are proposed

to encode geometry and associated properties, based

on prediction and entropy coding. This method yields

good bit rates (2.40 bits per tetrahedron for connec-

tivity) for usual meshes, handles non-manifold borders,

but worst-cases severely impact bitrates and runtimes

(which tend to be quadratic).

Isenburg and Alliez [17] are the first to deal with

hexahedral VMs. The connectivity is encoded as a se-

quence of edge degrees — in a way similar to [18] for

triangular meshes — via a region-growing process of a

convex hull called hull surface. It relies on the assump-

tion that hexahedral meshes are often highly regular,

which implies that the majority of vertices are shared

by 8 cells. It involves an almost constant edge degree all

over the mesh, which significantly decreases the entropy

of the connectivity information. A context-based arith-

metic coder [19] is then used to encode the connectivity

at very low bit rates, between 0.18 and 1.55 bits per hex-

ahedron. Regarding geometry, a user-defined quantiza-

tion first restricts the number of bits for coordinates,

and then a predictive scheme based on the parallelo-

gram rule encodes the position of vertices added during

the region-growing process.

Krivograd et al. [20] propose a variant to [17] that

encodes the vertex degrees — number of non-compressed
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hexahedra around a given vertex — instead of the edge

degrees. On the one hand, this variant achieves better

compression performances than [17] for dense meshes.

On the other hand, it only deals with manifold meshes,

and the algorithm is complex as interior cells are en-

coded after border cells (it involves many specific cases

to process when encoding the connectivity).

Lindstrom and Isenburg proposed an original algo-

rithm for unstructured meshes called Hexzip [21]. This

algorithm is considered as fully lossless, because the

initial indexing of vertices and hexahedra is preserved.

For this purpose, connectivity is encoded directly in

its indexed structure, by predicting the eight indices of

an hexahedron from preceding ones. This technique is

suitable because hexahedral meshes generally have reg-

ular strides between indices of subsequent hexahedra. A

hash-table is then used to transform the index structure

into a very redundant and byte-aligned list of symbols,

that can be compressed efficiently with gzip (discussed

in Section 5.4). Concerning the geometry, spectral pre-

diction [22] is used. This algorithm is faster and less

memory intensive than [17] as the connectivity is not

modified. It handles non-manifold meshes and degen-

erate elements. On the other hand, bitrates are higher

because of the lossless constraints. Unlike methods pre-

sented above, Chen et al. [23] focus on geometry com-

pression for tetrahedral meshes. The authors proposed a

flipping approach based on an extension of the parallel-

ogram rule (initially proposed for triangle meshes [18])

to tetrahedra. It consists in predicting the position of

an outer vertex of two face-adjacent tetrahedra, with

respect to the other vertices. To globally optimize the

geometry compression, a Minimum Spanning Tree min-

imizing the global prediction error for the whole mesh

is computed. This method is more efficient than prior

flipping approaches whose traversal does not depend on

the geometry, but solely on the connectivity.

Streaming compression is a subcategory of single

rate compression, dedicated to huge data that cannot

fit entirely in the core memory. A particular attention to

I/O efficiency is thus required, to enable the encoding

of huge meshes with a small memory footprint. Isen-

burg and coworkers are the first to propose streaming

compression for VMs (extended from his method for tri-

angular meshes [24]): for tetrahedral meshes [25], and

then for hexahedral meshes [26]. In the latter, for in-

stance, the compressor does not require the knowledge

of the full list of vertices and cells before encoding. The

compressor starts encoding the mesh as soon as the first

hexahedron and its eight adjacent vertices have been

read. For a given hexahedron: i) its face-adjacency is

first encoded in function of its configuration with hex-

ahedra already processed; ii) positions of vertices that

are referenced for the first time are predicted (spectral

prediction from adjacent cells); iii) prediction errors are

encoded; iv) data structures relative to vertices, becom-

ing useless (because their incidence has been entirely

described) are finally removed from memory. Compared

to other single rate techniques, streaming tends to achieve

similar compression performances for geometry, but poorer

performances for connectivity.

3.2.2 Progressive/multiresolution mesh compression

Progressive algorithms (also called scalable or multires-

olution, see Section 4.1 for details) enable the original

meshes to be represented and compressed at successive

levels of details (LOD). The main advantage is that it

is not necessary to decompress a mesh entirely before

vizualising it. A coarse approximation of the mesh (also

known as its lowest resolution) is first decompressed

and displayed. Then this coarse mesh is updated with

the successive LOD (termed higher resolutions) that are

decompressed progressively. While they cannot achieve

yet compression performance of single-rate algorithms,

progressive algorithms are popular because they enable

LOD, and also adaptive transmission and displaying,

in function of user constraints (network, bandwidth,

screen resolution. . . ).

Pajarola et al. [27] are the first to propose in 1999

a progressive algorithm dedicated to VM compression.

This work is inspired by a simplification technique for

tetrahedral meshes [28]. It simplifies a given tetrahe-

dral mesh progressively, by using successive edge col-

lapses [29]. Each time an edge is collapsed, its adjacent

cells are removed, and all the information required to
reverse this operation is stored: index of the vertex to

split, and the set of incident faces to “cut”. Thus, during

decompression, the LODs can be also recovered itera-

tively, by using the stored data describing vertex splits.

During coding, an edge is selected such as its collapse

leads to the minimal error, with respect to specific cost

functions. This algorithm gives a bitrate inferior to 6

bits per tetrahedron (for connectivity only).

In 2003, Danovaro et al. [30] propose two progressive

representations based on a decomposition of a field do-

main into tetrahedral cells. The first is based on vertex

splits, as the previous method, the second is based on

tetrahedron bisections. This operation consists in sub-

dividing a tetrahedron into two tetrahedra by adding

a vertex in the middle of its longest edge. Unlike with

vertex splits, the representation based on tetrahedron

bisections is obtained by following a coarse-to-fine ap-

proach, i.e., by applying successive bisections to an ini-

tial coarse mesh. Also, this representation only needs

to encode the difference vectors between the vertices
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added by bisections and theirs real positions. This rep-

resentation is thus more compact, as the mesh topol-

ogy does not need to be encoded, but it only deals with

structured meshes.

VMs multiresolution decomposition based on wavelets

[31] was proposed by Boscard́ın et al. [32] for tetrahe-

dral meshes. It is based on the tetrahedron subdivi-

sion scheme [33] that transforms a tetrahedron into 8

sub-tetrahedra, by introducing 6 new vertices on each

edge. After analysis, the input mesh is replaced by a

base tetrahedral mesh, and several sets of detail wavelet

coefficients. Although coefficients corresponding to dif-

ferences between two resolutions could be encoded for

mesh synthesis, this work does not provide an actual

compression scheme.

In [34], Chizat proposed a prototype for a multireso-

lution decomposition of geoscientific hexahedral meshes

with the pillar grid structure (Section 2.2). His main

contribution resides in a multiresolution analysis (MRA)

that partially manages geometrical discontinuities rep-

resenting the faults. It can be achieved by using a mor-

phological wavelet transform (Section 4.2.2). This non-

separable transform enables the preservation of some

fault shapes at different resolutions, as depicted in Fig-

ure 7.

Fig. 7: Dyadic non-separable multiresolution rendering

on a simple geologic mesh [34].

The latter work is a seed for the upcoming descrip-

tion of HexaShrink.

4 Global HexaShrink algorithmic workflow

4.1 Multiresolution analysis: background

MRA or multiscale approximation can be interpreted as

a decomposition of data at different resolutions, LOD

or scales, through a recursive analysis process. It is

called exact, reversible or invertible when a synthesis

scheme can retrieve the original data. Inter-scale rela-

tionships [35, 36] often yield sparsification or increased

compressibility on sufficiently regular datasets. In dis-

crete domains, each analysis stage transforms a set of

samples S0 into one subset of coefficient S−1 that ap-

proximates the original signal, plus one subset of details

D−1. The latter represents information missing in the

approximation S−1. Depending on the MRA scheme,

the lower resolution S−1 may represent a coarsening or

“low frequencies” of the original samples. The subset

D−1 represents refinements or “high-frequency” details

removed from S0. We consider here exact systems al-

lowing the perfect recovery of S0 from a combination

of S−1 and D−1. Hence, a similar analysis stage can

be applied perfectly again to the lower resolution S−1,

in a so-called pyramid scheme. Thus, after an L-level

multiresolution decomposition, the input set S0 is now

decomposed and represented by the subset S−L — a

coarse approximation of S — and L subsets of details

D−1, D−2,. . . , D−L, representing information lost be-

tween two consecutive approximations.

We consider in the following four different MRA fla-

vors, all called wavelets for simplicity. They stem from

iterated, (rounded) linear or non-linear combinations of

coefficients, as well as separable (applied separately in

1D on each direction) or non-separable ones. Without

going into technicalities, computations are performed

using the lifting scheme. It suffices to mention that lift-

ing uses complementary interleaved grids of samples,

often with odd and even indices. Values on one grid

are usually predicted and updated from the others. The

main interests reside in reduced computational load, in-

place computations and the possibility to maintain ex-

act integer precision, using for instance dyadic-rational
coefficients (written as m/2n, (m,n) ∈ Z × N) and

rounding. We refer to [31, sections 2.3., 3.2 and 4.3]

for a concise account on both non-separable and non-

linear MRAs, and to [37, 38] for more comprehensive

visions of wavelets.

More simply put, for our hexahedral VMs, the dyadic

analysis stage transforms a cell block C of values from

23 = 8 contiguous cells (possibly borrowing values from

a limited cell neighborhood) at resolution −l. They

are turned into 1 approximating cell (lower resolution

S−l−1), and a subset of 23 − 1 = 7 detail cells D−l−1,

as depicted in Figure 8 along with the reverse synthesis

stage. Hence, if the dimension of a VM at resolution l

is nli×nlj×nlk, the VM of lower resolution will be of di-

mension
⌈
nl
i

2

⌉
×
⌈
nl
j

2

⌉
×
⌈
nl
k

2

⌉
, to take into account non-

power-of-two sized grids. As several digital attributes

are associated to each cell (geometry, continuous or cat-

egorical property), the MRA is performed separately on
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Analysis 

Original group of  
(2,2,2) coefficients 

Detail  
coefficients 

Approximation 
coefficient 

Synthesis 

Detail  
coefficients 

Approximation 
coefficient 

Original group of  
(2,2,2) coefficients 

Fig. 8: Analysis and synthesis stages for VMs.

the different variables defining these properties, as ex-

plained in the following sections.

4.2 Multiresolution scheme for geometry

Standard linear MRA schemes rely on smoothing or

averaging and difference filters for approximations and

details, respectively. To preserve coherency of represen-

tation of geometrical discontinuities — whatever the

resolution — a special care is taken to avoid excessive

smoothing, while at the same time allowing the reverse

synthesis. As the pillar grid format is used (see Section

2.2), vertices are inevitably positioned along pillars. So,

our multiresolution scheme for geometry data only fo-

cuses on:

– the z coordinates of the 8 vertices associated to

each node. According to the naming convention pre-

sented in Figure 9, those 8 vertices can be differ-

entiated according to their relative positions [Back

(B)/Front (F), Bottom (B)/Top (T), Left (L)/Right

(R)];

– the x and y coordinates of the nodes describing

the low (bottom) and high (top) extremities of all

the pillars (the x and y coordinates of intermediary

nodes being implicit). The nodes are called here-

inafter the floor and ceil nodes, respectively.

Actual 3D meshes can exhibit very irregular bound-

aries. Hence, a Boolean field called Actnum may be

associated to each cell to inactivate its display (and

its influence during simulations as well). It enables the

description of either mesh boundaries (Figure 10), or

caves/overhangs. Resultantly, this Actnum field must

be carefully considered during the multiresolution anal-

ysis of the geometry data, to avoid artifacts at lower res-

olutions on frontiers between active and inactive cells

(see Section 4.2.4 and Figure 16).

By construction, most geological VMs have no hori-

zontal fault, as there is no vertical gap between any two

adjacent layers of cells. For every node, each of the four

top vertices has the same z coordinate as its counterpart

bottom vertex. Therefore, from now on, our geometry

(a) A node and its 8 sur-
rounding cells.

FTL

BTL

BBR

FBL

FTR

BTR

BBL

FBR

(b) Splitting view of the
node into its 8 vertices.

Fig. 9: Vertex naming with the Back (B)/Front (F),

Bottom (B)/Top (T), Left (L)/Right (R) convention.

Fig. 10: Mesh#5 (in yellow) has inactive cells (in red)

to describe its boundaries using the Actnum field.

multiscale representation method only deals with the

z coordinates of the bottom vertices BBR, FBR, BBL

and FBL of each node.

An instance of the decomposition shown in Figure 8

can be implemented with the proposed two-step tech-

nique depicted by arrows in Figure 11:

– A non-linear, non-separable 2D morphological wavelet

transform applied on the nodes, in order to detect

the faults in the input VM, and then to preserve

their coherency in the lower resolutions. This step

relies on a fault segmentation within the input

VM obtained by studying all possible fault configu-

rations for the top view of the VM (see Figure 12);

– A non-linear 1D wavelet transform applied on

the output of the above first step to analyze the

z coordinates of the vertices along each pillar.

The same 1D wavelet transform is also applied on
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the sets of x and y coordinates of the floor and ceil

nodes, to complete the “horizontal” decomposition.

Group of (2x2x4) cells

Morphological wavelet

Group of (4x4x4) cells
(resolution l)

Group of (2x2x2) cells
(resolution l-1)

constrained 1D wavelet

i

j

k

Top view for fault segmentation

Fig. 11: HexaShrink multiresolution scheme for geom-

etry: (left) input grid and its top view; (middle) out-

put from the non-separable, non-linear 2D morpholog-

ical wavelet based on a fault segmentation (based on

the top view); (right) non-linear 1D wavelet transform

along pillars (orange lines).

4.2.1 Fault segmentation

This stage detects the faults in the original mesh, in or-

der to preserve them during the morphological wavelet

analysis. For each node, a dozen of fault configurations,

depending on BBR, FBR, BBL and FBL, is possible:

fault-free (1), straight (2), corner (4), T-oriented (4) or

cross (1), as illustrated in Figure 12.

Fault-free 

BBL 

FBL 

BBL 

FBL 

Horizontal Vertical Top-right 

Bottom-right Top-left Bottom-left 

T-south T-east T-west Cross 

T-north

BBR BBL 

FBR FBL 

BBR BBL 

FBR FBL 

BBR BBL 

FBR FBL 

BBR BBL 

FBR FBL 

BBR BBL 

FBR FBL 

BBR BBL 

FBR FBL 

BBR BBL 

FBR FBL 

BBR BBL 

FBR FBL 

BBR BBL 

FBR FBL 

BBR BBL 

FBR FBL 

BBR BBL 

FBR FBL 

BBR BBL 

FBR FBL 

Fig. 12: The 12 possible fault configurations (in black

lines) at a given node.

Each configuration depends on the four orientations

of the cardinal axes (north, south, east and west), which

are either active or inactive. For instance, the T-north

configuration has its south axis inactive, while the three

remaining ones are active. Assuming that a fault con-

figuration is z-invariant, meaning that the nodes be-

longing to the same pillar present the same fault con-

figuration, a single 2D configuration map is sufficient

to represent the fault configuration of the whole mesh,

as illustrated by Figure 13.

Horizontal 

BDR 

Top-left Vertical Bottom-right  

2
D

 T
o

p
 v

ie
w

 

BDL 

FDR FDL 

BDR BDL 

FDR FDL 

BDR BDL 

FDR FDL 

BDR BDL 

FDR FDL 

Fig. 13: Fault segmentation within the original mesh.

4.2.2 Horizontal 2D morphological wavelet transform

The fault segmentation guides the multiresolution anal-

ysis to preserve faults, as much as possible, all over the

decomposition process. The fault configuration of 4 as-

sociated nodes at resolution l is used to predict the

extension of the downsampled fault structure at reso-

lution l − 1.

This horizontal prediction is based on the logical

function OR (∨), computed on each side of each group

of 4 nodes. For instance, a resulting fault node config-

uration contains a west axis if the fault configurations

of the 2 left nodes contain at least 1 west axis, as il-

lustrated in Figure 14. By repeating the procedure for

the north, south and east axes of each resulting node,

fault node configurations at lower resolutions are fully

predicted. This non-linear and peculiar choice is meant

to maintain a directional flavor of orientated faults for

flows; other choices could be devised, depending on

physical rules and geological intuitions.

Finally, from this prediction, the node whose config-

uration minimizes its distance with the predicted one,

corresponds to the aforementioned approximation co-

efficient, which will be part of the novel Z matrix at

lower resolution l − 1. The same procedure can be ap-

plied recursively until the wanted resolution.
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Fig. 14: Prediction of a fault node at resolution l −
1 from the four parents’ configuration at resolution l,

orange ovals denoting ∨ operands.

4.2.3 Rounded linear 1D wavelet transform

𝑧𝑙−1[1]𝑧𝑙[2]

𝑧𝑙[1]

𝑧𝑙[0]

𝑧𝑙[4]

𝑧𝑙[3]

𝑧𝑙−1[0]

𝑧𝑙−1[2]

𝑑𝑙−1[0]P

𝑑𝑙−1[1]P

U

U

𝑑𝑙−1[2]P

Details Approximation coefficients 
(lower resolution)

Fig. 15: Principle of the lifting scheme (Prediction and

Update) for the rounded linear 1D wavelet from (1)-

(2), to analyze z coordinates of vertices BDR, FDR,

BDL and FDL along each pillar, as well as x and y

coordinates of the floor and ceil nodes.

This 1D wavelet transform is applied on the output

of the above horizontal 2D morphological wavelet, to

analyze the z coordinates of the 4 sets of vertices BDR,

FDR, BDL and FDL separately, along each selected pil-

lar. Coordinate behavior along the pillars is expected,

by geomodel construction, to be relatively smooth. This

entails the use of a modified, longer spline wavelet. The

latter can be termed LeGall [39], or CDF 5/3 (after

Cohen, Daubechies and Feauveau [40]), or biorthogo-

nal 2.2 from its vanishing moments.

The analysis operations Prediction and Update are

depicted by Figure 15. To get respectively the sets of

details {d} and the z coordinates at lower resolution,

the following equations are used (∀n ∈ N):

dl−1[n] = zl[2n+ 1]−
⌊
zl[2n] + zl[2n+ 2]

2

⌋
, (1)

zl−1[n] = zl[2n+ 0] +

⌊
dl−1[n− 1] + dl−1[n]

4

⌋
, (2)

where both dyadic integers and rounding are evident

(see Section 4.1). For synthesis, to reconstruct resolu-

tion l from resolution l− 1, we only have to reverse the

order and the sign of the equations:

zl[2n] = zl−1[n]−
⌊
dl−1[n− 1] + dl−1[n]

4

⌋
. (3)

zl[2n+ 1] = dl−1[n] +

⌊
zl[2n] + zl[2n+ 2]

2

⌋
. (4)

4.2.4 Managing externalities: borders and boundaries

A pertinent multiresolution on complex meshes requires

to cope with externalities that may hamper their han-

dling: floor and ceil borders and outer boundaries (Fig-

ure 10). First, to keep borders unchanged from the orig-

inal mesh, throughout all resolutions, the following con-

straints must be met:

zl−1[0] = zl[0] , (5)

zl−1[nl−1k − 1] = zl[nlk − 1] . (6)

Both constraints can be fulfilled if one satisfies the

following conditions:

– Floor border condition to meet (5):

dl−1[−1] = −dl−1[0] , (7)

– Ceil border condition to meet (6):

dl−1[nl−1k − 1] = −dl−1[nl−1k − 2] , (nlk odd) (8)

dl−1[nl−1k − 1] = −dl−1[nl−1k − 2] (nlk even)

+4zl[nlk − 1]− 4zl[nlk − 2] . (9)

To complete the MRA of the geometry, the same

rounded 1D wavelet as in Section 4.2.3 is finally applied

to the sets of floor and ceil nodes of the initial VM, to

get the x and y coordinates of the extremities of the

remaining pillars at the lower resolution.

Second, the Actnum field should also be considered

to lessen mesh boundary artifacts. Indeed, severe dis-

turbances may appear at lower resolutions if not wisely

processed during analysis, as shown in Figure 16.

A cell is deemed active if and only if its 8 adjacent

vertices are active at the resolution l. During our study,

we found that one vertex at resolution l−1 could be con-

sidered active if and only if its parent vertices selected
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(a) Without efficient
Actnum management.

(b) With efficient Act-
num care-taking.

Fig. 16: Inadequate Actnum fields management during

analysis may lead to severe boundary artifacts (left)

that can be dealt with (right) as examplified with

mesh#5 from Figure 10 .

by the morphological wavelet at resolution l (Section

4.2.2) are active. So, a cell at resolution l− 1 is consid-

ered active if and only if its 8× 2 corresponding parent

vertices are active at resolution l.

4.3 Multiresolution scheme for continuous properties

Once the geometry is coded, one can focus on associated

continuous properties. For scalar ones, a value pi ∈ R
is associated to each cell i in the mesh. Consistently

with the handling of cell blocks C of 2 × 2 × 2 cells

throughout scales, we use an adaptation of the well-

known Haar wavelet. The resolution l − 1 is a scaled

average of cells at resolution l. The approximation coef-

ficient pl−1 is thus the average value of the related eight

property coefficients {pl1, pl2, . . . , pl8}. The seven details

required for synthesis are differences with respect to the

approximation coefficient:

pl−1 =
1

8

8∑
n=1

pln ; dl−1n = pln − pl−1 , ∀n 6= 1 .

To deal with real-valued (floating-point) properties,

and avoid accuracy imprecision due to the divide op-

erator, we introduce the following modifications. First,

reals are mapped into integers up to a user-defined pre-

cision, here with a 106 factor. Second, we disable the

division by using a sum. The analysis system thus be-

comes:

pl−1 =

8∑
n=1

pln ; dl−1n = 8pln − pl−1 , ∀n 6= 1 ,

and the synthesis system turns into:

pln =
1

8
(dl−1n + pl−1) , ∀n 6= 1 ; pl1 = pl−1 −

8∑
n=2

pln .

Approximation and coefficients are stored as is. To

recover the accurately scaled values, the division oper-

ator should however be applied as a simple linear post-

processing.

4.4 Multiresolution scheme for categorical properties

We finally complete the multiresolution decomposition

with an original scheme called modelet [41]. We assume

that a mesh cell category belongs to a set of classes

Ω0 = {ω1, ω2, ..., ωW }, taking discrete values. The cell

block C {pl1, pl2, . . . , pl8} thus contains, at resolution l,

integers indexing categories from Ωl. They take val-

ues in a subset of Ω. The multiresolution scheme is

expected to produce, at lower resolutions, discrete val-

ues in embedded subsets: Ω0 ⊃ Ω1 ⊃ · · · ⊃ Ωl ⊃ · · · .
In other words, a cell category can only belong to an

existing category at an upper resolution. We choose

here the mode i.e., the most frequently represented

in C. If |ωw| denotes the cardinal of this class, then∑W
w=1 |ωw| = |C| = 8. We choose for the modelet:

pl−1 = arg max{|ωw|, ωw ∈ Ωl} .

It may happen that the above definition does not yield

a unique maximum. If two or more categories dominate

a cell block, a generic approach consists in taking into

account its first block cell neighborhood (the surround-

ing 26 cells, except at mesh borders and boundaries).

We affect the dominant value in the first neighborhood

to pl−1. In case of a draw again, the second-order sur-

rounding can be used, iteratively. In practice for the

presented version of HexaShrink, we limit to the first-

order neighborhood, and choose the lowest indexed cat-

egory when the maximum is not unique. Equipped with

this unique lower resolution representative value, we

proceed similarly to Section 4.3 for details, by using dif-

ferences between original categories and the mode. As

classes are often indexed by positive integers, a slight

motivation allows to get only non-negative indices. By

avoiding negative values, one expects a decrease in data

entropy of around 5 %, which benefits to compression.

We thus change the sign of a detail coefficient if

and only if it generates a value out of the range of

{ω1, ω2, . . . , ωW }, and then control this condition dur-

ing reconstruction. So, all details {dl−1n } for a cell block

C are determined by:

dl−1n = (−1)(p
l
n−p

l−1<0)∧((2pl−1−pln)/∈Ω) × (pln − pl−1).

During synthesis, the coefficients {pli} are obtained thanks

to the closed-form equation:

pln = pl−1 + (−1)((p
l−1+dl−1

n )/∈Ω) × dl−1n .
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5 Evaluation methodology, comparative results

and discussion

5.1 Evaluation methodology

Meshes, hexahedral ones in particular, are complex com-

posite objects. The ontological description of their ge-

ometry is subject to different options, “Block Centered”

or “Corner Point” grids for instance. Their generation,

cell size and resolution for practical applications may

have undergone more or less complex processing. Mesh

complexity can range from simply-layered, homogeneous

modes to massively faulted environment with highly

varying properties. Encoded numerical values, albethey

cell coordinates, numerical or categorical properties are

cast into different possible integer or floating-point pre-

cisions. The structure of the raw mesh binary object

is itself embedded into enriched formats, for which a

few standards exist, as RESQML™. The latter also en-

compasses structural information required to exchange

models, generating information overhead. Finally, de-

tail simplification through multiscale decompositions

does not possess well-established quality metrics. All

of the above hampers exhaustive objective evaluations

such as possible in image processing, where metrics and

benchmarks have been evaluated for decades.

To evaluate the performance of HexaShrink, we base

our analysis on a set of seven geological meshes, with

geometries ranging from smooth to fractured, and di-

verse categorical and continuous properties. Their main

characteristics and properties are summarized in Table

1. As will be seen, they appear representative enough

to allow one to derive consistent observations and con-

clusions for different data handling purposes.

They are initially stored in the GRDECL (“GRiD

ECLipse”) file format [42]. Originally complex geomod-

els are thus described with details rendering their ge-

ometry explicit and structured, an important feature

for geomodelers or flow simulation software (Petrel™,

SKUA-GOCAD™, Eclipse™ . . . ).

As observed in the state-of-the-art (Section 3.2), to

our knowledge, reversible multiscale representations of

geometry and properties — together with discontinu-

ity preservation — of hexahedral meshes do not exist.

Even if the standardized 3D extension to the JPEG2000

image compression format (termed J2K-3D) could pro-

cess the properties as volumetric images, it is not per

se suited to volume meshes, especially with categorical

properties. We thus focus on visualizations, compar-

isons with geomodeler upscaling capabilities, and the

embedding of our multiscale decompositions into sev-

eral all-purpose compression algorithms.

The evaluation methodology is two-fold. First, we

exemplify the outcome of HexaShrink on meshes on ei-

ther their geometry with a continuous and a categori-

cal property at different dyadic scales. This reversible

framework is put into perspective with similar down-

scaling processes in a reference geomodeler. Second, a

comprehensive evaluation of lossless compression per-

formance is provided, using state-of-the-art coders on

either the raw files or their multiscale decomposed coun-

terparts.

5.2 Reversible multiscale mesh representation

Figures 17 and 18 present the reversible multiscale de-

compositions generated by HexaShrink for mesh#1 and

mesh#7. The latter contains several faults. Downsam-

pled meshes are arranged in rows by decreasing scale.

The first column represents the mesh without any at-

tribute. The second and the third columns represent the

same mesh onto which a continuous and a categorical

property is mapped, respectively.

Mesh#1 is decomposed to the lowest possible reso-

lution (Figure 17, bottom). This is probably not useful

from a geologist perspective. However, while all proper-

ties are almost constant, the lower arch corresponding

to an anticlinal on the mesh at original resolution re-

mains perceptible on the final “Lego brick” resolution.

Looking at the porosity property (middle column), one

observes how the values are progressively homogenized

on coarser hexes. Concerning the rock type (last col-

umn), one observes that the modelet scheme tends to

locally maintain predominant categories resolution af-

ter resolution, which is very satisfactory.

On Figure 18, the much larger mesh#7 is repre-

sented down to a fifth dyadic sub-scale. It contains an

isolated fault on the left side (the diagonal crest shape)

and a faulty block on the right. Even at the coarsest

level, corresponding to a downsampling by 25×25×25,

these two structural discontinuities are still present,

while keeping a good shape fidelity, globally. Concern-

ing the attributes, the decompositions are also ade-

quate.

To emphasize further the capacity of our scheme

to maintain coherency across the resolutions for the

properties, Figure 19 shows the evolution of the Rock

Type distribution until the third resolution for mesh#1

and mesh#6. We observe that HexaShrink preserves the

shape of histograms. In other words, the proportion of

each category remains consistent across the scales of

observation. Figure 19 also provides a comparison with

the distributions obtained from the reversible CDF 5/3

wavelet transform (Section 4.2.3) used in J2K-3D [43].
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Geometry. Porosity. Rock type.

Original mesh#1.

Resolution −1.

Resolution −2.

Resolution −3.

Resolution −4.

Fig. 17: Original mesh#1, its attributes, and four levels of resolution generated with HexaShrink.
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Geometry. Porosity. Rock type.

Original data

Resolution −1.

Resolution −2.

Resolution −3.

Resolution −4.

Fig. 18: Original mesh#7, its attributes, and four levels of resolution generated with HexaShrink.
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Mesh Characteristics Properties
index # Cells Dimension Faults Filesize Actnum Continuous Categorical

1 493,600 80× 45× 26 No 4.62 MB 100 % Porosity Rock type
2 1,000,000 100× 100× 100 No 42.46 MB 100 % — —

3 36,816 59× 39× 16 Yes 1.46 MB 100 % — —
4 210,000 100× 100× 21 Yes 7.88 MB 20 % — —
5 450,576 149× 189× 16 Yes 22.73 MB 46 % Porosity, Permeability —
6 5,577,325 227× 95× 305 Yes 274.57 MB 97 % Porosity Rock type
7 13,947,600 240× 295× 197 Yes 580.94 MB 100 % Porosity Rock type

Table 1: Meshes chosen for evaluation: a compendium of their ontological characteristics and geological properties.

One observes that histograms at lower resolution abso-

lutely do not reflect the original ones, creating interpo-

lated categorical values that do not possess geological

meaning. Indeed, a major feature of HexaShrink is to

combine, in an overall multiresolution framework, four

different downsampling schemes adapted to each prop-

erty.

Fig. 19: Evolution of the distribution of the Rock type

categories across resolutions for mesh#1 and mesh#7,

decomposed with either HexaShrink’s modelet or the

rounded lifting CDF 5/3 used in the lossless J2K-3D.

Beyond these results in term of geometry and prop-

erty coherence across resolutions, we recall that our

method is deterministic, and exact. The four analysis

and synthesis multiresolution schemes allow perfect re-

construction. Contrary to [34], our method is able to

manage all the fault configurations. HexaShrink is also

scalable, which is indispensable in geosciences, given

the steadily growing size of data volumes and model

simulations. This scalability relies on an out-of-core al-

gorithm [44] that splits geometry and property matrices

into “small” sub-matrices, to process them sequentially.

We are thus able to deal with meshes of any size. Lastly,

GPU-based parallel computing have been also included,

to speed the algorithm up.

As HexaShrink proposes a comprehensive reversible

multiscale framework with dyadic downsampling, we

compare it to related upscaling features for geomodels.

5.3 Geomodel upscaling: SKUA-GOCAD™ vs

HexaShrink

SKUA-GOCAD™ or PETREL™ are frequently used in

geosciences to handle geological objects and to gener-

ate meshes for flow simulation. These specific meshes

describe structural discontinuities whose impact is sig-

nificant on simulation. To obtain such meshes, the geo-

model — a surface description of horizons or faults — is

fitted into a grid at the desirable resolution. Pillar orien-

tation is influenced by fault dip and cell layer thickness

is adapted to the distance between horizons. Additional

properties can then be assigned to mesh cells: porosity,

saturation, rock type. . . from well data or geological in-
terpretation. Would one wish to lower the resolution,

the process described above should be reiterated.

A simpler alternative proposed by geomodelers con-

sists in upscaling meshes. Such methods are usually

flexible yet often ad-hoc, converting geometry and prop-

erties in a non-reversible manner. Figure 20 confronts

meshes #5 and #6 downsampled at power-of-two reso-

lutions with SKUA-GOCAD™ and HexaShrink. Hexa-

Shrink tends to better preserve faults (colored in red),

as compared to SKUA-GOCAD™. Figures emphasize

an improved preservation of mesh borders, with an effi-

cient management of Actnum throughout resolutions.

Some artifacts may appear with SKUA-GOCAD™’s up-

scaling, which are automatically averted by HexaShrink,

leading to nicer meshes at low resolution. As a sum-

mary, HexaShrink, while being fully reversible at dyadic

scales only, efficiently and automatically manages struc-

tural discontinuities in the VMs. It may provide an in-

teresting complement to existing irreversible upscaling

proposed by several geomodelers.
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Mesh#5 with SKUA-GOCAD

Mesh#5 with HexaShrink

Mesh#6 with SKUA-GOCAD

Mesh#6 with HexaShrink

Fig. 20: After dyadic downsampling/upscaling, HexaShrink (bottom) better preserves faults, and manages non-

active cells (i.e., with null Actnum values) across scales, yielding nicer borders at each resolution, contrary to

GOCAD. From left to right: resolution −1, −2, and −3, respectively.
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5.4 Compression performance comparison

We now provide an objective evaluation of the Hexa-

Shrink multiscale representation for compression pur-

poses. Our main objective is to verify that binary mesh

formats (beyond mere ontological analyses) are indeed

compressible, and whether decomposing them in a pro-

gressive manner over different scales remains beneficial

in size reduction for needs beyond mere visualization

(data storage, transfer). Indeed, multiscale representa-

tions are thought to enhance the sparsity of locally reg-

ular data, often resulting in better predicted properties

that can subsequently be compressed.

We first assess lossless (or perfect) compression. All

mesh ontological and geological (cf. Table 1, Section

5.1) are thus perfectly restored, whatever the number

of decomposition levels (Section 5.2). Since our mesh

objects are heterogeneous, we treat geometry and prop-

erties independently, and compress individually their

approximations and details.

We compare three generations of lossless all-purpose

encoders: gzip (1992), bzip2 (1996), LZMA (1998). They

use Lempel-Ziv, Burrows-Wheeler, Lempel-Ziv-Markov

entropic coding, respectively. We refer to [12,45] for de-

tails regarding these state-of-the-art compression meth-

ods.

Mesh Level gzip bzip2 LZMA

1
none 3.73 4.98 6.43

1 5.62 6.07 7.52
2–4 5.67 6.12–6.13 7.42–7.44

2
none 3.23 8.41 10.12

1 6.49 10.82 11.81
2–6 7.48–7.58 12.75–13.03 13.35

3
none 2.67 2.99 3.63

1 3.88 4.70 5.24
2–4 4.03–4.05 4.92–4.93 5.47–5.48

4
none 1.83 1.89 2.21

1 2.64 3.06 3.48
2–4 2.76 3.22–3.23 3.64–3.65

5
none 2.46 2.55 3.33

1 3.14 2.83 3.71
2–4 3.25–3.26 2.91–2.92 3.80–3.81

6
none 2.31 2.25 3.04

1 3.31 3.53 4.44
2–6 4.14–4.24 4.48–4.68 5.54–5.73

7
none 3.20 5.98 12.52

1 5.42 7.07 8.90
2–7 5.80–6.72 7.63–10.12 9.05–10.23

Table 2: Comparative lossless coding performances

with compression ratios at different HexaShrink resolu-

tion levels combining HexaShrink with gzip, bzip2 and

LZMA.

We exhaustively compare compression performances

in Table 2. For the sake of clarity, recall that different

computational methodologies exist: a compression ra-

tio of 4 is given by the fraction between the sizes of

the original file and the compressed one (the larger the

ratio, the better the compression). The latter can also

be related to its inverse, the smallest file representing

25 % of the raw data ( 1
4 ), or a compression gain due to

the reduction in size of −75 %, corresponding to
(
1−4
4

)
.

As an example, we provide a detailed interpretation

of the third row, corresponding to the mildly compli-

cated and faulty mesh#3. Without decomposition, i.e.

by directly compressing the binary formats, gains in file

size are already observed, from −62.50 % (1 − 1
2.67 for

gzip) to −72.50 % for LZMA. We first remark that im-

provements sensitively increase as we use more recent

entropic coders, with only one exception for mesh#6,

gzip performing slightly better than bzip2. However,

the most recent LMZA coder always offers the best

performances, with a sufficient gap over the two other

methods.

The same trend applies when performing a one-level

HexaShrink transformation on mesh#3, with an ad-

ditional gain in compression: for instance, the combi-

nation of a 1-level HexaShrink associated with LZMA

yields a compressed mesh twice as small (−81.90 %) as

a direct gzip compaction on the original mesh. This is

advantageous, as the proposed method either provides

access to a two-fold downsampled mesh together with

a smaller overall size.

One can wish to have access to further levels of ap-

proximation. The third line of each table block speci-

fies the range of additional available levels (depending

on mesh size), here from 2–4, with the minimum and

maximum compression ratios attained. While we still

observe a marginal improvement over a 1-level Hexa-

Shrink (and again a slightly anomalous behavior for

mesh#5), what is more important is the almost im-

perceptible variation between the resolutions. Hence,

HexaShrink offers in all cases an interesting compres-

sion ratio with the supplementary interest of getting

all intermediate resolutions, as shown earlier in Section

5.1.

Overall, the most basic worse case performance (with

gzip) of HexaShrink provides a gain above−60 %, which

could be exploited which hardware acceleration [46]. Or

in the best cases, combined with LZMA, one can expect

as most as 3.64–13.35 fold compression.

In rare cases (e.g. for mesh#1 and LZMA) compres-

sion rates for one decomposition only remains slightly

greater than the ones with more levels, yet only im-

perceptibly so. As a result, on all tested examples, we

demonstrate the possibility of storing independently mul-
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tiscale mesh properties as approximations and details,

while preserving geometry (hence faults), with an im-

portant benefit in data handling, visualization and com-

pression.

6 Conclusion and perspectives

HexaShrink offers a comprehensive and efficient frame-

work for a scalable representation of hexahedral meshes

with continuous and categorical properties, at dyadic

resolutions. It is first dedicated to the visualization of

massive structured meshes, as used in geosciences, that

can contain geometrical discontinuities, to describe faults

for instance. Four adapted multiresolution representa-

tions are matched to the underlying nature of each data

field. They permit to decompose such specific meshes

progressively. In particular, this framework includes a

morphological transform that takes into account geo-

metrical discontinuities relative to any fault configura-

tion, and preserve their rendering across resolutions,

while maintaining structural coherency.

HexaShrink can process any mesh size, thanks to a

GPU-based out-of-core algorithm. This is crucial, given

the constant evolution of data acquisition density that

yields increasingly massive and accurate dataset, as-

sociated to more demanding simulations. The Hexa-

Shrink decomposition is consistent with respect to mesh

rescaling in geosciences, and provides an option for a re-

versible upscaling; [47] recently proposed such a wavelet-

inspired scheme. Finally, it lends itself to an efficient

lossless compression, which can be used for storage and

transfer.

Perspectives can deploy into many directions. Mo-

tivated by preliminary progressive lossless compression

results, we aim at developing a more versatile multires-

olution compression scheme, to manage the potential

evolution of mesh geometry or properties over time,

with a special care for simulation-related quality met-

rics.
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