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Variational Bayesian approaches have been successfully applied to image segmentation. They usually rely on a Potts model for the hidden label variables and a Gaussian assumption on pixel intensities within a given class. Such models may however be limited, especially in the case of multicomponent images. We overcome this limitation with HOGMep, a Bayesian formulation based on a higher-order graphical model (HOGM) on labels and a Multivariate Exponential Power (MEP) prior for intensities in a class. Then, we develop an efficient statistical estimation method to solve the associated problem. Its flexibility accommodates to a broad range of applications, demonstrated on multicomponent image segmentation and restoration.

INTRODUCTION

Variational Bayesian Approximation (VBA) has been widely used in various applications such as in graphical model learning [START_REF] Jordan | An introduction to variational methods for graphical models[END_REF], image processing [START_REF] Likas | A variational approach for Bayesian blind image deconvolution[END_REF][START_REF] Chantas | Variational Bayesian image restoration based on a product of tdistributions image prior[END_REF][START_REF] Chen | Variational Bayesian methods for multimedia problems[END_REF][START_REF] Zheng | Efficient variational Bayesian approximation method based on subspace optimization[END_REF], source separation [START_REF] Choudrey | Variational Methods for Bayesian Independent Component Analysis[END_REF] or super-resolution [START_REF] Babacan | Variational Bayesian super resolution[END_REF]. Its popularity is mainly due to its ability to generate efficient approximations of the posterior distribution of the variables to be estimated. In image segmentation, VBA-based approaches traditionally uses a Potts (resp. Gaussian) model for hidden label variables (resp. pixel intensities corresponding to a given label) [START_REF] Ayasso | Joint NDT image restoration and segmentation using Gauss-Markov-Potts prior models and variational Bayesian computation[END_REF][START_REF] Chaari | Variational solution to the joint detection estimation of brain activity in fMRI[END_REF][START_REF] Mcgrory | Variational Bayes for estimating the parameters of a hidden Potts model[END_REF].

We propose a more generic Bayesian model, combining two main priors on the sought data. The first one concerns the latent label variables for which an HOGM is employed for clustering or classification [START_REF] Marinari | Cluster algorithms for the generalized 3d, 3q Potts model[END_REF][START_REF] Zheleva | Higher-order graphical models for classification in social and affiliation networks[END_REF]. The second one adopts a MEP distribution [START_REF] Gómez-Sánchez-Manzano | Sequences of elliptical distributions and mixtures of normal distributions[END_REF][START_REF] Marnissi | Generalized multivariate exponential power prior for wavelet-based multichannel image restoration[END_REF] for pixel intensities in a given class. To the best of our knowledge, these priors have not been jointly used for image recovery and segmentation tasks. The novel model is suitable for applications dealing with multicomponent or multivariate images (e.g. multi/hyperspectral data) [START_REF] Chaux | A nonlinear Stein based estimator for multichannel image denoising[END_REF][START_REF] Verdoolaege | Geodesics on the manifold of multivariate generalized Gaussian distributions with an application to multicomponent texture discrimination[END_REF][START_REF] Chierchia | A nonlocal structure tensor-based approach for multicomponent image recovery problems[END_REF]. One of the advantages of the proposed approach is that it allows us to estimate the associated hyperparameters by defining suitable priors. While alternatives could solve segmentation [START_REF] Pereyra | Estimating the granularity coefficient of a Potts-Markov random field within a Markov chain Monte Carlo algorithm[END_REF][START_REF] Sodjo | Joint segmentation of multiple images with shared classes: a Bayesian nonparametrics approach[END_REF][START_REF] Bioucas-Dias | Alternating direction optimization for image segmentation using hidden Markov measure field models[END_REF] or reconstruction [START_REF] Chouzenoux | A majorize-minimize subspace approach for 2-0 image regularization[END_REF][START_REF] Briceño-Arias | Proximal algorithms for multicomponent image processing[END_REF] problems, VBA benefits from low computational cost while providing high quality results.

Section 2 introduces the HOGMep Bayesian formulation for joint restoration and segmentation. The VBA methodology solving the related problem is described in Section 3. The proposed joint recovery and segmentation approach is favorably evaluated and compared within a deconvolution context in Section 4.

HOGMep BAYESIAN FORMULATION

Inverse problem model

We concentrate on the standard inverse problem consisting of recovering an unknown signal x from a degraded one y. We consider a linear model with additive noise formulated as y = Hx + n, where, for (M, N, B) ∈ (N * ) 3 , y ∈ R M is the observed data, x ∈ R N B corresponds to the unknown signal to be recovered, H ∈ R M ×N B represents a linear degradation operator and n is a noise (statistically independent of x). We are interested in B-component images where x = [x 1 , . . . , x N ] and, for every pixel i ∈ {1, . . . , N }, xi = (xi,1, . . . , xi,B) . Assuming a zero-mean white Gaussian noise with inverse variance (or precision) γ, the likelihood p(y|x, γ) is given by the normal distribution N (Hx, γ -1 I). In conjunction with the recovery task, our objective is to perform a classification of the components of x. For this purpose, L being the number of expected classes, the label field is encoded by a vector of hidden variables z ∈ {1, . . . , L} N .

Prior model on the unknown data and hyperpriors

HOGM for label variables [START_REF] Marinari | Cluster algorithms for the generalized 3d, 3q Potts model[END_REF][START_REF] Zheleva | Higher-order graphical models for classification in social and affiliation networks[END_REF] deals with cliques of arbitrary size instead of being limited to pairwise interactions between variables. The chosen prior is:

p(z) ∝ exp   S s=1 (i 1 ,...,is)∈Ns Vs(zi 1 , . . . , zi s )   , (1) 
where S is the size of the maximal clique and, for every s ∈ {1, . . . , S}, the function Vs is a potential function of order s, and Ns is the set of cliques of size s. The model contains a prior weighting parameter λ, not explicitly written in [START_REF] Jordan | An introduction to variational methods for graphical models[END_REF].

In addition to a prior on hidden label variables, we assume that the conditional distribution of x given label variables z is a Multivariate Exponential Power (MEP) distribution denoted by M. Such a prior is well suited to multicomponent images [START_REF] Marnissi | An auxiliary variable method for Langevin based MCMC algorithms[END_REF]. We denote by zi ∈ {1, . . . , L} the label of the class to which the pixel indexed by i belongs, and by z = (z1, . . . , zN ) the label vector for all pixels of the image. Furthermore, for every class labeled by l ∈ {1, . . . , L}, m l , Ω l and β l denote the parameters of the MEP distribution associated with label value l. By assuming that β l ∈ (0, 1], the MEP distribution can be expressed as a Gaussian Scale Mixture (GSM) [START_REF] Gómez-Sánchez-Manzano | Multivariate exponential power distributions as mixtures of normal distributions with Bayesian applications[END_REF]:

M(xi; m l , Ω l , β l ) = R + N (xi; m l , u -1 i Ω -1 l )p(ui|β l )dui,
where p(ui|β l ) denotes the probability density function (pdf) of ui with shape parameter β l and u = (u1, . . . , uN ) gathers all the latent variables. When β l < 1, this pdf can be expressed as a function of a positive alpha-stable distribution. When β l = 1, it degenerates into a Dirac distribution [START_REF] Gómez-Sánchez-Manzano | Multivariate exponential power distributions as mixtures of normal distributions with Bayesian applications[END_REF]. As a result, we have

p(x|z, m, Ω, β) = N i=1 p(xi|zi, m, Ω, β),
where p(xi|zi = l, m, Ω, β) = M(xi; m l , Ω l , β l ). Our Bayesian model involves four types of hyper-parameters: inverse noise variance γ, mean variables (m l ) 1≤l≤L , inverse covariance matrices (Ω l ) 1≤l≤L and shape parameters (β l ) 1≤l≤L . In this work, we assume that, for all the classes l ∈ {1, . . . , L}, the shape parameters of the MEP distribution are identical, i.e. β1 = • • • = βL = β. This single parameter is fixed in advance, according to prior knowledge. If G and W denote Gamma and Wishart distributions, to jointly estimate all the remaining parameters, we define a hyperprior on each of them:

p(γ) = G(ā, b), p(m l ) = N ( μ, Λ), p(Ω l ) = W( Γ, ν),
Figure 1 summarizes the dependency relationships between variables involved in this hierarchical graphical model.

Joint posterior distribution

Using Bayes' rule, the joint posterior distribution reads

p(x, u, z, γ, m, Ω|y, β) (2) 
∝ p(y|x, γ)

N i=1 p(xi|zi, ui, m, Ω)p(ui|β) p(z)p(γ) × L l=1 p(m l )p(Ω l )
Its intricate form is due to the dependence between the unknown variables. VBA can circumvent this issue [START_REF] Ayasso | Joint NDT image restoration and segmentation using Gauss-Markov-Potts prior models and variational Bayesian computation[END_REF][START_REF] Chaari | Variational solution to the joint detection estimation of brain activity in fMRI[END_REF][START_REF] Mcgrory | Variational Bayes for estimating the parameters of a hidden Potts model[END_REF], and is indeed shown in the following section to provide an elegant solution to the Bayesian inference.
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Fig. 1: Dependency relationships between variables.

VARIATIONAL BAYESIAN APPROACH

Let Θ = (Θj) 1≤j≤J be a vector containing all the variables (x, u, z, γ, m, Ω) to be estimated. As previously mentioned, we want to estimate the true posterior distribution p(Θ|y). The core idea of VBA is to approximate p(Θ|y) by a separable distribution, denoted by q(Θ), such that q(Θ) = J j=1 q(Θj). The minimization of the Kullback-Leibler (KL) divergence between q(Θ) and p(Θ|y) allows us to determine the optimal separable approximation:

KL(q(Θ)||p(Θ|y)) = q(Θ) ln q(Θ) p(Θ|y) dΘ. (3) 
The optimal approximate distribution can be computed [START_REF] Šmídl | The Variational Bayes Method in Signal Processing[END_REF]:

(∀j ∈ {1, . . . , J}) q(Θj) ∝ exp ln p(y, Θ) q -Θ j , (

where q-Θ j = i =j q(Θi), and . q denotes the expectation value with respect to a probability distribution q. Implicit relations between pdfs q(Θj) 1≤j≤J generally prevent analytical expressions for q(Θ). These distributions are determined in an iterative way, by updating one of the separable components q(Θj) 1≤j≤J while fixing the others. In this work, the approximation takes the form:

q(Θ) = q(γ) N i=1 q(xi, zi)q(ui) L l=1 q(m l )q(Ω l ) , (5) 
with q(xi, zi) = q(xi|zi)q(zi). Hence, using (4), for every i ∈ {1, . . . , N } and l ∈ {1, . . . , L}, the optimal solutions for q(xi|zi), q(zi), q(m l ), q(Ω l ) and q(γ) are such that

q(xi|zi = l) = N (η i,l , Ξ i,l ), q(zi = l) = π i,l , q(m l ) = N (µ l , Λ l ), q(Ω l ) = W(Γ l , ν l ), q(γ) = G(a, b). (6) 
Except for q(ui), the optimization of these distributions can be performed iteratively, since they belong to known parametrized distribution families. The MEP prior distribution can be expressed as a GSM. Hence, the mean value of ui can be determined without an analytical expression for q(ui) [START_REF] Palmer | Variational EM algorithms for non-Gaussian latent variable models[END_REF][START_REF] Zheng | Wavelet based unsupervised variational Bayesian image reconstruction approach[END_REF]. This allows us to derive an approximate distribution of xi, which depends on the mean value of ui.

In the following, assuming that k ∈ N designates the iteration number, we describe how to update these distributions by deriving closed form expressions for their parameters.

Determination of model pdf q(xi, zi)

As mentioned in [START_REF] Choudrey | Variational Methods for Bayesian Independent Component Analysis[END_REF], for l ∈ {1, . . . , L}, q k+1 (xi|zi = l) is a Gaussian distribution. Using (4), its covariance matrix Ξ i,l and mean η i,l are given, at the iteration k + 1, by

Ξ k+1 i,l = γ k H i Hi + u k i Ω k l -1 (7) 
η k+1 i,l = Ξ k+1 i,l γ k H i (y - j<i Hj x k+1 j - j>i Hj x k j ) + u k i Ω k l µ k l . (8) 
Hi ∈ R M ×B is the columnwise decomposition of H. Furthermore, for an arbitrary variable a, a k is its expectation at iteration k with respect to the pdf q k (a). We can then derive the expressions of the probabilities q k+1 (zi = l):

q k+1 (zi = l) = π k+1 i,l ∝ |Ξ k+1 i,l ||Γ k l | 1/2 exp 1 2 (η k+1 i,l ) (Ξ k+1 i,l ) -1 η k+1 i,l + 1 2 B b=1 ψ ν k l + 1 -b 2 - 1 2 u k i tr[(Λ k l + µ k l (µ k l ) ) Ω k l ] + Ṽ k l , ( 9 
)
where ψ is the digamma function and

V k l = V1(l) + S-1 s=1
Vs+1(l, zi 1 , . . . , zi s )

j =i q k (z j )
.

For every j ∈ {1, . . . , N }, we have x k+1 j = L l=1 π k+1 j,l η k+1 j,l . Instead of computing the q(ui) distribution, we focus on the expectation of ui which can be expressed as follows, thanks to the integral form of GSM [START_REF] Palmer | Variational EM algorithms for non-Gaussian latent variable models[END_REF]:

u k+1 i = β L l=1 π k+1 i,l tr[A k Ω k l ] β-1 , ( 10 
)
where

A k = (η k+1 i,l -µ k l )(η k+1 i,l -µ k l ) + Ξ k+1 i,l + Λ k l .
3.2. Finding of hyperprior pdfs q(m l ), q(Ω l ) and q(γ)

As shown by ( 6), q k+1 (m l ) is a Gaussian distribution with mean µ k+1 l and covariance matrix Λ k+1 l expressed as

Λ k+1 l = Λ-1 + Ω k l N i=1 π k+1 i,l u k+1 i -1 , (11) 
µ k+1 l = Λ k+1 l Λ-1 μ + Ω k l N i=1 π k+1 i,l u k+1 i η k+1 i,l . (12) 
Then, the mean value of q k+1 (m l ) is m k+1 l = µ k+1 l . The Wishart distribution q k+1 (Ω l ) is parametrized by

ν k+1 l = ν + N i=1 π k+1 i,l , (13) 
Γ k+1 l = N i=1 π k+1 i,l u k+1 i Ãk + Γ-1 -1 , (14) 
where

Ãk = (η k+1 i,l -µ k+1 l )(η k+1 i,l -µ k+1 l ) + Ξ k+1 i,l + Λ k+1 l . The mean value of q k+1 (Ω l ) is Ω k+1 l = ν k+1 l Γ k+1 l . (15) 
The q k+1 (γ) distribution is a Gamma distribution with parameters a k+1 = ā + M 2 and

b k+1 = b + 1 2 y-H x k+1 2 + N i=1 L l=1 π k+1 i,l tr[H i HiΞ k+1 i,l ]. (16) 
From standard properties of the Gamma distribution, the expectation of γ at the iteration k + 1 is equal to

γ k+1 = a k+1 b k+1 = 2ā + M 2b k+1 . (17) 

Resulting algorithm

Altogether, our algorithm can be summed up as follows:

Set initial values:

η 0 i,l , Ξ 0 i,l , u 0 i , π 0 i,l , µ 0 l , Λ 0 l , Γ 0 l , ν 0 l , b 0 , and set a k ≡ ā + M 2 . Compute x 0 i = L l=1 π 0 i,l η 0 i,l , Ω 0 l = ν 0 l Γ 0 l , and γ 0 = 1/b 0 (ā + M/2).
For k = 0, 1, . . .

Update parameters Ξ k+1

i,l and η k+1 i,l of q k+1 (xi|zi = l) using ( 7) and [START_REF] Ayasso | Joint NDT image restoration and segmentation using Gauss-Markov-Potts prior models and variational Bayesian computation[END_REF]. Compute π k+1 i,l from (9).

Update mean values u k+1

i of q k+1 (ui) using (10). 3. Update parameters Λ k+1 l and µ k+1 l of q k+1 (m l ) using ( 11) and ( 12). 4. Update parameters ν k+1 l and Γ k+1 l of q k+1 (Ω l ) using ( 13) and [START_REF] Marnissi | Generalized multivariate exponential power prior for wavelet-based multichannel image restoration[END_REF]. Compute Ω k+1 l from (15). 5. Update parameter b k+1 of q k+1 (γ) using [START_REF] Verdoolaege | Geodesics on the manifold of multivariate generalized Gaussian distributions with an application to multicomponent texture discrimination[END_REF]. Compute γ k+1 from (17).

SIMULATION RESULTS

The performance of HOGMep is assessed through segmentation and recovery tasks in a deconvolution context. Experiments are performed on both synthetic and benchmark color images. Channels are degraded by distinct blur operators and additive Gaussian noises.

A natural comparison is made with VB-MIG [START_REF] Ayasso | Joint NDT image restoration and segmentation using Gauss-Markov-Potts prior models and variational Bayesian computation[END_REF], in which our MEP prior is restricted to a Gaussian one. Restoration results are also compared to those obtained with the recent state-of-the-art variational approach 3MG [START_REF] Chouzenoux | A majorize-minimize subspace approach for 2-0 image regularization[END_REF][START_REF] Chouzenoux | A Majorize-Minimize memory gradient algorithm applied to Xray tomography[END_REF] and segmentation with the iterated conditional mode (ICM) algorithm [START_REF] Besag | On the statistical analysis of dirty pictures[END_REF]. For the 'synth' image with ground truth, results in SNR are given in Segmentation performance, summarized in Table 1b, is numerically assessed through variation of information (VI, [START_REF] Meilȃ | Comparing clusterings by the variation of information[END_REF]) and Rand index (RI, [START_REF] Rand | Objective criteria for the evaluation of clustering methods[END_REF]) measures. Segmented images and their binary difference to the original segmentation are displayed in Figure 4. HOG-Mep offers a very low rate of wrongly assigned pixels, and globally correctly labels all regions. For the 'peppers' image, Table 2 gathers objective SNR and SSIM performance, while restoration is depicted in Figure 5, and segmentation results in Figure 6. Through the obtained results, we conclude that HOGMep outperforms state-of-theart methods in both recovery and segmentation problems. 

ICM VB-MIG HOGMep

Fig. 6: Segmentation results for 'peppers' and the corresponding silhouette. Silhouette image: blackish pixels reflect silhouette indices close to -1 while whitish pixels correspond to scores near 1. Using this color code, brighter zones reflect satisfying clustering.

CONCLUSIONS

In this work, we have performed a joint image recovery and segmentation via a Bayesian approach. This formulation combines two main priors on the sought data: an HOGM for the latent label variables and a MEP distribution for the unknown signal within a given class. We have proposed an original VBA method for solving the related problem where most of the hyper-parameters are automatically estimated. The provided simulation results show that HOGMep delivers good results for both recovery and segmentation tasks.
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 234 Fig. 2: RGB channels ('synth'): (a) original (b) blurred and noisy. Restored with (c) 3MG, (d) VB-MIG, (e) HOGMep. Degraded 3MG HOGMep

Fig. 5 :

 5 Fig. 5: Restoration results for the color images ('peppers').

Table 1a

 1a 

					, and displayed in
	Figure 2 (restored channels) and 3 (color image). HOGMep consis-
	tently yields the best objective results, with crisper images.
	Channel	Initial 3MG VB-MIG HOGMep
	Red	10.73 11.21	22.62	24.25
	Green	12.42 15.17	16.41	17.14
	Blue	3.92	2.60	18.39	19.75
	Color	6.98	6.08	19.41	20.63
	(a) Channel and color restoration results in terms of SNR. Best per-
	formers are in bold.				
			ICM	VB-MIG HOGMep
	VI		0.344	0.13	0.006
	RI		92.72	98.24	99.98
	% misclass.	41.10	4.70	0.05
	(b) Segmentation: variation of information [30], Rand index [31].

Table 1 :

 1 Objective restoration and segmentation performance ('synth').

Table 2 :

 2 Objective restoration performance ('peppers'). Best performers are in bold.

	Channel		Initial 3MG VB-MIG HOGMep
	Red	SNR 24.30 28.99 SSIM 0.938 0.972	19.94 0.939	33.43 0.972
	Green	SNR 18.36 22.82 SSIM 0.824 0.903	21.13 0.875	23.96 0.904
	Blue	SNR 13.77 14.19 SSIM 0.688 0.748	14.12 0.779	14.30 0.792
	Color	SNR 19.70 22.25	21.77	23.00
	Degraded	3MG	HOGMep
			VB-MIG		Original