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ABSTRACT

Variational Bayesian approaches have been successfully applied to
image segmentation. They usually rely on a Potts model for the
hidden label variables and a Gaussian assumption on pixel inten-
sities within a given class. Such models may however be limited,
especially in the case of multicomponent images. We overcome
this limitation with HOGMep, a Bayesian formulation based on a
higher-order graphical model (HOGM) on labels and a Multivari-
ate Exponential Power (MEP) prior for intensities in a class. Then,
we develop an efficient statistical estimation method to solve the as-
sociated problem. Its flexibility accommodates to a broad range of
applications, demonstrated on multicomponent image segmentation
and restoration.

Index Terms— variational Bayes, higher-order graphical mod-
els, multicomponent images, segmentation, restoration

1. INTRODUCTION

Variational Bayesian Approximation (VBA) has been widely used in
various applications such as in graphical model learning [1], image
processing [2, 3, 4, 5], source separation [6] or super-resolution [7].
Its popularity is mainly due to its ability to generate efficient approx-
imations of the posterior distribution of the variables to be estimated.
In image segmentation, VBA-based approaches traditionally uses a
Potts (resp. Gaussian) model for hidden label variables (resp. pixel
intensities corresponding to a given label) [8, 9, 10].

We propose a more generic Bayesian model, combining two
main priors on the sought data. The first one concerns the latent label
variables for which an HOGM is employed for clustering or classifi-
cation [11, 12]. The second one adopts a MEP distribution [13, 14]
for pixel intensities in a given class. To the best of our knowledge,
these priors have not been jointly used for image recovery and seg-
mentation tasks. The novel model is suitable for applications deal-
ing with multicomponent or multivariate images (e.g. multi/hyper-
spectral data) [15, 16, 17]. One of the advantages of the proposed ap-
proach is that it allows us to estimate the associated hyperparameters
by defining suitable priors. While alternatives could solve segmenta-
tion [18, 19, 20] or reconstruction [21, 22] problems, VBA benefits
from low computational cost while providing high quality results.

Section 2 introduces the HOGMep Bayesian formulation for
joint restoration and segmentation. The VBA methodology solv-
ing the related problem is described in Section 3. The proposed
joint recovery and segmentation approach is favorably evaluated and
compared within a deconvolution context in Section 4.

2. HOGMep BAYESIAN FORMULATION

2.1. Inverse problem model

We concentrate on the standard inverse problem consisting of recov-
ering an unknown signal x from a degraded one y. We consider a
linear model with additive noise formulated as y = Hx + n, where,
for (M,N,B) ∈ (N∗)3, y ∈ RM is the observed data, x ∈ RNB
corresponds to the unknown signal to be recovered, H ∈ RM×NB
represents a linear degradation operator and n is a noise (statisti-
cally independent of x). We are interested in B-component images
where x = [x>1 , . . . ,x

>
N ]> and, for every pixel i ∈ {1, . . . , N},

xi = (xi,1, . . . , xi,B)>. Assuming a zero-mean white Gaussian
noise with inverse variance (or precision) γ, the likelihood p(y|x, γ)
is given by the normal distribution N (Hx, γ−1I). In conjunction
with the recovery task, our objective is to perform a classification
of the components of x. For this purpose, L being the number of
expected classes, the label field is encoded by a vector of hidden
variables z ∈ {1, . . . , L}N .

2.2. Prior model on the unknown data and hyperpriors

HOGM for label variables [11, 12] deals with cliques of arbitrary
size instead of being limited to pairwise interactions between vari-
ables. The chosen prior is:

p(z) ∝ exp

 S∑
s=1

∑
(i1,...,is)∈Ns

Vs(zi1 , . . . , zis)

 , (1)

where S is the size of the maximal clique and, for every s ∈
{1, . . . , S}, the function Vs is a potential function of order s, and
Ns is the set of cliques of size s. The model contains a prior
weighting parameter λ, not explicitly written in (1).

In addition to a prior on hidden label variables, we assume that
the conditional distribution of x given label variables z is a Multi-
variate Exponential Power (MEP) distribution denoted byM. Such
a prior is well suited to multicomponent images [23]. We denote by
zi ∈ {1, . . . , L} the label of the class to which the pixel indexed by i
belongs, and by z = (z1, . . . , zN )> the label vector for all pixels of
the image. Furthermore, for every class labeled by l ∈ {1, . . . , L},
ml, Ωl and βl denote the parameters of the MEP distribution asso-
ciated with label value l. By assuming that βl ∈ (0, 1], the MEP
distribution can be expressed as a Gaussian Scale Mixture (GSM)
[24]:

M(xi; ml,Ωl, βl) =

∫
R+

N (xi; ml, u
−1
i Ω−1

l )p(ui|βl)dui,

where p(ui|βl) denotes the probability density function (pdf) of ui
with shape parameter βl and u = (u1, . . . , uN )> gathers all the la-
tent variables. When βl < 1, this pdf can be expressed as a function



of a positive alpha-stable distribution. When βl = 1, it degenerates
into a Dirac distribution [24]. As a result, we have

p(x|z,m,Ω,β) =

N∏
i=1

p(xi|zi,m,Ω,β),

where p(xi|zi = l,m,Ω,β) = M(xi; ml,Ωl, βl). Our Bayesian
model involves four types of hyper-parameters: inverse noise vari-
ance γ, mean variables (ml)1≤l≤L, inverse covariance matrices
(Ωl)1≤l≤L and shape parameters (βl)1≤l≤L. In this work, we as-
sume that, for all the classes l ∈ {1, . . . , L}, the shape parameters
of the MEP distribution are identical, i.e. β1 = · · · = βL = β. This
single parameter is fixed in advance, according to prior knowledge.
If G and W denote Gamma and Wishart distributions, to jointly
estimate all the remaining parameters, we define a hyperprior on
each of them:

p(γ) = G(ā, b̄), p(ml) = N (µ̄, Λ̄), p(Ωl) =W(Γ̄, ν̄),

Figure 1 summarizes the dependency relationships between vari-
ables involved in this hierarchical graphical model.

2.3. Joint posterior distribution

Using Bayes’ rule, the joint posterior distribution reads

p(x,u, z, γ,m,Ω|y, β) (2)

∝ p(y|x, γ)

N∏
i=1

(
p(xi|zi, ui,m,Ω)p(ui|β)

)
p(z)p(γ)

×
L∏
l=1

p(ml)p(Ωl)

Its intricate form is due to the dependence between the unknown
variables. VBA can circumvent this issue [8, 9, 10], and is indeed
shown in the following section to provide an elegant solution to the
Bayesian inference.

y

x

u m Ω z

γ

β µ̄, Λ̄ Γ̄, ν̄ λ

ā, b̄

Fig. 1: Dependency relationships between variables.

3. VARIATIONAL BAYESIAN APPROACH

Let Θ = (Θj)1≤j≤J be a vector containing all the variables
(x,u, z, γ,m,Ω) to be estimated. As previously mentioned, we
want to estimate the true posterior distribution p(Θ|y). The core
idea of VBA is to approximate p(Θ|y) by a separable distribution,
denoted by q(Θ), such that q(Θ) =

∏J
j=1 q(Θj). The minimization

of the Kullback-Leibler (KL) divergence between q(Θ) and p(Θ|y)
allows us to determine the optimal separable approximation:

KL(q(Θ)||p(Θ|y)) =

∫
q(Θ) ln

q(Θ)

p(Θ|y)
dΘ. (3)

The optimal approximate distribution can be computed [25]:

(∀j ∈ {1, . . . , J}) q(Θj) ∝ exp
(
〈ln p(y,Θ)〉q−Θj

)
, (4)

where q−Θj =
∏
i 6=j q(Θi), and 〈.〉q denotes the expectation value

with respect to a probability distribution q. Implicit relations be-
tween pdfs

(
q(Θj)

)
1≤j≤J generally prevent analytical expressions

for q(Θ). These distributions are determined in an iterative way,
by updating one of the separable components

(
q(Θj)

)
1≤j≤J while

fixing the others. In this work, the approximation takes the form:

q(Θ) = q(γ)

N∏
i=1

(
q(xi, zi)q(ui)

) L∏
l=1

(
q(ml)q(Ωl)

)
, (5)

with q(xi, zi) = q(xi|zi)q(zi). Hence, using (4), for every i ∈
{1, . . . , N} and l ∈ {1, . . . , L}, the optimal solutions for q(xi|zi),
q(zi), q(ml), q(Ωl) and q(γ) are such that

q(xi|zi = l) = N (ηi,l,Ξi,l), q(zi = l) = πi,l,

q(ml) = N (µl,Λl), q(Ωl) =W(Γl, νl), q(γ) = G(a, b).
(6)

Except for q(ui), the optimization of these distributions can be per-
formed iteratively, since they belong to known parametrized distri-
bution families. The MEP prior distribution can be expressed as a
GSM. Hence, the mean value of ui can be determined without an
analytical expression for q(ui) [26, 27]. This allows us to derive an
approximate distribution of xi, which depends on the mean value of
ui.

In the following, assuming that k ∈ N designates the iteration
number, we describe how to update these distributions by deriving
closed form expressions for their parameters.

3.1. Determination of model pdf q(xi, zi)

As mentioned in (6), for l ∈ {1, . . . , L}, qk+1(xi|zi = l) is a Gaus-
sian distribution. Using (4), its covariance matrix Ξi,l and mean ηi,l
are given, at the iteration k + 1, by

Ξk+1
i,l =

(
γ̂kH>i Hi + ûki Ω̂

k

l

)−1

(7)

ηk+1
i,l = Ξk+1

i,l

(
γ̂kH>i (y −

∑
j<i

Hj x̂
k+1
j −

∑
j>i

Hj x̂
k
j )

+ ûki Ω̂
k

l µ
k
l

)
. (8)

Hi ∈ RM×B is the columnwise decomposition of H. Furthermore,
for an arbitrary variable a, âk is its expectation at iteration k with
respect to the pdf qk(a). We can then derive the expressions of the
probabilities qk+1(zi = l):

qk+1(zi = l) = πk+1
i,l

∝
(
|Ξk+1
i,l ||Γ

k
l |
)1/2

exp

(
1

2
(ηk+1

i,l )>(Ξk+1
i,l )−1ηk+1

i,l

+
1

2

B∑
b=1

ψ

(
νkl + 1− b

2

)
−1

2
ûki tr[(Λk

l + µkl (µkl )>)Ω̂
k

l ] + Ṽ kl

)
, (9)



where ψ is the digamma function and

V̂ kl = V1(l) +

S−1∑
s=1

〈∑
Vs+1(l, zi1 , . . . , zis)

〉
∏

j 6=i q
k(zj)

.

For every j ∈ {1, . . . , N}, we have x̂k+1
j =

L∑
l=1

πk+1
j,l ηk+1

j,l .

Instead of computing the q(ui) distribution, we focus on the ex-
pectation of ui which can be expressed as follows, thanks to the
integral form of GSM [26]:

ûk+1
i = β

(
L∑
l=1

πk+1
i,l tr[AkΩ̂

k

l ]

)β−1

, (10)

where Ak = (ηk+1
i,l − µ

k
l )(ηk+1

i,l − µ
k
l )> + Ξk+1

i,l + Λk
l .

3.2. Finding of hyperprior pdfs q(ml), q(Ωl) and q(γ)

As shown by (6), qk+1(ml) is a Gaussian distribution with mean
µk+1
l and covariance matrix Λk+1

l expressed as

Λk+1
l =

(
Λ̄
−1

+ Ω̂
k

l

N∑
i=1

πk+1
i,l ûk+1

i

)−1

, (11)

µk+1
l = Λk+1

l

(
Λ̄
−1
µ̄+ Ω̂

k

l

N∑
i=1

πk+1
i,l ûk+1

i ηk+1
i,l

)
. (12)

Then, the mean value of qk+1(ml) is m̂k+1
l = µk+1

l .
The Wishart distribution qk+1(Ωl) is parametrized by

νk+1
l = ν̄ +

N∑
i=1

πk+1
i,l , (13)

Γk+1
l =

(
N∑
i=1

πk+1
i,l ûk+1

i Ãk + Γ̄
−1

)−1

, (14)

where Ãk = (ηk+1
i,l − µ

k+1
l )(ηk+1

i,l − µ
k+1
l )> + Ξk+1

i,l + Λk+1
l .

The mean value of qk+1(Ωl) is

Ω̂
k+1

l = νk+1
l Γk+1

l . (15)

The qk+1(γ) distribution is a Gamma distribution with parame-
ters ak+1 = ā+ M

2
and

bk+1=b̄+
1

2
‖y−Hx̂k+1‖2+

N∑
i=1

L∑
l=1

πk+1
i,l tr[H>i HiΞ

k+1
i,l ]. (16)

From standard properties of the Gamma distribution, the expectation
of γ at the iteration k + 1 is equal to

γ̂k+1 =
ak+1

bk+1
=

2ā+M

2bk+1
. (17)

3.3. Resulting algorithm

Altogether, our algorithm can be summed up as follows:

Set initial values: η0
i,l, Ξ0

i,l, û
0
i , π0

i,l, µ
0
l , Λ0

l , Γ0
l , ν0

l , b0, and set

ak ≡ ā + M
2

. Compute x̂0
i =

∑L
l=1 π

0
i,lη

0
i,l, Ω̂

0

l = ν0
l Γ

0
l , and

γ̂0 = 1/b0(ā+M/2).
For k = 0, 1, . . .

1. Update parameters Ξk+1
i,l and ηk+1

i,l of qk+1(xi|zi = l) using
(7) and (8). Compute πk+1

i,l from (9).

2. Update mean values ûk+1
i of qk+1(ui) using (10).

3. Update parameters Λk+1
l and µk+1

l of qk+1(ml) using (11)
and (12).

4. Update parameters νk+1
l and Γk+1

l of qk+1(Ωl) using (13)

and (14). Compute Ω̂
k+1

l from (15).
5. Update parameter bk+1 of qk+1(γ) using (16). Compute
γ̂k+1 from (17).

4. SIMULATION RESULTS

The performance of HOGMep is assessed through segmentation and
recovery tasks in a deconvolution context. Experiments are per-
formed on both synthetic and benchmark color images. Channels
are degraded by distinct blur operators and additive Gaussian noises.
A natural comparison is made with VB-MIG [8], in which our MEP
prior is restricted to a Gaussian one. Restoration results are also
compared to those obtained with the recent state-of-the-art varia-
tional approach 3MG [21, 28] and segmentation with the iterated
conditional mode (ICM) algorithm [29]. For the ‘synth’ image with
ground truth, results in SNR are given in Table 1a, and displayed in
Figure 2 (restored channels) and 3 (color image). HOGMep consis-
tently yields the best objective results, with crisper images.

Channel Initial 3MG VB-MIG HOGMep
Red 10.73 11.21 22.62 24.25

Green 12.42 15.17 16.41 17.14
Blue 3.92 2.60 18.39 19.75
Color 6.98 6.08 19.41 20.63

(a) Channel and color restoration results in terms of SNR. Best per-
formers are in bold.

ICM VB-MIG HOGMep
VI 0.344 0.13 0.006
RI 92.72 98.24 99.98

% misclass. 41.10 4.70 0.05

(b) Segmentation: variation of information [30], Rand index [31].

Table 1: Objective restoration and segmentation performance
(‘synth’).

Segmentation performance, summarized in Table 1b, is numeri-
cally assessed through variation of information (VI, [30]) and Rand
index (RI, [31]) measures. Segmented images and their binary dif-
ference to the original segmentation are displayed in Figure 4. HOG-
Mep offers a very low rate of wrongly assigned pixels, and globally
correctly labels all regions. For the ‘peppers’ image, Table 2 gathers
objective SNR and SSIM performance, while restoration is depicted
in Figure 5, and segmentation results in Figure 6. Through the ob-
tained results, we conclude that HOGMep outperforms state-of-the-
art methods in both recovery and segmentation problems.



(a)

(b)

(c)

(d)

(e)

Fig. 2: RGB channels (‘synth’): (a) original (b) blurred and noisy.
Restored with (c) 3MG, (d) VB-MIG, (e) HOGMep.

Degraded 3MG HOGMep

VB-MIG Original
Fig. 3: Restoration results for the color image (‘synth’).

ICM VB-MIG HOGMep Original

Fig. 4: Segmentation results for ‘synth’ and binary difference to
original ground truth (wrongly assigned pixels are in black).

Channel Initial 3MG VB-MIG HOGMep

Red SNR 24.30 28.99 19.94 33.43
SSIM 0.938 0.972 0.939 0.972

Green SNR 18.36 22.82 21.13 23.96
SSIM 0.824 0.903 0.875 0.904

Blue SNR 13.77 14.19 14.12 14.30
SSIM 0.688 0.748 0.779 0.792

Color SNR 19.70 22.25 21.77 23.00

Table 2: Objective restoration performance (‘peppers’). Best per-
formers are in bold.

Degraded 3MG HOGMep

VB-MIG Original

Fig. 5: Restoration results for the color images (‘peppers’).

ICM VB-MIG HOGMep

Fig. 6: Segmentation results for ’peppers’ and the corresponding sil-
houette. Silhouette image: blackish pixels reflect silhouette indices
close to −1 while whitish pixels correspond to scores near 1. Using
this color code, brighter zones reflect satisfying clustering.

5. CONCLUSIONS

In this work, we have performed a joint image recovery and seg-
mentation via a Bayesian approach. This formulation combines two
main priors on the sought data: an HOGM for the latent label vari-
ables and a MEP distribution for the unknown signal within a given
class. We have proposed an original VBA method for solving the re-
lated problem where most of the hyper-parameters are automatically
estimated. The provided simulation results show that HOGMep de-
livers good results for both recovery and segmentation tasks.
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