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Abstract

With huge data acquisition progresses realized in the past decades and acquisition systems now able to produce high
resolution grids and point clouds, the digitization of physical terrains becomes increasingly more precise. Such extreme
quantities of generated and modeled data greatly impact computational performances on many levels of high-performance
computing (HPC): storage media, memory requirements, transfer capability, and finally simulation interactivity, necessary
to exploit this instance of big data. Efficient representations and storage are thus becoming “enabling technologies” in HPC
experimental and simulation science. We propose HexaShrink, an original decomposition scheme for structured hexahedral
volume meshes. The latter are used for instance in biomedical engineering, materials science, or geosciences. HexaShrink
provides a comprehensive framework allowing efficient mesh visualization and storage. Its exactly reversible multiresolution
decomposition yields a hierarchy of meshes of increasing levels of details, in terms of either geometry, continuous or
categorical properties of cells. Starting with an overview of volume meshes compression techniques, our contribution
blends coherently different multiresolution wavelet schemes in different dimensions. It results in a global framework
preserving discontinuities (faults) across scales, implemented as a fully reversible upscaling at different resolutions.
Experimental results are provided on meshes of varying size and complexity. They emphasize the consistency of the
proposed representation, in terms of visualization, attribute downsampling and distribution at different resolutions. Finally,
HexaShrink yields gains in storage space when combined to lossless compression techniques.

Keywords Compression - Corner point grid - Discrete wavelet transform - Geometrical discontinuities -
Hexahedral volume meshes - High-performance computing - Multiscale methods - Simulation - Upscaling

1 Introduction progresses in data acquisition produce increasingly more

accurate digitization of physical terrains. The tremendous

Simulation sciences and scientific modelling in high-
performance computing employ meshes with increasing
precision and dynamics. Among them, hexahedral meshes
are commonly handled in biomedical engineering [2],
computational materials science [3], and in geosciences.
They are for instance used by geologists to study flow
simulations for reservoir modelling [4], and benefit from an
increasing interest for geologic model building [5, 6]. Huge

This work was partly presented in [1].

P< Laurent Duval
Laurent.Duval @ifpen.fr

Extended author information available on the last page of the article.

quantity of data thus generated prominently impacts
computational resources and performances: memory size
required for their storage and visualization, but also their
transmission and transfer, and ultimately their processing.
Consequently, it greatly affects the overall simulation
interactivity. This trend affects the oil and gas sector at large
[71.

We propose HexaShrink, an efficient multiscale repre-
sentation dedicated to hexahedral meshes with attributes
and discontinuities. HexaShrink combines four wavelet-
like decompositions to adapt to the heterogeneous nature
of geoscience meshes. Geometrical, continuous, and cate-
gorical properties are consistently downsampled (upscaled
in geoscience terms [8]) in an exactly reversible manner.
In addition to regular structures, HexaShrink also strives
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Fig.1 Example of a VM used in
geosciences (left); same mesh
with the associated porosity
property (right). Note that this
mesh is hybrid and unstructured,
with both hexahedral and
tetrahedral elements

to manage mesh externalities like boundaries and borders
tagged as inactive cells for simulation purposes. It produces
a hierarchy of meshes at dyadic resolutions maintaining
geometrical coherency over scales, consistent with geomod-
eler/simulator upscaling operations [8]. It finally lends itself
to efficient lossless storage, in combination with state-of-
the-art compression algorithms.

The paper is structured as follows: Section 2 presents
the specificities of structured hexahedral meshes and the
discontinuities they may contain. Section 3 reviews prior
methods for volume mesh representation or compression
[9]. We introduce the HexaShrink structured mesh repre-
sentation in Section 4. We detail the four main multiscale
wavelet-like schemes that entail an exactly invertible hier-
archy of downsampled meshes, consistently with respect
to geometry and properties. A special care is taken on the
accurate representation of faults and the management of
mesh borders. Section 5 presents visual results and evaluates
the quality of the HexaShrink with respect to categori-
cal property coherency across scales, and dyadic upscaling
by a geomodeler. An exhaustive evaluation obtained from
combining HexaShrink with different lossless compression
algorithms, at different resolution levels shows the interest
of the proposed representation in terms of lossless com-
pression for storage. Finally, Section 6 summarizes our
contributions and proposes future works.

2 Volume meshes: a primer
2.1 Generic definitions

Volumetric or volume meshes (VMs) discretize the interior
structure of 3D objects. They partition their inner space
with a set of three-dimensional elements named cells (or
zones). While pyramid and triangular prism partitions exist,
most of the existing VMs are composed of tetrahedral
(4 faces) or hexahedral (6 faces) elements. They are
called tets or hexes (sometimes bricks), respectively. A
VM composed of different kinds of cells, tetrahedra and
hexahedra for instance, is termed hybrid. A VM is described
by the location of vertices in 3D space (geometry) and the
incidence information between cells, edges, and vertices

@ Springer

(connectivity). In function of the application domain, VMs
also contain physical properties associated to vertices,
edges, or cells. In geosciences, properties can be scalar
(like a single porosity value, Fig. 1) or vectorial (a vector
of compositional proportions in different rocks within
a cell...). We also distinguish categorical or nominal
variables (symbolic and discrete values describing the
composition of rocks: sandstone (0), limestone (1), shale
(2)...) from continuous properties (saturation, porosity,
permeability, or a temperature taking values in a given range
[T, T2)).

A non-degenerate hex has 6 faces named quads, 12
edges, and 8 vertices. Depending on incidence information
between cells, edges, and vertices, hexahedral meshes are
either unstructured or structured. The degree of an edge
is the number of adjacent faces. An hexahedral mesh is
unstructured if cells are placed irregularly in the volume
domain, i.e., if degrees are not the same for all edges of
the same nature. Unstructured meshes have an important
memory footprint, as all the connectivity information must
be described explicitly. However, they are well-suited to
model complex volumes, Computer-aided design (CAD)
models for instance, as shown in Fig. 2.

An hexahedral mesh is structured if cells are regularly
organized in the volume domain, i.e., if the degree is equal
to four for interior edges (inside the volume), and equal to
two for border edges (on a border of the volume). In that
case, the set of hexahedral cells is topologically aligned on
a 3D Cartesian grid (see Fig. 3). Each vertex of the mesh
can be associated to a node of the grid. Hence, each cell can
be indexed by only one triplet (i, j, k), and the connectivity
information becomes implicit: only the position of the
vertices is needed to model the mesh.

Fig.2 CAD model defined by an unstructured VM
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Node: grid vertices

Cell (elementary volume)
(hexahedron, tetrahedron)

Cell face

Edge

Grid

Fig.3 Structured hexahedral mesh composed of (5 x 4 x 3) cells

2.2 Hexahedral meshes & geometrical
discontinuities

Hexahedral meshes in geosciences are generally structured,
and thus based on a Cartesian grid. But these meshes may
contain geometrical discontinuities. They correspond, for
instance, to geological faults. It induces a vertex disparity in
space at the same node. The association of one node of the
Cartesian grid with 8 vertices (one for each adjacent cell)
handles this specificity. Figure 5a provides an illustration
of a fault-free volume. On Fig. 5b, we see that this
structure allows to describe for instance a vertical fault
(by positioning vertices differently about the node), while
preserving the Cartesian grid.

The most popular data structure for structured hexahedral
meshes with geometrical discontinuities is the Corner Point
Grid [10, 11] tessellation of an Euclidean 3D volume.
This structure is often termed pillar grid. It is based on
a set of vertical or inclined pillars running from the top
to the bottom of the geological model. A cell is defined
by its 8 adjacent vertices (2 on each adjacent pillars, see
Fig. 4), and the vertices of the adjacent cells are described
independently, in order to model faults and gaps. Across

[ ]
k

? <« Ppillar (0,1)

\
S Node (0,1,1)

[}
EE— \ Hexahedral cell
o /. (0,0,0)

// >

\ Grid (i,j)

Fig.4 An hexahedron, according to the pillar grid structure

Lower extremity of
pillar (1,1)
S

the associated Cartesian grid, each cell can be indexed by a
triplet (i, j, k).

This pillar grid also allows to model geological collapses
(or erosion surfaces), by using degenerate cells, i.e., cells
with (at least) two vertices on one pillar located at the same
position (see Fig. 6 for different degenerate configurations).

3 Mesh compression: an overview

We deal in this section mostly with the ontological
description of volume meshes, leaving aside the specificities
related to actual data format.

3.1 Basic techniques for mesh encoding

The most straightforward technique to encode a VM is
to use an indexed data structure: the list of all the vertex
coordinates (three floating-point values, which amounts to
96 bits par vertex), followed by their connectivity. The
connectivity is defined cell after cell, each cell being defined
by the set of indexes of the adjacent vertices (8 integers per
hex). Physical property encoding depends on their nature:
categorical/continuous, dimension, associated to cells or
vertices. They thus only provide estimates of an actual
compression performance.

To reduce the memory footprint or make the transmission
of VMs faster, well-known techniques exist. The simplest
tool for the geometry is the quantization of vertex coordi-
nates. It consists of constraining the vertex coordinates to a
discrete and finite set of values. Hence, it becomes possi-
ble to encode each coordinate with an integer index, instead
of a 32-bit floating-point value. It is common to quantize
the coordinates with 12 or 16 bits, reducing the geometry
information by a compression factor of 2.6 or 2 respectively.
Quantization inevitably introduces an irreversible loss in
accuracy. Visualization typically tolerates precision loss (as
long as visual distortion remains negligible), unlike some
numerical simulations requiring more precise computations.

Prediction (as well as related interpolation methods)
further improves the geometry compactness. Predictive
coding resorts to estimating the position of a vertex
from already encoded neighbor vertices. Prediction errors
(differences between predicted and actual positions) are
generally smaller in amplitude and sparser, which makes
their entropy coding (which codes differently frequently
occurring patterns) efficient [12, p. 63 sq.].

Regarding connectivity, when meshes are unstructured,
the most frequent technique performs a traversal of mesh
elements and describes the incidence configurations with a
reduced list of symbols. These symbols are then entropy
coded. When meshes are structured, the connectivity is
implicit, reducing its cost to zero. For such meshes, the

@ Springer
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Fig.5 A fault-free and a fault
area. a Free-fault area. b Area
with a vertical fault

<— 1 node with 2 equal vertices

(a) Free-fault area.

only additional information to encode are geometrical
discontinuities describing faults and gaps.

3.2 Volume mesh compression: prior works

The basic tools previously presented can be implemented
on the ontological structure of meshes and improved in
many different ways. Their combination, with the assis-
tance of advanced compression techniques, permits more
efficient tetrahedral or hexahedral mesh coding. Previously
proposed algorithms are presented below, classified into two
categories: single-rate and progressive/multiresolution.

3.2.1 Single-rate mesh compression

They lead to a compact mesh representation, most of the
time driven by efficient connectivity encoding. The first
method for tetrahedral meshes, Grow & Fold, was presented
by Szymczak and Rossignac [13] at the end of the nineties.
It is an extension of EdgeBreaker [14] developed for triangle
meshes. The method consists in building a tetrahedral
spanning tree from a root tetrahedron. The traversal is
arbitrary among the three neighboring tets (Section 2.1)
of the cell currently processed, and 3 bits are needed to
encode each cell. The resulting spanning tree does not
retain the same topology as the original mesh, because
some vertices are replicated during the traversal. “Fold”
and “glue” techniques are thus needed during encoding to
restore the original mesh from the tetrahedron tree. The
additional cost is 4 bits, leading to a total cost of 7 bits per
tetrahedron.

Fig.6 Degenerate hexahedral

cells due to a single collapsed °
pillar (a) or two different

collapsed pillar locations (b), (c)

(a) Single.

@ Springer

1 node with 1 vertex

1 node with 4 equal vertices
1 node with 8 equal vertices

1 node with 4 vertices at position P
and 4 vertices at position P’

(b) Area with a vertical
fault.

The cut-border initiated in [15] was adapted to tetrahe-
dral meshes [16]. It denotes the frontier between tetrahedra
already encoded and those to encode. At each iteration,
either a triangle or an adjacent tetrahedron is added to the
cut-border. In this case, if the added vertex is not already in
the cut-border, this latter is included by a connect operation
and is given a local index. As the indexing is done locally,
the integers to encode are very small, leading to a com-
pact connectivity representation. In addition, two methods
are proposed to encode geometry and associated properties,
based on prediction and entropy coding. This method yields
good bit rates (2.4 bits per tetrahedron for connectivity)
for usual meshes, handles non-manifold borders, but worst-
cases severely impact bitrates and runtimes (which tend to
be quadratic).

Isenburg and Alliez [17] are the first to deal with
hexahedral VMs. The connectivity is encoded as a sequence
of edge degrees—in a way similar to [18] for triangular
meshes—via a region-growing process of a convex hull
called hull surface. It relies on the assumption that
hexahedral meshes are often highly regular, which implies
that the majority of vertices are shared by 8 cells. It involves
an almost constant edge degree all over the mesh, which
significantly decreases the entropy of the connectivity
information. A context-based arithmetic coder [19] is then
used to encode the connectivity at very low bit rates,
between 0.18 and 1.55 bits per hexahedron. Regarding
geometry, a user-defined quantization first restricts the
number of bits for coordinates, and then a predictive scheme
based on the parallelogram rule encodes the position of
vertices added during the region-growing process.

(b) Two opposed. (c) Two adjacent.
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Krivograd et al. [20] propose a variant to [17] that
encodes the vertex degrees—number of non-compressed
hexahedra around a given vertex—instead of the edge
degrees. On the one hand, this variant achieves better
compression performances than [17] for dense meshes. On
the other hand, it only deals with manifold meshes, and
the algorithm is complex as interior cells are encoded after
border cells (it involves many specific cases to process when
encoding the connectivity).

Lindstrom and Isenburg proposed an original algorithm
for unstructured meshes called Hexzip [21]. This algorithm
is considered as fully lossless, because the initial indexing
of vertices and hexahedra is preserved. For this purpose,
connectivity is encoded directly in its indexed structure,
by predicting the eight indices of an hexahedron from pre-
ceding ones. This technique is suitable because hexahedral
meshes generally have regular strides between indices of
subsequent hexahedra. A hash-table is then used to trans-
form the index structure into a very redundant and byte-
aligned list of symbols, that can be compressed efficiently
with gzip (discussed in Section 5.4). Concerning the geom-
etry, spectral prediction [22] is used. This algorithm is faster
and less memory intensive than [17] as the connectivity is
not modified. It handles non-manifold meshes and degener-
ate elements. On the other hand, bitrates are higher because
of the lossless constraints. Unlike methods presented above,
Chen et al. [23] focus on geometry compression for tetra-
hedral meshes. The authors proposed a flipping approach
based on an extension of the parallelogram rule (initially
proposed for triangle meshes [18]) to tetrahedra. It consists
in predicting the position of an outer vertex of two face-
adjacent tetrahedra, with respect to the other vertices. To
globally optimize the geometry compression, a minimum
spanning tree minimizing the global prediction error for the
whole mesh is computed. This method is more efficient than
prior flipping approaches whose traversal does not depend
on the geometry, but solely on the connectivity.

Streaming compression is a subcategory of single rate
compression, dedicated to huge data that cannot fit entirely
in the core memory. A particular attention to I/O efficiency
is thus required, to enable the encoding of huge meshes
with a small memory footprint. Isenburg and coworkers
are the first to propose streaming compression for VMs
(extended from his method for triangular meshes [24]):
for tetrahedral meshes [25], and then for hexahedral
meshes [26]. In the latter, for instance, the compressor
does not require the knowledge of the full list of
vertices and cells before encoding. The compressor starts
encoding the mesh as soon as the first hexahedron
and its eight adjacent vertices have been read. For a
given hexahedron: (i) its face adjacency is first encoded
in function of its configuration with hexahedra already
processed; (ii) positions of vertices that are referenced

for the first time are predicted (spectral prediction from
adjacent cells); (iii) prediction errors are encoded; (iv) data
structures relative to vertices, becoming useless (because
their incidence has been entirely described) are finally
removed from memory. Compared to other single rate
techniques, streaming tends to achieve similar compression
performances for geometry, but poorer performances for
connectivity.

3.2.2 Progressive/multiresolution mesh compression

Progressive algorithms (also called scalable or multiresolu-
tion, see Section 4.1 for details) enable the original meshes
to be represented and compressed at successive LODs (lev-
els of details). The main advantage is that it is not necessary
to decompress a mesh entirely before vizualising it. A
coarse approximation of the mesh (also known as its lowest
resolution) is first decompressed and displayed. Then this
coarse mesh is updated with the successive LOD (termed
higher resolutions) that are decompressed progressively.
While they cannot achieve yet compression performance of
single-rate algorithms, progressive algorithms are popular
because they enable LOD, and also adaptive transmission
and displaying, in function of user constraints (network,
bandwidth, screen resolution. . .).

Pajarola et al. [27] are the first to propose in 1999
a progressive algorithm dedicated to VM compression.
This work is inspired by a simplification technique for
tetrahedral meshes [28]. It simplifies a given tetrahedral
mesh progressively, by using successive edge collapses
[29]. Each time an edge is collapsed, its adjacent cells are
removed, and all the information required to reverse this
operation is stored: index of the vertex to split, and the
set of incident faces to “cut.” Thus, during decompression,
the LODs can be also recovered iteratively, by using the
stored data describing vertex splits. During coding, an edge
is selected such as its collapse leads to the minimal error,
with respect to specific cost functions. This algorithm gives
a bitrate inferior to 6 bits per tetrahedron (for connectivity
only).

In 2003, Danovaro et al. [30] propose two progressive
representations based on a decomposition of a field
domain into tetrahedral cells. The first is based on
vertex splits, as the previous method, the second is
based on tetrahedron bisections. This operation consists in
subdividing a tetrahedron into two tetrahedra by adding a
vertex in the middle of its longest edge. Unlike with vertex
splits, the representation based on tetrahedron bisections
is obtained by following a coarse-to-fine approach, i.e., by
applying successive bisections to an initial coarse mesh.
Also, this representation only needs to encode the difference
vectors between the vertices added by bisections and theirs
real positions. This representation is thus more compact, as
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the mesh topology does not need to be encoded, but it only
deals with structured meshes.

VMs multiresolution decomposition based on wavelets
[31] was proposed by Boscardin et al. [32] for tetrahe-
dral meshes. It is based on the tetrahedron subdivision
scheme [33] that transforms a tetrahedron into 8 sub-
tetrahedra, by introducing 6 new vertices on each edge.
After analysis, the input mesh is replaced by a base tetra-
hedral mesh, and several sets of detail wavelet coeffi-
cients. Although coefficients corresponding to differences
between two resolutions could be encoded for mesh syn-
thesis, this work does not provide an actual compression
scheme.

In [34], Chizat proposed a prototype for a multiresolution
decomposition of geoscientific hexahedral meshes with the
pillar grid structure (Section 2.2). His main contribution
resides in a multiresolution analysis (MRA) that partially
manages geometrical discontinuities representing the faults.
It can be achieved by using a morphological wavelet
transform (Section 4.2.2). This non-separable transform
enables the preservation of some fault shapes at different
resolutions, as depicted in Fig. 7.

The latter work is a seed for the upcoming description of
HexaShrink.

4 Global HexaShrink algorithmic workflow
4.1 Multiresolution analysis: background

MRA or multiscale approximation can be interpreted as
a decomposition of data at different resolutions, LOD or
scales, through a recursive analysis process. It is called
exact, reversible, or invertible when a synthesis scheme
can retrieve the original data. Inter-scale relationships [35,
36] often yield sparsification or increased compressibility
on sufficiently regular datasets. In discrete domains, each
analysis stage transforms a set of values (continuous or
categorical, in one or several dimensions), denoted by SO,

Fig.7 Dyadic non-separable
multiresolution rendering on a
simple geologic mesh [34]

@ Springer

The resulting representation consists in one subset S~! of
approximation coefficients at a lower resolution identified
by a negative index S~! that approximates the original
signal, plus one subset of details D~! or a combination
thereof. The latter represents information missing in the
approximation S~!. Depending on the MRA scheme, the
lower resolution S~! may represent a coarsening or “low
frequencies” of the original samples, or an upscaling in
geosciences (cf. Section 4). The subset D! represents
refinements, fast variations or ‘“high-frequency” details
removed from S°. We consider here exact systems, allowing
the perfect recovery of S° from a combination of subsets
S~!and D~'. Hence, a similar analysis stage can be applied
iteratively, and perfectly again, to the lower resolution S~
in a so-called pyramid scheme. Thus, with the non-positive
extremum decomposition level L, and indices 0 > [ > L,
after an |L|-level multiresolution decomposition, the input
set SO is now decomposed and represented by the subset
SL—a (very) coarse approximation of S—and |L| subsets
of details DX, ..., D!, ..., D!, representing information
missing between each two consecutive approximations.

We consider in the following four different MRA
flavors, all called wavelets for simplicity. They stem from
iterated, (rounded) linear or non-linear combinations of
coefficients, as well as separable (applied separately in 1D
on each direction) or non-separable ones. Without going
into technicalities here (cf. Section 4.2.3), computations are
performed using the lifting scheme. It suffices to mention
that lifting uses complementary interleaved grids of values,
often indexed with odd and even indices. Values on one
grid are usually predicted (approximations) and updated
(details) from the others. The main interests reside in
reduced computational load, in-place computations and the
possibility to maintain exact integer precision, using for
instance only dyadic-rational coefficients (written as m /2",
(m,n) € Z x N) and rounding. We refer to [31, sections
2.3, 3.2, and 4.3] for a concise account on both non-
separable and non-linear wavelet MRAs, and to [37-40]
for more comprehensive visions of wavelets and their
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Fig.8 Analysis and synthesis
stages for VMs

Original group of
(2,2,2) coefficients

=D

Detail
coefficients

Approximation
coefficient

Detail
coefficients

Approximation
coefficient

YD

Original group of
(2,2,2) coefficients

lifting implementations. A recent use in geological model
upscaling is given in [41].

More simply put, for our hexahedral VMs, the dyadic
analysis stage transforms each cell block C’ of values around
23 = 8 contiguous cells (possibly borrowing values from a
limited cell neighborhood) at resolution /. They are turned
into one approximating cell (lower resolution (S'~1), and
a subset of 22 — 1 = 7 detail cells D', as depicted in
Fig. 8 along with the reverse synthesis stage. Hence, if a

VM at resolution / is composed of (Cll X C’; X C,l() cells, Cf
being the number of cells in direction i, the VM of lower
! ct !
resolution will be of dimension ’V%—‘ X ’77’—‘ X ’76—2"—‘, to
take into account non-power-of-two sized grids. As several
digital attributes are associated with each cell (geometry,
continuous or categorical properties), different types of
MRA are performed separately on the different variables

defining these properties, as explained in the following
sections.

4.2 Multiresolution scheme for geometry

Standard linear MRA schemes rely on smoothing or aver-
aging and difference filters for approximations and details,

respectively. To preserve coherency of representation of
geometrical discontinuities—whatever the resolution—a
special care is taken to avoid excessive smoothing, while at
the same time allowing the reverse synthesis. As the pillar
grid format is used (see Section 2.2), vertices are inevitably
positioned along pillars. So, our multiresolution scheme for
geometry data only focuses on:

— the z coordinates of the 8 vertices associated to each
node. According to the naming convention presented in
Fig. 9, those 8 vertices can be differentiated according
to their relative positions [back (B)/front (F), bottom
(B)/top (T), left (L)/right (R)];

— the x and y coordinates of the nodes describing the low
(bottom) and high (top) extremities of all the pillars
(the x and y coordinates of intermediary nodes being
implicit). The nodes are called hereinafter the floor and
ceil nodes, respectively.

Actual 3D meshes can exhibit very irregular boundaries.
Hence, a Boolean field called ACTNUM may be associated
to each cell to inactivate its display (and its influence during
simulations as well). It enables the description of either
mesh boundaries (Fig. 10), or caves/overhangs. Resultantly,
this ACTNUM field must be carefully considered during

Fig.9 Vertex naming with the
back (B)/front (F), bottom

(B)/top (T), left (L)/right (R)

convention. a A node and its 8
surrounding cells. b Splitting
view of the node into its 8

BTR:

vertices

) BTL
JFT.L FTR l

TBBL BBRf_

FBL FBR

(a) A node and its 8 sur-
rounding cells.

A

(b) Splitting view of the
node into its &8 vertices.
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Fig. 10 Mesh#5 (in yellow) has inactive cells (in red) to describe its
boundaries using the ACTNUM field

the multiresolution analysis of the geometry data, to avoid
artifacts at lower resolutions on frontiers between active and
inactive cells (see Section 4.2.4 and Fig. 16).

By construction, most geological VMs have no horizon-
tal fault, as there is no vertical gap between any two adjacent
layers of cells. For every node, each of the four top ver-
tices has the same z coordinate as its counterpart bottom
vertex. Therefore, from now on, our geometry multiscale
representation method only deals with the z coordinates of
the bottom vertices BBL, BBR, FBL, and FBR of each node.

An instance of the decomposition shown in Fig. 8 can be
implemented with the proposed two-step technique depicted
by arrows in Fig. 11:

Fig. 11 HexaShrink
multiresolution scheme for

— A non-linear and non-separable 2D morphological

wavelet transform applied on the nodes, in order to
detect the faults in the input VM, and then to preserve
their coherency in the lower resolutions. This step relies
on a fault segmentation within the input VM obtained
by studying all possible fault configurations for the top
view of the VM (see Fig. 12);

— A non-linear 1D wavelet transform applied on the
output of the above first step to analyze the z
coordinates of the vertices along each pillar. The same
1D wavelet transform is also applied on the sets of
x and y coordinates of the floor and ceil nodes, to
complete the “horizontal” decomposition.

4.2.1 Fault segmentation

This stage detects the faults in the original mesh, in order
to preserve them during the morphological wavelet analysis.
For each node, a dozen of fault configurations, depending
on BBL, BBR, FBL, and FBR, is possible: fault-free (1),
straight (2), corner (4), T-oriented (4) or cross (1), as
illustrated in Fig. 12.

Each configuration depends on the four orientations
of the cardinal axes (north, south, east, and west),
which are either active or inactive. For instance, the
T-north configuration has its south axis inactive, while
the three remaining ones are active. Assuming that a
fault configuration is z-invariant, meaning that the nodes
belonging to the same pillar present the same fault
configuration, a single 2D configuration map is sufficient
to represent the fault configuration of the whole mesh, as
illustrated by Fig. 13.

Top view for fault segmentation

geometry: (left) input grid and y/4

4

7

4 7

its top view; (middle) output AL

from the non-separable,

4

non-linear 2D morphological

7

segmentation (based on the top

A
wavelet based on a fault I
I
view); (right) non-linear 1D i

wavelet transform along pillars
(orange lines) ‘

ﬁ
I
[
\

NS

|l
N \

=
b

/

Group of (4x4x4) cells

(resolution /) \ /
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Fig. 12 The 12 possible fault
configurations (in black lines) at
 given node BBL 4uBBR BBLgaBBR BBL4BBR BBLABBR
FBL FBR FBL| FBR FBL T FBR FBLY FBR
Fault-free Horizontal Vertical Top-right
BBL .uBBR BBL 4 BBR BBL'.BBR BBL 4 BBR
FBL T FBR FBL | FBR FBL T FBR FBL | FBR
Bottom-right Top-left Bottom-left T-north
BBL .uBBR BBL 4 BBR BBLeBBR BBL 4 BBR
FBL T FBR FBL T FBR FBL | FBR FBL T FBR
T-south T-east T-west Cross

4.2.2 Horizontal 2D morphological wavelet transform

The fault segmentation guides the multiresolution analysis
to preserve faults, as much as possible, all over the
decomposition process. The fault configuration of 4
associated nodes at resolution [/ is used to predict the
extension of the downsampled fault structure at resolution
-1

This horizontal prediction is based on the logical function
OR (Vv), computed on each side of each group of 4

Fig. 13 Fault segmentation
within the original mesh

nodes. For instance, a resulting fault node configuration
contains a west axis if the fault configurations of the 2
left nodes contain at least 1 west axis, as illustrated in
Fig. 14. By repeating the procedure for the north, south and
east axes of each resulting node, fault node configurations
at lower resolutions are fully predicted. This non-linear
and peculiar choice is meant to maintain a directional
flavor of orientated faults for flows; other choices could
be devised, depending on physical rules and geological
intuitions.

N - - -\
/-
2
Q
> _ BBL@BBR BBLL BBR BBLL BBR BBL,.BBR
K FBLYFBR FBLY’FBR FBLY FBR FBLY FBR
()]
(V]
Horizontal Top-left Vertical Bottom-right
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b 4

Y

Fig. 14 Prediction of a fault node at resolution ! — 1 from the
four parents’ configuration at resolution /, orange ovals denoting Vv
operands

Finally, from this prediction, the node whose configu-
ration minimizes its distance with the predicted one, cor-
responds to the aforementioned approximation coefficient,
which will be part of the novel Z matrix at lower resolution
| — 1. The same procedure can be applied recursively until
the wanted resolution.

4.2.3 Rounded linear 1D wavelet transform

This 1D wavelet transform is applied on the output of
the above horizontal 2D morphological wavelet, to analyze
the z coordinates of the 4 sets of vertices BDR, FDR,
BDL, and FDL separately, along each selected pillar.
Hence, HexaShrink here decomposes at each scale 7! into a
subsampled pillar coordinate z/~! and its associated detail
d'~!. By geomodel construction, coordinate behavior along

Fig. 15 Principle of the lifting
scheme (prediction and update)
for the rounded linear 1D
wavelet from Egs. 1-2, to |
analyze z coordinates of vertices

BDR, FDR, BDL, and FDL l
along each pillar, as well as x
and y coordinates of the floor
and ceil nodes

avas

E |
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the pillars is expected to be relatively smooth. This entails
the use of a modified, longer spline wavelet. The latter
can be termed LeGall [42], or CDF 5/3 (after Cohen,
Daubechies, and Feauveau [43]), or biorthogonal 2.2 from
its vanishing moments.

The lifting analysis operations Prediction and Update
are depicted by Fig. 15. To retrieve respectively the sets of
details d’ and the z! coordinates at resolution / — 1 from
scale [, the following equations are used (Vn € N):

) [
-1 _ 1—1
51MP=MM+W+{d n ﬂ+d WJ, 2)

where both dyadic integers and rounding are evident
(see Section 4.1). With rounding, lifting schemes can
thus manage integer-to-integer transformations [44]. For
synthesis, to reconstruct resolution / from resolution / — 1,
we only have to reverse the order and the sign of the
equations:

I-1p, -1
d'[n li +d [n]J e
Z[2n) + 7' [2n + 2] J

5 .

ku=£”m—{

d2n+1] = d'n] + { )

4.2.4 Managing externalities: borders and boundaries

A pertinent multiresolution on complex meshes requires
to cope with externalities that may hamper their handling:
floor and ceil borders and outer boundaries (Fig. 10).
First, to keep borders unchanged from the original mesh,
throughout all resolutions, the following constraints must be
met:

2701 = Z'[oy, (5)
M =1 = 2w - 1. (6)
Details Approximation coefficients

(lower r%solution)

N~

=

\ v
' 7/

a1z i
>D—z“[21~ .
Z'[3] s a1 D »
z'[2] > 27 1] = - = e ety
z 1] =k =10 l—,'
Z[0] 4 . 21_1[0]/"’
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Both constraints can be fulfilled if one satisfies the 4.3 Multiresolution scheme for continuous
following conditions: properties

~  Floor border condition to meet (5): Once the geometry is coded, one can focus on associated

continuous properties. For scalar ones, a value p; € R

d=1]= —d' 0], 7 is associated to each cell i in the mesh. Consistently

with the handling of cell blocks C of 2 x 2 x 2 cells

throughout scales, we use an adaptation of the well-known

—  Ceil border condition to meet (6): Haar wavelet. The resolution / — 1 is a scaled average of

cells at resolution /. The approximation coefficient p'~!

is thus the average value of the related eight property

I—1p, [—1 I—1p, [—1 1
d[n " —1l=—d [n" —2], (npodd) (8)  coefficients { pll, pé, e, pé}. The seven details required for
dl-! [ni*1 —1]= - d'! [ni*1 —2] (n§C even) synthesis are differences with respect to the approximation
coefficient:

+ 42l =11 =4[ =21, 9)
8
To complete the MRA of the geometry, the same rounded I-1 _ 1 I, -1 _ 1 _ -1
1D wavelet as in Section 4.2.3 is finally applied to the sets P 8 ; Pni A PP, v E L
of floor and ceil nodes of the initial VM, to get the x and y
coordinates of the extremities of the remaining pillars at the
lower resolution.
Second, the ACTNUM field should also be considered to
lessen mesh boundary artifacts. Indeed, severe disturbances
may appear at lower resolutions if not wisely processed

during analysis, as shown in Fig. 16.

To deal with real-valued (floating-point) properties, and
avoid accuracy imprecision due to the divide operator,
we introduce the following modifications. First, reals are
mapped into integers up to a user-defined precision, here
with a 10° factor. Second, we disable the division by using
a sum. The analysis system thus becomes:

A cell is deemed active if and only if its 8 adjacent 3
vertices are active at the resolution /. During our study, we ~ p/~! = Z ply dt=8pl —p'7t Vi £1,
found that one vertex at resolution / — 1 could be considered n=1

active if and only if its parent vertices selected by the

. . . and the synthesis system turns into:
morphological wavelet at resolution / (Section 4.2.2) are 4 4

active. So, a cell at resolution / — 1 is considered active if 1 8

d e . . . I _ _(dl—l + 1—1) v 1- I I=1_ I
and only if its 8 x 2 corresponding parent vertices are active P, = g n p s Yn#E1l; py=p Py -
at resolution /. n=2

Fig. 16 Inadequate ACTNUM
fields management during
analysis may lead to severe
boundary artifacts (left) that can

A
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Approximation and coefficients are stored as is. To
recover the accurately scaled values, the division operator
should however be applied as a simple linear post-
processing.

4.4 Multiresolution scheme for categorical
properties

We finally complete the global mesh multiresolution
decomposition with an original categorical-valued scheme
called modelet [45]. We assume that a mesh cell category
belongs to a set of classes Qp = {w1, wy, ..., ww}, taking
discrete values. The cell block C! { pll, plz, . ..,pé} thus
contains, at resolution /, integers indexing categories from
;. They take values in a subset of 2. The multiresolution
scheme is expected to produce, at lower resolutions, discrete
values in embedded subsets: 20 D Q21 D --- D D ---.
In other words, a cell category can only belong to an existing
category at an upper resolution. We choose here the modal
value (mode), i.e., the most frequently represented in cit
|wy | denotes the cardinal of this class, then ZZ;V:l |w{vl =
IC!| = 8. We choose for the modelet:

pl*1 = argmax{|a)fﬂ|,a)fu e Q}.

It may happen that the above definition does not yield
a unique maximum. If two or more categories dominate
a cell block, a generic approach consists in taking into
account its first block cell neighborhood (the surrounding
26 cells, except at mesh borders and boundaries). We affect
the dominant value in the first neighborhood to p/~!. In
case of a draw again, the second-order surrounding can be
used, iteratively. In practice for the presented version of
HexaShrink, we limit to the first-order neighborhood, and
choose the lowest indexed category when the maximum
is not unique. Equipped with this unique lower resolution
representative value, we proceed similarly to Section 4.3 for
details, by using differences between original categories and
the mode. As classes are often indexed by positive integers,
a slight motivation allows to get only non-negative indices.
By avoiding negative values, one expects a decrease in data
entropy of around 5%, which benefits to compression.

We thus change the sign of a detail coefficient if and only
if it generates a value out of the range of {w1, w2, ..., ow},
and then control this condition during reconstruction. So, all
details {d/~!} for a cell block C are determined by:

d-1 = (—1)Pn=P T <OA@P T =) ER) (ph — pIh).
During synthesis, coefficients { pf.} are obtained thanks to
the closed-form equation:

— -1 1—1 _
pf,zpl 1+(_1)((p +di~1eQ) Xdzlz I
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5 Evaluation methodology, comparative
results, and discussion

5.1 Evaluation methodology

Meshes, hexahedral ones in particular, are complex com-
posite objects. The ontological description of their geometry
is subject to different options, “Block Centered” or “Cor-
ner Point” grids for instance. Their generation, cell size,
and resolution for practical applications may have under-
gone more or less complex processing. Mesh complexity
can range from simply layered, homogeneous modes to
massively faulted environment with highly varying proper-
ties. Encoded numerical values, albethey cell coordinates,
numerical or categorical properties are cast into different
possible integer or floating-point precisions. The struc-
ture of the raw mesh binary object is itself embedded
into enriched formats, for which a few standards exist, as
RESQML™. The latter also encompasses structural infor-
mation required to exchange models, generating informa-
tion overhead. Finally, detail simplification through mul-
tiscale decompositions does not possess well-established
quality metrics. All of the above hampers exhaustive objec-
tive evaluations such as possible in image processing, where
metrics and benchmarks have been evaluated for decades.

To evaluate the performance of HexaShrink, we base
our analysis on a set of seven geological meshes,
with geometries ranging from smooth to fractured, and
diverse categorical and continuous properties. Their main
characteristics and properties are summarized in Table 1.
As will be seen, they appear representative enough to allow
one to derive consistent observations and conclusions for
different data handling purposes.

They are initially stored in the GRDECL (“GRiD
ECLipse”) file format [46]. Originally complex geomod-
els are thus described with details rendering their geom-
etry explicit and structured, an important feature for geo-
modelers or flow simulation software (Petrel™, SKUA-
GOCAD™, Eclipse™...).

As observed in the state-of-the-art (Section 3.2),
to our knowledge, reversible multiscale representations
of geometry and properties—together with discontinuity
preservation—of hexahedral meshes do not exist. Even if
the standardized 3D extension to the JPEG2000 image
compression format (termed J2K-3D) could process the
properties as volumetric images, it is not per se suited to
volume meshes, especially with categorical properties. We
thus focus on visualizations, comparisons with geomodeler
upscaling capabilities, and the embedding of our multi-
scale decompositions into several all-purpose compression
algorithms.

The evaluation methodology is twofold. First, we
exemplify the outcome of HexaShrink on meshes on
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Table 1 Meshes chosen for evaluation: a compendium of their ontological characteristics and geological properties

Mesh Characteristics Properties

index # cells Dimension Faults File size ACTNUM Continuous Categorical
1 93,600 80 x 45 x 26 No 4.615 MB 100% Porosity Rock type
2 1,000,000 100 x 100 x 100 No 42.459 MB 100% — —

3 36,816 59 x 39 x 16 Yes 1.458 MB 100% — —

4 210,000 100 x 100 x 21 Yes 7.881 MB 20% — —

5 450,576 149 x 189 x 16 Yes 22.730 MB 46% Porosity, permeability —

6 5,577,325 227 x 95 x 305 Yes 274,573 MB 97% Porosity Rock type
7 13,947,600 240 x 295 x 197 Yes 580.937 MB 100% Porosity Rock type

either their geometry with a continuous and a categor-
ical property at different dyadic scales. This reversible
framework is put into perspective with similar down-
scaling processes in a reference geomodeler. Second, a
comprehensive evaluation of lossless compression per-
formance is provided, using state-of-the-art coders on
either the raw files or their multiscale decomposed
counterparts.

5.2 Reversible multiscale mesh representation

Figures 17 and 18 present the reversible multiscale
decompositions generated by HexaShrink for mesh#1 and
mesh#7. The latter contains several faults. Downsampled
meshes are arranged in rows by decreasing scale. The first
column represents the mesh without any attribute. The
second and the third columns represent the same mesh onto
which a continuous and a categorical property is mapped,
respectively.

Mesh#l is decomposed to the lowest possible resolution
(Fig. 17, bottom). This is probably not useful from a
geologist perspective. However, while all properties are
almost constant, the lower arch corresponding to an
anticlinal on the mesh at original resolution remains
perceptible on the final “Lego brick” resolution. Looking
at the porosity property (middle column), one observes
how the values are progressively homogenized on coarser
hexes. Concerning the rock type (last column), one
observes that the modelet scheme tends to locally maintain
predominant categories resolution after resolution, which is
very satisfactory.

On Fig. 18, the much larger mesh#7 is represented down
to a fifth dyadic sub-scale. It contains an isolated fault on the
left side (the diagonal crest shape) and a faulty block on the
right. Even at the coarsest level, corresponding to a down-
sampling by 2 x 24 x 24, these two structural discontinuities
are still present, while keeping a good shape fidelity, glob-
ally. Concerning the attributes, the decompositions are also
adequate.

To emphasize further the capacity of our scheme to
maintain coherency across the resolutions for the properties,
Fig. 19 shows the evolution of the Rock Type distribution
until the third resolution for mesh#1 and mesh#7. We
observe that HexaShrink preserves the shape of histograms.
In other words, the proportion of each category remains
consistent across the scales of observation. Figure 19 also
provides a comparison with the distributions obtained from
the reversible CDF 5/3 wavelet transform (Section 4.2.3)
used in J2K-3D [47]. One observes that histograms at
lower resolution absolutely do not reflect the original
ones, creating interpolated categorical values that do not
possess geological meaning. Indeed, a major feature of
HexaShrink is to combine, in an overall multiresolution
framework, four different downsampling schemes adapted
to each property.

Beyond these results in terms of geometry and property
coherence across resolutions, we recall that our method is
deterministic, and exact. The four analysis and synthesis
multiresolution schemes allow perfect reconstruction. Con-
trary to [34], our method is able to manage all the fault
configurations. HexaShrink is also scalable, which is indis-
pensable in geosciences, given the steadily growing size
of data volumes and model simulations. This scalability
relies on an out-of-core algorithm [48] that splits geometry
and property matrices into “small” sub-matrices, to process
them sequentially. We are thus able to deal with meshes of
any size. Lastly, GPU-based parallel computing have been
also included, to speed the algorithm up.

As HexaShrink proposes a comprehensive reversible
multiscale framework with dyadic downsampling, we
compare it to related upscaling features for geomodels.

5.3 Geomodel upscaling: SKUA-GOCAD™ vs
HexaShrink

SKUA-GOCAD™ or PETREL™ are frequently used in

geosciences to handle geological objects and to generate
meshes for flow simulation. These specific meshes describe
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Geometry.

Porosity.

Rock type.

s
AR
B

RS
X

Resolution —3.

Resolution —4.

Fig. 17 Original mesh#1, its attributes, and four levels of resolution generated with HexaShrink

structural discontinuities whose impact is significant on
simulation. To obtain such meshes, the geomodel—a
surface description of horizons or faults—is fitted into
a grid at the desirable resolution. Pillar orientation is
influenced by fault dip and cell layer thickness is adapted
to the distance between horizons. Additional properties can

@ Springer

then be assigned to mesh cells: porosity, saturation, rock
type. .. from well data or geological interpretation. Would
one wish to lower the resolution, the process described
above should be reiterated.

A simpler alternative proposed by geomodelers consists
in upscaling meshes. Such methods are usually flexible
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Fig. 18 Original mesh#7, its attributes, and four levels of resolution generated with HexaShrink
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Fig.19 Evolution of the distribution of the Rock type categories across resolutions for mesh#1 and mesh#7, decomposed with either HexaShrink’s
modelet or the rounded lifting CDF 5/3 used in the lossless J2K-3D

yet often ad hoc, converting geometry and properties 5.4 Compression performance comparison

in a non-reversible manner. Figure 20 confronts meshes

#5 and #6 downsampled at power-of-two resolutions  We now provide an objective evaluation of the HexaShrink
with SKUA-GOCAD™ and HexaShrink. HexaShrink tends ~ multiscale representation for compression purposes. Our
to better preserve faults (colored in red), as compared  main objective is to verify that binary mesh formats (beyond
to SKUA-GOCAD™. Figures emphasize an improved  mere ontological analyses) are indeed compressible, and
preservation of mesh borders, with an efficient management =~ whether decomposing them in a progressive manner over
of ACTNUM throughout resolutions. Some artifacts may  different scales remains beneficial in size reduction for
appear with SKUA-GOCAD™s upscaling, which are  needs beyond mere visualization (data storage, transfer).
automatically averted by HexaShrink, leading to nicer = Indeed, multiscale representations are thought to enhance
meshes at low resolution. As a summary, HexaShrink, the sparsity of locally regular data, often resulting in better
while being fully reversible at dyadic scales only, efficiently ~ predicted properties that can subsequently be compressed.
and automatically manages structural discontinuities in We first assess lossless (or perfect) compression. All
the VMs. It may provide an interesting complement  mesh ontological and geological (cf. Table 1, Section 5.1)
to existing irreversible upscaling proposed by several  are thus perfectly restored, whatever the number of decom-
geomodelers. position levels (Section 5.2). Since our mesh objects are
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Fig.20 After dyadic downsampling/upscaling, HexaShrink (bottom) better preserves faults, and manages non-active cells (i.e., with null ACTNUM
values) across scales, yielding nicer borders at each resolution, contrary to GOCAD. From left to right: resolution — 1, — 2, and — 3, respectively
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heterogeneous, we treat geometry and properties indepen-
dently, and compress individually their approximations and
details.

We compare three generations of lossless all-purpose
encoders: gzip (1992), bzip2 (1996), LZMA (1998). They
use Lempel-Ziv, Burrows-Wheeler, Lempel-Ziv-Markov
entropic coding, respectively. We refer to [12, 49] for details
regarding these state-of-the-art compression methods.

We exhaustively compare compression performances
in Table 2. For the sake of clarity, recall that different
computational methodologies exist: a compression ratio of 4
is given by the fraction between the sizes of the original file
and the compressed one (the larger the ratio, the better the
compression). The latter can also be related to its inverse,
the smallest file representing 25% of the raw data (4—1L x 100),
or a compression gain due to the reduction in size of 75%
(corresponding to (1 - %) x 100).

As an example, we provide a detailed interpretation of
the third row, corresponding to the mildly complicated and
faulty mesh#3. Without decomposition, i.e., by directly
compressing the binary formats, gains in file size are

already observed, from 62.5% ( (1 - %) x 100) for gzip

Table 2 Comparative lossless coding performances with compression
ratios at different HexaShrink resolution levels combining HexaShrink
with gzip, bzip2, and LZMA

Mesh Level ezip bzip2 LZMA
1 None 3.73 4.98 6.43

1 5.62 6.07 7.52

2-4 5.67 6.12-6.13 7.42-7.44
2 None 3.23 8.41 10.12

1 6.49 10.82 11.81

2-6 7.48-7.58 12.75-13.03 13.35
3 None 2.67 2.99 3.63

1 3.88 4.70 5.24

2-4 4.03-4.05 4.92-4.93 5.47-5.48
4 None 1.83 1.89 221

1 2.64 3.06 3.48

2-4 2.76 3.22-3.23 3.64-3.65
5 None 2.46 2.55 3.33

1 3.14 2.83 371

2-4 3.25-3.26 2.91-2.92 3.80-3.81
6 None 2.31 2.25 3.04

1 3.31 3.53 4.44

2-6 4.14-4.24 4.48-4.68 5.54-5.73
7 None 3.20 5.98 12.52

1 542 7.07 8.90

2-7 5.80-6.72 7.63-10.12 9.05-10.23
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to + 72.5% for LZMA. We first remark that improvements
sensitively increase as we use more recent entropic coders,
with only one exception for mesh#6, gzip performing
slightly better than bzip2. However, the most recent LZMA
coder always offers the best performances, with a sufficient
gap over the two other methods.

The same trend applies when performing a one-level
HexaShrink transformation on mesh#3, with an additional
gain in compression: for instance, the combination of
a l-level HexaShrink associated with LZMA yields a
compressed mesh twice as small (81.9%) as a direct gzip
compaction on the original mesh. This is advantageous,
as the proposed method either provides access to a
twofold downsampled mesh together with a smaller overall
size.

One can wish to have access to further levels of
approximation. The third line of each table block specifies
the range of additional available levels (depending on mesh
size), here from 2 to 4, with the minimum and maximum
compression ratios attained. While we still observe a
marginal improvement over a 1-level HexaShrink (and again
a slightly anomalous behavior for mesh#5), what is more
important is the almost imperceptible variation between
the resolutions. Hence, HexaShrink offers in all cases
an interesting compression ratio with the supplementary
interest of getting all intermediate resolutions, as shown
earlier in Section 5.1.

Overall, the most basic worse case performance (with
gzip) of HexaShrink provides a gain above 60% in size,
which could be further exploited with hardware acceleration
[50]. Or in the best cases, combined with LZMA, one can
expect as much as 3.64-13.35 fold compression.

In rare cases, HexaShrink does not result in clear com-
pression improvement. For mesh#7 and LZMA, we even
observe that the best compression ratio (12.52) is obtained
without HexaShrink decomposition. With such human or
computer-generated objects, by contrast with natural data,
this often stems from the inherent quantization of values.
This typically happens in mesh#7 when intermediate coordi-
nates, or properties, are obtained by interpolation, to refine
geological layers. Variables with apparent high-dynamic
range and precision, unbeknown to the user, may derive
from easy-to-store indices. Floating-point depth coordinates
may result from a mere affine relationship on a list 7
of small integers, with offset o and scale s: s x Z + o.
LZMA’s superior capability owes to its capacity to cap-
ture complex models of byte patterns. By contrast, with
a wavelet decomposition, the affine relationship in such a
case is poorly captured throughout approximations, due to
the rounding in wavelet lifting (Section 4.2.3). Hence, mul-
tiscale decompositions may slightly reduce the raw com-
pression performance for meshes presenting initial “numer-
ical format” artifacts or illusory floating-point precision.
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This however does not hamper the usability of Hexa-
Shrink for storage and visualization, as the direct access
to a hierarchy of resolutions respecting discontinuities is
granted, while already providing impressive compression
rates of about 8-9, superior to most results for the others
meshes.

Speed performance is highly dependent on mesh size,
discontinuity complexity, levels of details. For a baseline
evaluation, a Java implementation was run on a laptop with
Intel Core 17-6820HQ CPU @ 2.70 GHz processor and
16 GB RAM. Each mesh (from our dataset in Table 2)
was compressed to the maximum level, and decompressed,
twelve times. As the outcomes were relatively stable, they
were averaged. Timings for analysis or synthesis alone,
and cumulated with lossless encoding and decoding, are
summarized in Table 3.

Analysis is slightly slower than synthesis, both taking
from a couple of seconds to a couple of minutes. Concerning
the coders, gzip is the fastest, adding little overhead to
HexaShrink speed. However, bzip2 or LZMA durations can
reveal more expensive than analysis alone. The largest mesh
is compressed in a little less than 13 m. What is more
appealing in applications is that only a few seconds are
necessary for small meshes. Lossless decompression is very
fast, even for the largest mesh (13-20 s), as synthesis takes
most of the time. And LZMA is the fastest here, adding only
5% overhead to synthesis, for recovering the whole original
mesh. Decompressing lower resolutions only is of course
even faster. This is interesting, as here we obtain a beneficial
asymmetrical compression-decompression scheme, termed
“compress once, decompress many.” Once a model is built,
one can afford to compress it only once, whatever the
time it takes. Then, after transferring, handling it with the
benefit of the smaller sizes, decompressing it many times
is less expensive. The above performance could be greatly
improved with more involved acceleration techniques.

As a result, on all tested examples, we demonstrate
the possibility of storing independently multiscale mesh
properties as approximations and details, while preserving
geometry (hence faults). This method additionally has
an important benefit in data handling, visualization and
compression, all at a reasonable computational cost.

Table 3 Cumulative lossless compression and decompression dura-
tions of HexaShrink with gzip, bzip2, and LZMA, in seconds

[A]nalysis [A]+gzip [A]+bzip2 [A]4+LZMA
Min. 2.80 3.06 5.69 6.34
Max. 320 354 374.3520 760
[S]ynthesis [S]+gzip [S]+bzip2 [S]+LZMA
Min. 0.79 1.03 3.35 3.30
Max. 264 280 284 277

6 Conclusion and perspectives

HexaShrink offers a comprehensive and efficient frame-
work for a scalable representation of hexahedral meshes
with continuous and categorical properties, at dyadic res-
olutions. It is first dedicated to the visualization of mas-
sive structured meshes, as used in geosciences, that can
contain geometrical discontinuities, to describe faults for
instance. Four adapted multiresolution representations are
matched to the underlying nature of each data field. They
permit to decompose such specific meshes progressively.
In particular, this framework includes a morphological
transform that takes into account geometrical discontinu-
ities relative to any fault configuration, and preserve their
rendering across resolutions, while maintaining structural
coherency.

HexaShrink can process any mesh size, thanks to
a GPU-based out-of-core algorithm. This is -crucial,
given the constant evolution of data acquisition density
that yields increasingly massive and accurate dataset,
associated to more demanding simulations. The HexaShrink
decomposition is consistent with respect to mesh rescaling
in geosciences, and provides an option for a reversible
upscaling; [51] recently proposed such a wavelet-inspired
scheme. Finally, it lends itself to an efficient lossless
compression, which can be used for storage and transfer.

Perspectives can deploy into many directions. Motivated
by preliminary progressive lossless compression results,
we aim at developing a more versatile multiresolution
compression scheme, to manage the potential evolution of
mesh geometry or properties over time, with a special care
for simulation-related quality metrics. As multiresolution
analysis and synthesis were computed independently from
compression, we also envision a better matched coding
of approximations and details, for additional performance,
toward lossy compression [52, 53].
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