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Abstract

In Esteghamatian, A., Bernard, M., Lance, M., Hammouti, A. and Wachs, A., 2017,

Micro/meso simulation of a fluidized bed in a homogeneous bubbling regime, Inter-

national Journal of Multiphase Flow, 92, 93-111, we performed a one-to-one com-

parison of micro-scale Particle-Resolved Simulation (PRS) results and meso-scale

two-way coupled Euler-Lagrange (a. k. a. DEM-CFD for Discrete Element Method-

Computational Fluid Dynamics) simulation results in a homogeneous bi-periodic

liquid/solid fluidized bed. These data showed an acceptable agreement between

micro- and meso-scale predictions for integral measures as, e.g., pressure drop and

bed height. However, particles fluctuations are markedly underpredicted in DEM-

CFD simulations, especially in the direction transverse to the main flow. The filtered

DEM-CFD porosity appears to be a coarse descriptor of the local microstructure and
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hence is the primary reason for the inability of the meso-scale DEM-CFD model to

fully recover the actual features of the flow. In this paper, we explore two different

directions in improving the meso-scale model: (a) we adopt an improved inter-phase

coupling scheme and (b) we introduce a stochastic formulation for the drag law

derived from our PRS results. The new stochastic drag law, which incorporates in-

formation on the first and second-order moments of PRS results, shows promises to

recover the appropriate level of particles fluctuations.

Key words: Multi-scale simulation; Fluidized Bed; Stochastic drag law; Discrete

Element method; Fictitious Domain method; Euler/Lagrange method

1 Introduction

Owing to their wide presence in environmental phenomena, pharmaceutical

industry, energy sector, chemical processes, biological flows, etc., particle-laden

flows have been subject of extensive analytical, numerical and experimental

studies. Thanks to substantial advances in the computing resources, numerical

approaches attracted much attention in the past decades. Accordingly, more

care is given to the development of more advanced numerical models with

higher levels of accuracy.

The nonlinear and multi-scale nature of fluid/particle interactions in such

systems highlights the rich dynamics of the system and calls for well-adapted

numerical models. A variety of numerical models depending on the required

computational resources and desired level of accuracy have been proposed in

the literature (Van der Hoef et al. [2008], Tenneti and Subramaniam [2014]).

∗ Corresponding author.
Email address: wachs@math.ubc.ca (Anthony Wachs).
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At the most refined end of the spectrum, micro-scale models based on PRS are

able to resolve the flow at the scale of the particle boundary layer. Meso-scale

DEM-CFD models filter the fluid field at scales at least one order of magnitude

larger than the particle volume. Closure laws are hence required to estimate

the momentum transfer between particle phase and fluid phase. Traditionally,

this filtering operation is implicit as the volume of fluid grid cells is usually

much larger than the particle volume. As contributions from a Lagrangian

particle are simply distributed to the Eulerian fluid grid cells intersected by

this particle, the filter size implicitly spans a maximum of two fluid grid cells

in each direction. Over the past few years, a new and enhanced approach that

decouples the filtering kernel from fluid grid cells has been developed (Link

et al. [2005], Pepiot and Desjardins [2012], Capecelatro and Desjardins [2013]).

This methodology provides the model with the flexibility of using fluid grid

cells with volumes comparable to the particle volume, or even smaller. The

filter size is typically a few particle diameters and spans the required number

of fluid grid cells as controlled by the particle diameter to fluid grid size ratio.

At the coarsest end of the spectrum, macro-scale models (either Two-Fluid

models or moments based methods, see Fox [2012] for more details) consider

both particle phase and fluid phase as continuous media described by Eulerian

transport equations. In the particular framework of Two-Fluid models, the

kinetic theory of granular media is employed to consider particle-particle and

particle-wall interactions.

Meso-scale models have gained a large popularity in simulation of dense fluid-

particle systems during the past two decades (Tsuji et al. [1993], Pepiot and

Desjardins [2012]). In contrast to Two-Fluid models, a major source of in-

accuracy is eliminated by directly taking into account particle-particle and

particle-wall interactions. Also, employing closure laws for fluid-particle mo-
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mentum transfer leads to a drastic reduction of the computational load (by

several orders of magnitude) as compared to micro-scale models. The reason-

able compromise between level of accuracy and required computational effort

favors this type of models in the simulation of meso-scale systems, i.e., sys-

tems that comprise 103 to 109 particles and the upper limit is increasing with

advances in parallel algorithms, High Performance Computing and computa-

tional resources.

While meso-scale models have been widely applied to fluid-particle simulations

since the 90s, only recently attention has been given to the accuracy of the

model, particularly in terms of predictions of second-order particle statistics

(Subramaniam et al. [2014], Kriebitzsch et al. [2013], Esteghamatian et al.

[2017a]). Since the fluid field remains unresolved at the level of particles,

particle-induced fluctuations and in turn particle agitations are suppressed

to some extent by meso-scale models. Subramaniam et al. [2014] emphasized

the underprediction of particles acceleration by point-particle models in de-

caying isotropic turbulent flow. Kriebitzsch et al. [2013] also pointed out the

underestimation of the drag force in DEM-CFD simulations as compared to

PRS. In our previous work (Esteghamatian et al. [2017a]), we also observed

the underestimation of the particles granular temperature particularly in the

direction transverse to the mean flow.

In Esteghamatian et al. [2017b], we further analyzed the PRS of fluidization

to have a better insight into the dominant mechanisms of particles motion.

In short, we have so far drawn the following conclusions: (i) the meso-scale

model partially resolves fluid fluctuations and underpredicts particles fluctua-

tions, and (ii) local fluid fluctuations around the particles depend on the filter

size and smoothly increase with the averaging control volume particularly in a
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homogeneous system. (i) and (ii) emphasize that any information transfer from

PRS to the meso-scale model requires to take into account the effect of the

filter size. Strictly speaking, fluctuations captured by the meso-scale model are

limited by the size of the filter. In that sense, the meso-scale model can be con-

sidered as the equivalent of the Large Eddy Simulation (LES) approach in an

analogy with single-phase turbulence modeling. However, contrary to single-

phase turbulence where instabilities are generated at the resolved scales, small-

scale instabilities - also called pseudo-turbulence - are generated at the particle

scale which is inherently not accessible with meso-scale model. The lack of a

self-similar pattern and the generation of instabilities at unresolved scales pre-

vent us from developing a universal formalism that relates momentum transfer

to mean values at the filter scale. This has been previously addressed in the

literature and accordingly, closures based on PRS or experiments have been

proposed to correlate the mean momentum transfer to integral measures (Hill

et al. [2001], Ergun [1952], Di Felice [1994]). We hope that a similar procedure

can be employed to recover momentum transfer fluctuations. Given that the

PRS solution already accounts for all the relevant spatial scales of the sys-

tem, it is technically possible to feed the meso-scale model with the missing

information at the particle level in a multi-scale framework.

The scope of the present study is to answer the following questions: (a) to

which extent the performance of meso-scale models are limited by the fluid

field discretization?, (b) is there any methodology to quantify the sub-grid

scale fluctuations from PRS results ? To answer (a), we perform a grid re-

finement study with our meso-scale model. A basic feature of many classical

meso-scale models (including ours in Bernard et al. [2016] Esteghamatian et al.

[2017a]) is that the fluid grid cell is used as the fluid/particle averaging ker-

nel. While pretty efficient when particles are much smaller than the fluid grid
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cell, it causes numerical stability issues when the size of particles are larger

than (or even comparable to) the fluid grid cell. As suggested by Capecelatro

and Desjardins [2013], it is technically possible to decouple the fluid/particle

averaging kernel from the fluid grid cell. We have adopted this approach to

attain the flexibility of using fine grid cells and perform a full grid refinement

study. In an effort to answer (b), we have characterized the drag coefficient

experienced by particles in PRS as a Probability Density Function, in con-

trast to the classical deterministic drag laws. This provides us with a basis for

our stochastic formulation of the drag force. Stochastic approaches have been

widely applied in turbulence modeling particularly involving reactive flows

(Dreeben and Pope [1998] Pope [1994] Muradoglu et al. [1999]). Sommerfeld

and Zivkovic [1992] and Oesterle and Petitjean [1993] introduced a probabilis-

tic approach to model inter-particle collisions inspired by the kinetic theory

of gases. In spray modeling, Subramaniam [2000] proposed a statistical repre-

sentation of a spray based on a stochastic point process model. Employing a

stochastic approach to model the drag force is quite scarce in the literature, yet

not nonexistent. In homogeneous isotropic turbulence and considering a one-

way point-particle assumption, Fede et al. [2006] proposed a stochastic model

to reconstruct the sub-filter fluid fluctuations based on a Langevin equation.

DNS data were used to determine the constants of the model. The authors

have shown that the correct level of particles kinetic energy can be attained

by the LES of the fluid field and a discrete particle method incorporating a

stochastic closure. A similar approach was adopted by Berrouk et al. [2007] for

the LES of inertial particles in a turbulent shear flow. Andrews et al. [2005]

employed an ad hoc approach to formulate a stochastic drag coefficient in

DEM-CFD coarse-grid simulations of vertical risers. The authors used DEM-

CFD simulations with relatively refined grid sizes as a reference to determine
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the model’s constants. In a more general approach, Tenneti et al. [2016] have

recently proposed a stochastic formulation for the drag force based on PRS

and the kinetic theory of granular flows.

The rest of the paper is organized as follows: In Section 2, we present the

governing equations and numerical aspects of our numerical tool. In Section 3,

we introduce the simulation parameters. Our stochastic formulation for the

drag coefficient is detailed in Section 4. In Section 5, we present the main

body of results in micro/meso simulations of low density ratio fluidization.

A single test case of high density ratio fluidization is subsequently studied.

Finally, the conclusions are summarized in Section 6.

2 Governing equations

Navier-Stokes and Newton-Euler equations are solved in a coupled fashion in

both micro- and meso-scale models. The incompressible Newtonian fluid as-

sumption is considered. The micro-scale model is based on the combined mass

and momentum conservation equations extended in the solid phase (Glowin-

ski et al. [2001]). The meso-scale model is based on locally averaged mass and

momentum conservation equations proposed by Anderson and Jackson [1967].

In both models the solid phase is treated in a direct fashion by solving the

Newton-Euler equations for each individual particle. All parameters in this

paper are dimensionless except if distinguished by a "star" symbol. The fol-

lowing scales are employed to non-dimensionalize the set of equations: L∗c for

length, V ∗c for velocity, L∗c/V ∗c for time, ρ∗fV ∗2c for pressure, V ∗2c /L∗c for gravity

acceleration, ρ∗fV ∗2c /L∗c for distributed Lagrange multiplier (for the micro-scale

model only) and ρ∗fV ∗2c L∗2c for forces.
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2.1 Micro-scale model

The dimensionless and non-variational form of the combined continuity and

momentum equations (written for simplicity for a system with a single parti-

cle) are as follows:

∂u

∂t
+ u · ∇u = −∇p+

1

Re∇
2u− λ, overΩ (1)

(ρr − 1)Vp
dU

dt
−

∫
P

λ dx =
∑
j

Fcj + Fr(ρr − 1)Vp
g∗

|g∗| , overP (2)

(ρr − 1)(Ip
dω

dt
+ ω × Ip · ω)−

∫
P

r × λ dx =
∑
j

Rj × Fcj, overP (3)

u− (U + ω × r) = 0, overP (4)

∇ · u = 0, overΩ (5)

where u, U , ω stand for the fluid velocity vector, the particle translational ve-

locity vector and the particle angular velocity vector, respectively. The particle

domain and whole fluid/particle domain are denoted by P and Ω, respectively.

λ represents the distributed Lagrange multiplier vector, Fc the contact force,

Vp = M∗
p/(ρ

∗
sL
∗d
c ) the particle volume, M∗

p the particle mass, d the dimension

of the system, Ip = I∗p/ρ
∗
sL
∗d+2
c the particle inertia tensor, r the position vec-

tor and R the vector connecting the gravity center and the contact point. The
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following dimensionless numbers are also introduced:

Reynolds number Re =
ρ∗fV

∗
c L
∗
c

µ∗
(6)

Inverse Froude number Fr =
g∗L∗c
V ∗2c

(7)

Density ratio ρr =
ρ∗s
ρ∗f

(8)

Stokes number Stk =
ρrRep

18
(9)

Where µ∗ denotes the fluid viscosity. Please note that the Stokes number Stk is

not an independent parameter and is given above for the sake of completeness

only.

2.2 Meso-scale model

The Navier-stokes equations are locally averaged based on the set of equations

proposed by Anderson and Jackson [1967]. Depending on the size of particles

with respect to the fluid grid cells, the averaging process can be performed on

either the fluid grid cells or an averaging kernel whose length scale is larger

than the fluid grid cells. In both cases, the volume scale of the averaging

operation is at least one order of magnitude larger than the particles diameter.

The dimensionless fluid conservation equations read:

∂ε

∂t
+∇ · εu = 0 (10)

∂εu

∂t
+∇ · (εuu) = −∇p− Ffp +

1

Re∇ · (2εD) (11)

where D and ε denote the strain rate tensor and the fluid volume fraction,

respectively. The pressure gradient term contains the hydrodynamic pressure

only and Ffp represents the fluid/particle momentum transfer. Please note
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that in (11) we have neglected the additional unclosed Reynolds stress Ru

and viscous stress Rµ terms that arise from volume filtering (see Capecelatro

and Desjardins [2013] for more details). Since the fluid field is unresolved at

the particle scales, Ffp needs to be closed by empirical correlations. Based

on the equation proposed by Maxey and Riley [1983] and Gatignol [1983],

different contributions to the momentum transfer are:

Ffp = Fdrag + Flift + Fam + Fba (12)

Where the right hand side terms represent drag, lift, added mass and Basset

forces, respectively (Crowe et al. [1997]). The importance of each term de-

pends on the flow configuration. For example, it can be shown that for high

density ratios Fam can be neglected (Crowe et al. [1997]). In Esteghamatian

et al. [2017a], we have shown based on PRS data that lift and added mass

contributions are negligible as compared to the drag force in a liquid/solid

configuration similar to the one investigated in this work. A description of the

two closure laws used in this work is presented in Appx. A.

2.3 Newton-Euler equations and collision force

The Newton-Euler equations solved for each individual particle read:

ρrVp
dU

dt
= Fb + Fc + Ffp (13)

ρr(Ip
dω

dt
+ ω × Ipω) = Tc + Tfp (14)

Where Fb = (ρr − 1)FrVp g
|g∗| denotes the buoyancy force, Fc inter-particle or

particle-wall contact force and Ffp the fluid/particle interaction force. Like-

wise, Tc and Tfp represent the contact-induced and the fluid-induced torque

acting on the particle. A soft-sphere model is employed for the treatment of
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the inter-particle and particle-wall interactions. The model and its parallel

implementation is introduced in detail in Wachs et al. [2012], Rakotonirina

and Wachs [2017], Rakotonirina et al. [2017]. In short, the soft-sphere model

comprises a normal elastic restoring force, a normal dissipative force and a

tangential friction force. The fluid/particle interaction force Ffp and torque

Tfp are computed a posteriori using the Lagrange multipliers:

Ffp =
∫
P
λdx+ Vp

dU

dt
(15)

Tfp =
∫
P

(r × λ)dx+ Ip
dω

dt
+ ω × Ipω (16)

As described in equation (12), the meso-scale model employs closure laws to

estimate different contributions of fluid/particle interaction forces.

2.4 Numerical aspects

Temporal and spatial discretization of Navier-Stokes equations in micro- and

meso-scale models are described in Wachs et al. [2015], Esteghamatian et al.

[2017a]. In general, for both micro- and meso-scale models the set of equations

are discretized with a second-order Finite Volume/Staggered Grid scheme.

Both models employ a first order Marchuk-Yanenko operator-splitting algo-

rithm for temporal discretization. Depending on the model, sub-problems are

resolved in the following order:

(a) Micro-scale model:

(I) A classical L2-projection scheme is employed to solve the Navier-

Stokes equations. An intermediate fluid velocity and pressure field

is obtained.

(II) As a predictor step, a purely granular problem is solved and an
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intermediate particle velocity is obtained.

(III) A fictitious domain problem is solved. By the end of this sub-

problem, rigid-body motion is imposed in the particle domain.

(IV) As a corrector step, a purely granular problem is solved and the

final particle velocity and position are computed.

(b) Meso-scale model:

(I) A modified L2-projection scheme is employed to solve Navier-Stokes

equations for a known particle reaction force and a known porosity

field.

(II) A granular problem with a known hydrodynamic force is solved and

the updated porosity field is computed.

(a)

∆x2

∆x1

x0,0 x1,0

x0,1 x1,1

(b)

Figure 1. Bounding Cube averaging method in meso-scale model: (a)
Lagrange→Euler and (b) Euler→Lagrange information transfer.

In the meso-scale model, the averaging kernel plays an important role in both

the stability and the accuracy of the computed solution. In our meso-scale

model we employ two different methods to compute locally averaged quanti-

ties such as porosity and slip velocity. The choice of the method depends on

the ratio between the grid cell size ∆x and particles diameter d:

(a) Bounding Cube (BC) method: If ∆x ≥ 1.7d, we use the fluid grid

cell for Euler�Lagrange information transfer. A bounding cube method, as
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described in Bernard et al. [2016] and schematically illustrated in Fig. 1 is

used to compute the porosity field and distribute the particle reaction forces

at the fluid grid cells. Additionally, a simple linear interpolation is used to

transfer the information from the fluid grid cells to the particles centers.

(b) Gaussian Kernel (GK) method: If ∆x < 1.7d, a truncated Gaussian

kernel is used to transfer information from the fluid grid cells to the par-

ticles centers, back and forth. The main motivation behind employing this

method is to decouple the fluid discretization from the averaging kernel. Fur-

thermore, it smooths out the presence of particles on the background grid in

a monotone fashion. This method is totally equivalent to the one proposed

in Capecelatro and Desjardins [2013]. A generic mathematical description of

an Euler-Lagrange information transfer with a spatial filtering is detailed in

appendix B. In short, for the reconstruction of any Eulerian quantity φ at an

(a) (b)

Figure 2. Gaussian Kernel averaging method: Illustration of (a) distribution of a
particle property over the neighboring cells and (b) performance of the projection
kernel close to a boundary. In (b), the real and image particles are in solid green,
and red hashed pattern, respectively. The solid lines represent the projection kernel
of the real and image particles, while the red dashed line is the superposition of both
kernels.
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Figure 3. A Gaussian filtering kernel and its derivative. δ0.5 denotes the width of the
kernel where it reaches 50% of its maximum value.

arbitrary Lagrangian position ri we have:

φ(ri) =

∫
Ω
φ(x)W(x− ri)dx∫
Ω
W(x− ri)dx

(17)

Where W denotes a symmetric kernel function centered at the Lagrangian

position ri. For the reverse operation, viz. projecting particles information on

the Eulerian grid reads as follows:

φ(xj) =

Np∑
i=1

φ(ri)W(ri − xj)Vp,i∫
Ω
W(x− xj)dx

(18)

While Vp,i denotes the volume of particle i. A 3D Gaussian kernel centered at

the origin reads as follows:

W(x) =
exp(−x2/2σ2

k)

(σk
√

2π)3
, (19)

σk = δ0.5/2
√

2 ln 2 (20)

As shown in Fig. 3, δ0.5 denotes the width where the kernel reaches 50% of its

maximum value. Although the shape of the kernel may impact the smooth-

ing properties and the numerical performance of the projection, we rely on a
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Gaussian function and do not further analyze the influence of the kernel shape

on projection properties. For the Euler→Lagrange information transfer, the

method implicitly handles the truncation of the domain by a simple normal-

ization (c.f. equation 17, for instance). Hence, the interpolated values near

the boundaries are less accurate, yet conservative. For the reverse operation

Lagrange→Euler, we employ the mirror method suggested by Capecelatro and

Desjardins [2013]. For the particles close to the wall, the truncated part of the

projection kernel is redistributed over the interior domain in a conservative

fashion as shown in Fig. 2(b). We consider an image particle in symmetry

with the respective wall for all near-wall particles. The kernel for a near-wall

particle Wnw is hence defined as the superposition of the original kernel and

the kernel corresponding to the respective image particle:

Wnw(x− ri) =W(x− ri) +W(x− rimgi ) (21)

Where rimgi is the position vector of the image particle. This simple method

not only guarantees mass-conservation of the Euler→Lagrange projection step,

but also enforces a Neumann boundary condition for the particle variables (c.f.

Fig. 2(b)). While the true choice of the boundary condition for particle vari-

ables is the subject of many studies particularly in TFM approaches Benyahia

et al. [2005]Li et al. [2010]Jenkins and Louge [1997], a Neumann boundary con-

dition avoids the over-prediction of fluid volume fraction near walls as claimed

by Capecelatro and Desjardins [2013]. According to our PRS numerical ex-

periments, a slight increase of fluid volume fraction near walls is physical and

related to the local geometric constraint. However, a non-conservative treat-

ment of the projection operation over-predicts this increase and results in an

unphysical behavior of the flow. Generally, a Neumann boundary condition

along with a mass-conserving projection operation is deemed to properly pre-
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dict the flow behavior as well as the slight increase of near-wall fluid volume

fraction.

3 Simulation parameters

The main parameters controlling the macroscopic properties of a fluidized bed

are: (i) particle/fluid density ratio ρr, (ii) inlet flow Reynolds number Rein,

(iii) relative size of the particles with respect to the domain size and (iv)

boundary conditions. In this study, we primarily target a smooth homoge-

neous fluidization with a relatively small system size. Accordingly, we choose

a bi-periodic fluidization configuration with 512 particles. From now on, we

choose the particle diameter d∗ and the inlet velocity u∗in as characteristic

length L∗c and velocity V ∗c , respectively, i.e., L∗c = d∗ and V ∗c = u∗in. As il-

lustrated in Fig. 4(a), the inlet flow is uniformly injected at z = 0, while a

constant pressure is imposed at the outlet boundary at z = 15. The motiva-

tion behind this choice is that the homogeneity of the system allows a coherent

statistical analysis in a relatively small domain. By choosing a density ratio

corresponding to a liquid/solid regime, we have spanned a limited range of

Rein and ε.

Additionally, a heterogeneous fluidization in a high density ratio system is

considered. Due to the larger length scales of the system, a larger domain is

chosen: 2000 particles in a bi-periodic domain. Limited by the computational

cost of this configuration, we have only chosen one set of parameters. The

purpose of this simulation is mostly to compare for a critical test case, the

performance of meso-scale models with a classical drag law as compared to

PRS in a high density ratio regime.
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Assuming uniform axial inlet velocity and an a priori estimate of εmf , the

minimum fluidization velocity for a homogeneous pack of spherical particles

is derived from Gidaspow [1994]:

(1− εmf )(ρ∗f − ρ∗s)g∗ = βu∗mf (22)

Where εmf and u∗mf denote the fluid volume fraction of the system and the

inlet fluid velocity at the onset of fluidization, respectively. β is the famous

Ergun friction coefficient for a dense pack of spherical particles (Ergun [1952]).

In all cases, we made sure that the inlet velocity is much larger than the

minimum fluidization velocity.

y

z

x

8

15

8

(a)

y

z

x

20

10

50

10

(b)

Figure 4. Flow domain and layout of particles at t = 0 in (a) liquid/solid configura-
tions and (b) gas/solid configurations.

17



4 A stochastic formulation for the drag force

Table 1
Physical parameters of the system

Case Rep,in Fr Stk ρr u∗in,z/u
∗
mf,z Np

Liquid/solid 3− 11 3.2− 24.5 1.7− 6.2 10 2− 5.5 512

Gas/solid 25 0.49 118 85 2 2000
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(a)

1

Fdrag Ffp

Fdrift

Uslip

P

(b)

Figure 5. (a) Reconstruction of the PRS fluid field (black cells) at the DEM-CFD grid
cell centers (white cells/points). Volume-averaged values are then linearly interpo-
lated at the particle center. (b) Decomposition of the hydrodynamic force acting on
a particle. The plane P is perpendicular to the slip velocity vector (Uslip = u−U).
Ffp denotes the total hydrodynamic force, Fdrag and Fdrift are the components in
parallel and perpendicular directions with respect to the slip velocity vector.

In this section, we first shortly present the post-processing and analysis of

drag force acting on particles based on the PRS results. Next, we focus on the

time-behavior of the drag force exerted on particles. These two steps serve as a

basis for the description of our stochastic drag force, which will be subsequently

explained. Statistical mean and standard deviation are denoted as < . > and

σ(.), respectively, and defined for a quantity φ as follows:

< φ > =
1

Ndata

Ndata∑
i=1

φi (23)

σφ =

√√√√ 1

Ndata

Ndata∑
i=1

(φi− < φ >)2 (24)

where Ndata is the number of data φi in the sample.

4.1 Drag coefficient mean values and fluctuations

Here, we average the PRS fluid field on the equivalent DEM-CFD grid cells

with a simple box-hat filter g(x) = 1, as shown in Fig. 5(a). For an Eulerian

PRS quantity φ, its average value denoted φ̄ in a DEM-CFD grid cell of volume
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VDEM−CFD is thereby computed as follows:

φ̄ =

∫
VDEM−CFD

χ(x)g(x)φ(x)dx∫
VDEM−CFD

χ(x)g(x)dx
(25)

where χ(x) is a binary indicator function that is 1 in the fluid and 0 in any

particle. Fluid Eulerian averaged variables are then interpolated at the parti-

cles position. In order to compute the drag coefficient of a particle, we estimate

local porosity and fluid velocity at the particle position using the 2-step pro-

cedure (averaging followed by interpolating) described above. Such a filtering

procedure provides us with an estimation of local fluid variables from PRS

results which is most similar to its counterpart in a DEM-CFD simulation.

Once the local fluid velocity around each particle is estimated, we can identify

the direction of slip velocity and hence of drag force. As shown in Fig. 5(b),

the drag force magnitude is estimated by projecting the PRS-based fluid par-

ticle force, Ffp, on the slip velocity vector. The PRS drag coefficient for each

particle is hence estimated as:

Cd(Rep, ε) =
8F ∗drag

πρ∗fd
∗2ε2(u∗ −U ∗)|u∗ −U ∗| (26)

Rep =
ρ∗f |u∗ −U ∗|εd∗

µ∗
(27)

The drag coefficient is considered to be a function of Rep and ε following the

classical formulation of the drag law Ergun [1952]. Consequently, the drag co-

efficient experienced by each particle is instantaneously estimated. One might

legitimately argue that the drag coefficient estimated by the instantaneous

locally-averaged fluid field is different from the classical drag laws in two

ways: a classical drag law (i) is derived in a stationary state e.g. flow past

a fixed assembly of particles, and (ii) is based on far-field/integral properties

e.g. pressure drop through the bed, inlet velocity, global fluid volume fraction.
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About (i), our interpretation of drag is in coherence with the DEM-CFD ba-

sic assumption, i.e., the mean drag considers local stationarity (Fan and Zhu

[2005]). In that sense, a meso-scale model assumes that the particles can be

considered to be in a quasi-steady state at each instant of time where there is

no acceleration of the relative velocity 1 . Concerning (ii), the presence of meso-

scale structures in a fluidized bed prevent us from employing far-field/integral

properties to estimate the drag coefficient. Furthermore, since the meso-scale

model also employs an equivalent compact local averaging kernel, our treat-

ment of PRS results is consistent with the meso-scale model in a multi-scale

framework. Finally, a drag coefficient based on locally-averaged variables pro-

vides us with the dispersion of drag coefficient for a given pair of Rep and ε in

a fluidized state. Since our filtering operation is local, variations of the drag

force from one realization to another for a given (Rep, ε) pair is related to

sub-filter scale fluctuations and local pore structures, rather than large-scale

convective gradients. This supplementary information plays a key role in our

stochastic description of the drag force.

Snapshots of the PRS field are collected at time intervals which are larger

than the longest auto-correlation time of particles motion. Consequently, the

drag coefficient corresponding to each particle at a given snapshot can be

considered as a statistically independent realization. The drag coefficient is

estimated for each particle and tabulated for a set of (Rep, ε) pairs with an

uncertainty tolerance of 1 %. Fig. 6 shows two examples of drag coefficient

estimated by PRS and compared to the drag laws proposed in the literature

for a given pair of (Rep, ε). The drag coefficient predicted by PRS forms a

1 In fact, unsteady contributions of the relative velocity to the fluid/particle inter-
action force are lumped into added mass effects and Basset force which are virtually
insignificant for large particle-fluid density ratios/non-oscillating flows (Fan and Zhu
[2005]).
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Figure 6. Probability Density Function (PDF) of drag coefficient, Cd, for a given pair
of Rep and ε computed from the PRS results and different drag laws (Beetstra et al.
[2007], Huilin and Gidaspow [2003], Di Felice [1994]) in (a) liquid/solid regimes and
(b) gas/solid regimes. PRS results are shown as a PDF, and the deterministic drag
correlations are shown by a Dirac function. The uncertainty of the values computed
by the drag correlations are shown by solid lines and corresponds to the relative
uncertainty tolerance of 1% in Rep and ε.

distribution with a rather large dispersion of the data. To shed more light

on the origins of these variations we investigate their dependence on the

local values of Rep and ε. Before further detailing the characteristics of these

PDFs, it is noteworthy to mention that as a general trend PDFs in the

liquid/solid regime tend to a quasi-normal distribution, while they are mildly

skewed toward larger values in the gas/solid regimes. The skewness is even

more evident when considering the non-normalized absolute drag force (c.f.

Fig. 11). In general, the convective gradients and heterogeneous meso-scale

structures are responsible for such asymmetries.

We analyze the statistical dependence of the drag coefficient PDF to the num-

ber of realizations Nreal(=Ndata in (23)-(24)). As shown in Figs. 7(a) and 7(c),

while an increase of Nreal smoothes the PDF curves, its general shape is only

subject to mild variations from 200 and 800 realizations in the liquid/solid

and gas/solid regimes, respectively. Variations of the mean and standard devi-

ation values with the number of realizations are shown in Figs. 7(b) and 7(d).
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Figure 7. Variation of the drag coefficient PDF for a given pair of Rep and ε with
respect to the number of realizations in (a) liquid/solid regimes and (c) gas/solid
regimes. (b) and (d) show the dependence of the mean and standard deviation
values to the number of realizations, in liquid/solid regimes and gas/solid regimes
respectively.

While mean values converge rapidly with number of realizations, a safe crite-

rion to obtain less than 5 % uncertainty range for standard variation values

is Nreal = 200 and Nreal = 800, in the liquid/solid and gas/solid regimes,

respectively. It should be noted that the number of realizations for a given

(Rep, ε) pair is not only limited by the simulation time, but also by the values

of Rep and ε actually experienced by particles. Hence, the curves for different

(Rep, ε) pairs in Figs. 7(b) and 7(d) are truncated at different numbers of

realizations for an equivalent simulation time, since the particles experience

more frequently a certain (Rep,ε) pair as compared to another.

Starting from mean drag, Fig. 8 shows PRS results compared to the drag

law proposed by Beetstra et al. [2007]. Please note that in a fluidization con-
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figuration with a fixed density ratio, Rep and ε are interdependent. Hence,

our PRS results do not show the decoupled functional dependence of Cd on

Rep and ε. However, for each pair of (Rep, ε), CPRS
d fits well Ccorrel

d as shown

in Figs. 8(a) and 8(b). It is surprising to us that these relatively old drag

laws - which are by the way widely used in meso-scale models - fit better as

compared to new highly-resolved drag laws proposed in the literature (Ten-

neti et al. [2011],Tang et al. [2015],Bogner et al. [2015]). As pointed out by

Tang et al. [2016], the drag force experienced by moving particles is by nature

larger. We also think that the fact that most of these drag laws are based

on static particle arrangements explains this seeming inconsistency. Recently,

Tang et al. [2016] proposed a drag law for moving particles which also takes

into account the granular temperature of the particles. However, our set of

parameters is not in its range of validity. For the aforementioned reasons, we

have intentionally avoided to quantitatively compare different drag laws with

CPRS
d . Once again, the main purpose of this study is to investigate the influ-

ence of drag force fluctuations. As we will see later in Section 5, incorporating

drag laws with matching mean values as compared to PRS result in good

predictions on integral properties, yet underprediction of particles velocity

fluctuations.

Now we turn our attention to any possible correlation between standard devia-

tion of drag coefficient and local porosity and Reynolds number. An increasing

trend between dispersion of drag coefficient and porosity of the system has al-

ready been reported in the literature in the simulation of flow past random

arrays of fixed particles. According to Beetstra et al. [2007], in a homoge-

neous fixed bed configuration the drag force applied to an individual particle

commonly varies by a factor of 2 to 3, while dispersion increases with fluid

volume fraction. We investigate the sensitivity of σ(CPRS
d ) to the variation
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of Rep and ε. The standard deviation of drag coefficient normalized by the

drag coefficient mean value increases with an increase in Rep and ε in both

regimes. Since these two dimensionless parameters are interdependent in our

system, we study the correlation between σ(CPRS
d ) and Rep only. As shown

in Fig. 10, similar to the functional dependence of mean drag to Rep, a clear

negative correlation between σ(CPRS
d ) and Rep is present in both regimes. We

employ a power law and a linear fit in order to quantify the correlation, while
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Figure 8. Drag coefficient as a function of Rep and for different ε. Drag correlations
Ccorrel
d in the literature (Beetstra et al. [2007] and Di Felice [1994] for (a) liquid/solid

regimes and (b) gas/solid regimes, respectively) and drag coefficients CPRS
d predicted

by PRS are represented by lines and symbols, respectively.
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we acknowledge that the graphical linearity of the trend in gas/solid regime is

an artifact of the short Rep range. However, recalling that the preceding fits

are to be employed in DEM-CFD simulations in which particles presumably

experience an equivalent range ofRep as compared to PRS, such simplification

is deemed to be acceptable. Indeed, a full description of the correlation be-

tween σ(CPRS
d ) and Rep requires a parametric analysis by performing several

PRS for a wide range of Rep, ε and density ratio.
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Figure 9. Standard deviation of the drag coefficient in liquid/solid regimes as a
function of Rep and for different ε: (a) absolute value and (b) value normalized by
mean drag coefficient.
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4.2 Time behavior of fluctuations

So far we have analyzed the drag force fluctuations based on snapshots of the

PRS velocity field. In our approach PDFs are extracted from the ensemble of

particles at different times: a combination of spatial and temporal fluctuations.

These fluctuations which stem from sub-grid convective gradients, can be

modeled by a stochastic process. Such treatment by definition assumes that
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Figure 10. Standard deviation of the drag coefficient in the gas/solid regime as a
function of Rep and for different ε: (a) absolute value and (b) value normalized by
mean drag coefficient.
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the spatial and temporal behaviors of the drag force exerted on the particles

are equivalent (ergodicity assumption). Thanks to PRS, we can readily verify

to which extent this assumption is valid. Fig. 11 shows the distribution of

the drag force magnitude over the ensemble of particles at an instant of time

 0

 0.4

 0.8

 1.2

 1.6

 2

 2.4

 2.8

 0  0.2 0.4 0.6 0.8  1  1.2 1.4 1.6 1.8

|F PRS
fp |/|Fb|

P
D

F

temporal spatial

(a)

 0

 0.2

 0.4

 0.6

 0.8

 0  0.4  0.8  1.2  1.6  2  2.4  2.8

|F PRS
fp |/|Fb|

P
D

F

temporal spatial

(b)

Figure 11. PDF of the fluid/particle force normalized by the buoyancy force over (a)
ensemble of particles (spatial) or (b) particle’s trajectory (temporal) in liquid/solid
regimes.
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(spatial) and over a particle trajectory (temporal). First, differences between

distributions in time and space are quite limited, emphasizing the validity of

the ergodicity assumption. Second, distribution forms are quite different in

the gas/solid and liquid/solid regimes. The former is close to normal, while

the latter is clearly skewed toward larger values. Such asymmetries in drag

force PDFs highlight the significance of large-scale motions in the gas/solid

regime.

In order to have a complete picture of the drag force fluctuations, we study its
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Figure 12. Auto-correlation function of the drag force magnitude as a function of the
dimensionless separation time in (a) liquid/solid regimes and (b) gas/solid regimes.
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characteristic time. Although particles motion is indeed far from Brownian,

we assume that it consists of some random modes representing the pseudo-

thermal agitation of particles. This hypothesis can be further examined by

studying the drag force auto-correlation function defined as:

RFF (τ) =
< F ′′fp,i(t+ τ)F ′′fp,i(t) >

< F ′′fp,i(t)F
′′
fp,i(t) >

, i = x, y, z (28)

F ′′fp,i = Ffp,i− < Ffp,i >, i = x, y, z (29)

Fig. 12 shows the auto-correlation function for the drag force magnitude in

liquid/solid and gas/solid regimes. As expected, the co-existence of random

motion at early separation times and large-scale convective motion at larger

separation times are present in both regimes. Nevertheless, the convective

motion in the form of a harmonic wave is obviously dominant in the gas/solid

regime. The integral time of the auto-correlation function is classically defined

as:

T =
∫ τ∞

0
RFF (τ)dτ (30)

Where τ∞ denotes an infinitely large separation time. For a purely random

motion, the autocorrelation function is expected to decay exponentially. In

that hypothetical condition, the integral in equation 30 exponentially tends to

the characteristic time of fluctuations. This is not the case in the presence of

convective gradients. The integral in equation 30 as a function of the upper-

bound, τ∞, oscillates around a steady level. We have simply chosen this steady

level as the fluctuations characteristic time. Hence, in our particular analysis

we re-define the equation 30 as:

T =<
∫ τ∞

0
RFF (τ)dτ >τ∞ (31)

Where the averaging is performed over the quasi-steady separation time

slot, namely τ∞ > 4 and τ∞ > 40 in the liquid/solid and gas/solid regimes,
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respectively. Although quite simple, our approach eliminates the influence

of large-scale harmonic motions on the estimation of the pseudo-thermal

fluctuations time. The fluctuations integral time varies with the dimensionless

parameters of the system. In the liquid/solid regime, Fig. 13 shows the

dependence of this value on Rein. A linear fit is used to correlate the

fluctuations integral time to Rein in the liquid/solid regime.

4.3 Fluctuating drag as a stochastic event

We have obtained a rather complete picture of the drag force fluctuations in

the range of dimensionless parameters of our PRS. We have shown that despite

some differences in the functional dependence of the mean drag on Rep and ε,

the average value for the given range of dimensionless parameters is almost in

accordance with PRS. We now focus on a description of the drag coefficient

which represents sub-grid fluctuations by a stochastic event, namely Cs
d:

Cs
d = Cd + C ′d (32)

Where C ′d and Cd represent the fluctuating and mean components, respec-

tively. Recall that the term mean is defined with respect to sub-grid fluc-

tuations and simply implies that Cd is a mere function of locally averaged

variables. However, both Cd and C ′d are indeed time-dependent variables in a

freely-moving particles system. We seek a stochastic signal with the following

mathematical features: (i) its long-run mean should be zero, (ii) it should enjoy

a smooth power spectrum without any preference toward a given frequency

(iii) long-run variance and time-correlation should be easily adjustable. With

that in mind and inspired by time-series analysis methods (Box et al. [2015]),
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we employ a simple first order Auto-Regressive (AR-1) signal:

C ′d(t+ ∆t) = aC ′d(t) + b
√

(1− a2)w(t) (33)

< w(t) >t= 0, σ(w(t)) = 1 (34)

Where w(t) represents a Gaussian white noise with a zero mean and standard

deviation of 1, a measures the extent to which the signal retains its memory,

b controls the intensity of the randomness and ∆t is the time-step. In fact, an

AR-1 process can be considered as a discrete time equivalent of the continu-

ous Ornstein-Uhlenbeck process. Its conditional expectancy and variance can

hence be written in the following form:

E[C ′d(t+ n∆t)|C ′d(t)] = an∆tC ′d(t) (35)

Var[C ′d(t+ n∆t)|C ′d(t)] = b2(1− a2n∆t) (36)

Given that |a| < 1, the long-run mean and variance of the signal tend to zero

and b2, respectively. The time-behavior of the signal described by its auto-

correlation function is given as:

RC′
d
C′

d
(τ) = exp(−τ/T ), T = −∆t/ ln a (37)

Hence, for a desired standard deviation σ(C ′d) and fluctuation integral time

T PRS estimated from PRS results and for a given ∆t, the model parameters

a and b are computed. Fig. 14 shows an example of the signal time evolu-

tion as well as its auto-correlation function. We have normalized the x-axis in

Fig. 14(b) by the integral time corresponding to the respective curve in or-

der to compare the shape of auto-correlation functions (c.f. (30) and (31) for

definition of T ). Cdet
d corresponds to a DEM-CFD simulation with a classical

deterministic drag force without any fluctuating component, viz. Cdet
d = Cd.

Likewise, Csto
d and C ′d correspond to a stochastic drag coefficient and its fluc-

tuating component in a DEM-CFD simulation incorporating a stochastic drag
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force. First, C ′d decays exponentially with the separation time, as expected for

an AR − 1 process. Furthermore, there is nearly no difference between the

shape of the auto-correlation function corresponding to a classical drag co-

efficient without stochastic component, Cdet
d , and the stochastic description

of the drag coefficient, Csto
d . Thus, it is safe to conclude that the fluctuating

term C ′d merely mimics the pseudo-thermal fluctuations and does not affect

the convective motion of particles at large separation times.

5 Results

We intend to compare the performance of three variants of the meso-scale

model: (i) a bounding cube method for interphase coupling and a classical

deterministic drag law, (ii) a Gaussian kernel method for interphase coupling

and a classical deterministic drag law, and (iii) a Gaussian kernel method for

interphase coupling and the proposed stochastic drag law. Results produced

by these three variants of meso-scale model are compared to that of PRS which
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Figure 14. (a) An example of C ′d signal as a function of time and (b) autocorrelation
function of a stochastic drag coefficient Cstod and its fluctuating component, C ′d (c.f.
(33)) compared to a classical drag coefficient without stochastic component, Cdetd .
The x-axis is normalized by the integral time, T (defined in (30) and (31)), corre-
sponding to the respective curve. Both plots correspond to a DEM-CFD simulation
in a liquid/solid regime.
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serves as a reference. We start with the liquid/solid regime. Four cases with

different inlet velocities are considered in the liquid/solid regime. Next, we

turn our attention to the gas/solid regime. Numerical parameters are listed in

Tab. 2. We introduce an abbreviation in referring to our DEM-CFD simula-

tions: the two first letters denote the interphase coupling method (BC for the

bounding cube and GK for the Gaussian kernel) and the following number

specifies the grid resolution ∆x−1. The choice of the grid size in micro-scale

simulations have been the subject of our previous study (Esteghamatian et al.

[2017b]). For the meso-scale model, we performed a grid- and kernel support

size-refinement analysis detailed in Appx. C.
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Table 2
Numerical parameters of DEM-CFD and PR simulations.
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5.1 Liquid/solid

Fig. 15 compares the axial fluid volume fraction profile predicted by different

models. Except for the very beginning and end of the bed, a smooth profile is
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predicted by PRS. In the two lowest Rein cases, BC-0.6 with a deterministic

drag law predicts large variation along z-axis which is due to the presence of

nonphysical particle structures. Using smaller grid size with Gaussian kernel

method attenuates the presence of such structures. In our previous study with

the same physical parameters in a slightly larger configuration and using the

BC-0.6 method, such effects were almost absent (Esteghamatian et al. [2017a]).

The bed height is almost well-predicted by all variants of the meso-scale model.

In general, the bed height is an indicator of the accuracy of the mean drag

coefficient. In line with our findings in Section 4.1, the mean drag coefficient

predicted by PRS and the deterministic drag law proposed by Beetstra et al.

[2007] are in agreement (see Fig. 8). Finally, there is virtually no difference

between the results predicted by GK-1 det. and GK-1 sto., implying that the

stochastic formulation for the drag has no effect on the mean drag force value.

Fig. 16 shows the time evolution of square root of particles granular tem-

perature. First, using the GK method improves the prediction of the level of

particles granular temperature as compared to PRS results. In spite of this

improvement, the particle axial fluctuations are still not fully captured with a

deterministic drag. The DEM-CFD simulations with the stochastic drag and

the GK coupling method, however, correctly predict the particles fluctuation

level within the uncertainty range of PRS results.

In the transverse direction as shown in Fig. 17, the general picture is similar

with an improved prediction with GK-1 and stochastic drag. Nonetheless, the

granular temperature is still slightly underpredicted as compared to PRS. In

an effort to identify the origins of this discrepancy, we once again refer to PRS.

In Esteghamatian et al. [2017a], PRS results revealed that the fluid/particle

force exerted on a particle is not necessarily co-linear with respect to its

slip velocity vector. As a result, the fluid/particle force has a perpendicular
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component with respect to the slip velocity. Although our proposed stochastic

drag force already takes into account the drag force magnitude fluctuations, it

neglects the fluctuating behavior of the drag force direction. We believe that

the limited deviation of transverse particles granular temperature predicted

by GK-1 and stochastic drag as compared to PRS is associated with the lack

of a fluctuating force perpendicular to the slip velocity vector. Nevertheless,

it should be noted that particles transverse motion is not exclusively driven

by the fluid/particle force. In Esteghamatian et al. [2017b], we observed that

collision is an efficient mechanism of momentum transfer from mean flow

to transverse particle motion. Hence, the stochastic drag (which is parallel

to the slip velocity and therefore is mostly oriented in the axial direction)

is implicitly projected to the transverse directions via inter-particle colli-
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Figure 15. Fluid volume fraction axial profile in the liquid/solid regime with different
inlet velocities. The definition of abbreviations is given in Tab. 2.
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sion, leading to the improvement of particles transverse granular temperature.

5.2 Gas/solid

The type of fluidization in the gas/solid regime is pretty different from a hy-

drodynamic viewpoint as compared to the liquid/solid regime Esteghamatian

et al. [2017b]. Based on PRS, we clearly observe the emergence, growth and

burst of a bubble in a periodic fashion. Fig. 18 graphically shows the bed

evolution and particle positions as well as fluid velocity contours predicted

by PRS and DEM-CFD simulations. The overall picture is surprisingly quite
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Figure 16. Evolution of axial granular temperature as a function of time in the
liquid/solid regime with different inlet velocities. The definition of abbreviations is
given in Tab. 2. Graph legends are the same in all figures and shown in figure (a)
only.
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similar: both models predict an episodic slug formation at the vicinity of the

entry which pushes the upper portion of the bed upward as in a piston-like

fluidization. Particles above the slug smoothly rain down as the slug travels

upward. Although the fluid field is clearly mollified in DEM-CFD simulations

as compare to PRS, the meso-scale convective gradients are still well-predicted.

We now focus on the influence of the proposed modifications for the meso-scale

model in this high density ratio configuration. Starting from bed height evo-

lution in Fig. 19(a), we do not observe any major difference in predictions by

different DEM-CFD simulations. The mean bed height is mostly well-predicted

by all variants of the meso-scale model, while employing a GK method cap-

tures marginally better large amplitude oscillations. DEM-CFD simulations
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Figure 17. Evolution of transverse granular temperature as a function of time in the
liquid/solid regime with different inlet velocities. The definition of abbreviations is
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(a)

(b)

Figure 18. Bed evolution depicted by particles position and fluid velocity contours
at a y-normal cut plane for (a) PRS and (b) GK-2 simulation with a deterministic
drag, in the gas/solid regime. The definition of abbreviations is given in Tab. 2.

predict the porosity profile within 5 % error with respect to PRS, excluding

the values near the bed upper limit and the entry. Deviations with respect to
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PRS in the range of z ∈ [20 : 28] is associated with the slug burst event near

the upper surface of the bed and is mildly improved by employing the GK

method with stochastic drag. In the vicinity of the entry, all variants of the

meso-scale model underestimate porosity, as is also the case in the liquid/solid

regime (Fig. 15).

As shown in Fig. 20, while all DEM-CFD variants are in good agreement with

PRS results, the particles granular temperature is rather insensitive to DEM-

CFD modifications. Figs. 20(a) and 20(b) show that employing a GK method

improves DEM-CFD predictions of the mean axial granular temperature by

about 10 %. In the transverse direction, employing the GK method and a

finer fluid grid cell slightly overestimates the transverse granular temperature:

5 % and 10% overestimation as compared to PRS, with a deterministic and

stochastic drag, respectively.

6 Discussion and perspectives

In this study, we examined two directions of improvement of the meso-scale

model. First, we employed a more sophisticated interphase coupling scheme
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Figure 19. (a) Bed height expansion as a function of time and (b) fluid volume
fraction axial profile, in the gas/solid regime. The definition of abbreviations is
given in Tab. 2.
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Figure 20. Time evolution of the instantaneous and time-averaged square root of the
particles fluctuations in (a)-(b) the axial direction z and (c)-(d) transverse direction
x, in the gas/solid regime. The definition of abbreviations is given in Tab. 2.

to decouple the averaging length scale from the fluid grid cell size. This so-

called Gaussian kernel method, introduced by Capecelatro and Desjardins

[2013], provides us with the flexibility of using a full range of grid sizes while

guaranteeing a numerically stable solution. Second, we suggested an ad hoc

remedy based on PRS results to capture the fluctuating nature of the drag

force. We meticulously investigated the drag coefficient PDFs for given pairs

of (Rep, ε) and quantified their properties with respect to the locally filtered

dimensionless variables. While there is no fundamental basis on the random-

ness of these sub-grid fluctuations, our numerical experiments based on PRS

revealed that the shape of these PDFs is close to Gaussian particularly in the

homogeneous liquid/solid regime. Thus, we proposed as a tentative solution

a stochastic description for the drag force in the meso-scale model, assuming
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that sub-grid convective gradients can be simply represented by a localized

random process. The characteristic time of the proposed stochastic drag is

also extracted from PRS results. We adopted a first-order auto-regressive sig-

nal to introduce a fluctuating component in the drag force in the direction of

the slip velocity. The magnitude of this fluctuating component is a function of

the local Rep. We intentionally avoided to tackle the famous issue of the in-

consistency between mean drag laws, as described by Kriebitzsch et al. [2013]:

"the appropriateness of these static correlations for fluidized systems is a bit

of a hit and miss affair". Among recent efforts in the literature to clarify these

ambiguities, Rubinstein et al. [2016] highlighted the impact of Stokes number

on drag force, while Tang et al. [2016] proposed a modified drag law taking

into account particles mobility. In the present work, we turned our attention

to a different question: assuming that we already have access to a mean drag

correlation which is on average in accordance with PRS, can we capture the

correct level of particles fluctuations with a meso-scale model? The present

study has shown that the answer highly depends on the extent to which the

already-resolved scales prevail.

We evaluated the contribution of the proposed improvements in two different

regimes. We showed that in the homogeneously bubbling liquid/solid regime,

both modifications have positively contributed to an enhanced DEM-CFD pre-

diction of the particles granular temperature. By using a GK method and a

stochastic drag, DEM-CFD simulations fully capture the axial particles gran-

ular temperature level as compared to PRS. In the transverse direction, we

still observe minor discrepancies between DEM-CFD simulations and PRS.

Our impression is that these minor differences stem from the direction of the

fluctuating component. Recalling that the stochastic drag model mimics fluc-

tuations originating from sub-grid scale convective gradients, it might not be
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necessarily collinear with the mean slip velocity. In a more realistic approach,

one may consider a stochastic drag component which is not only fluctuating

in magnitude, but also in direction.

In the gas/solid regime, we observed a highly heterogeneous fluidization with

the dominance of meso-scale structures. For a given drag law (on average in

agreement with PRS), the main characteristic phenomena of the system were

well captured by a standard DEM-CFD model. Hence, we did not observe any

favorable contribution of the stochastic drag to the DEM-CFD simulations in

this system. In the presence of large and dominant meso-scale structures as,

e.g., a slugging mechanism, the dynamics of particles is already well resolved

by DEM-CFD simulations with GK (Gaussian kernel) and ∆x−1 in the range

[1 : 3], and no stochastic drag, and is almost insensitive to local pseudo-random

fluctuations. Please note that the grid resolution of our DEM-CFD simula-

tions is by far more refined than what is used in coarse-grid simulations for

industrial-scale applications. In DEM-CFD simulations of risers for instance,

the fluid grid size is typically larger than the particles diameter by a factor of

ten. In that situation, DEM-CFD simulations with grid resolutions equivalent

to the ones we employed in the present study are considered as highly-resolved.

A similar formalism is already adopted in the literature to improve the coarse-

grid DEM-CFD simulations based on highly-resolved DEM-CFD simulations.

In Andrews et al. [2005], the authors have already shown that although the

main characteristics of gas/particle flows in a vertical riser are captured by the

mean drag and a coarse-grid DEM-CFD simulation, a quantitative estimation

requires a stochastic sub-grid correction.

In general, we believe that the present stochastic description of the drag force

is particularly promising owing to its conceptual features: (i) all parameters
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can be extracted from PRS without any artificial fitting, and (ii) it takes into

account the influence of already-resolved scales. Nonetheless, our approach is

only an ad hoc remedy and is far from being a general solution to the classical

problem of particle/fluid momentum transfer. As an engineering approach,

one can perform various PRS with different dimensionless parameters in or-

der to find the functional dependence of the stochastic model parameters on

relevant dimensionless variables. In doing so, one may move to a tri-periodic

box configuration in order to (i) decouple the dimensionless numbers of the

system such as Rep, ε and ρr, and (ii) eliminate the inlet boundary condition

effects. Another parameter which needs to be taken into account in such an

analysis is the size of the filter with respect to the particle size. The present

study has shown that the filter size is an important parameter in the estima-

tion of sub-grid scale fluctuations. This has been also reported by Capecelatro

et al. [2015] in fully developed cluster-induced turbulence. Furthermore, we

have developed and tested our stochastic drag model in a bi-periodic fluidized

bed configuration only, i.e., a flow configuration without wall effects. Beyond

exploring a wider range of dimensionless parameters and thereby examining

other flow configurations as, e.g., dilute turbulent flows or clustering in mod-

erately dilute flows, investigating the influence of wall boundary conditions is

certainly another milestone to achieve a full description of the stochastic drag

force.

Finally, another potential direction in improving drag laws (and in turn meso-

scale models) is to better understand the physical origins of sub-grid fluctu-

ations. We already know that an important source of drag modulation on a

particle in a dense regime is the local fluctuations induced by neighboring par-

ticles. Thanks to the direct handling of particles motion in DEM-CFD models,

detailed information about the local pore geometry is available. Hence, rather
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than merely computing the fluid volume fraction, more detailed information

can be exploited by DEM-CFD models. For static particles, Akiki et al. [2017]

has recently proposed a Faxén correction to quantify the fluid/particle force

perturbation due to the presence of neighbors. The authors assumed that the

pairwise interaction of particles can be linearly superposed even in fairly in-

ertial regimes Rep = 170. A major advantage of such approach is that due to

its deterministic nature, it is applicable to a wide range of configurations.

Appendices

A Description of drag correlations

For the sake of consistency with the literature, all drag law formulations are

given in dimensional variables and the Reynolds number is computed with the

superficial slip velocity |u∗ − U ∗|ε = V ∗c as a characteristic velocity and the

particle diameter d∗ = L∗c as a characteristic length:

Rep =
ρ∗f |u∗ −U ∗|εd∗

µ∗
(A.1)

Based on experiments for a wide range of Reynolds numbers and porosity,

Di Felice [1994] proposed the following formulation:

F ∗drag = 0.5Cdρ
∗
f

πd∗2

4
|u∗ −U ∗|(u∗ −U ∗)ε−χ (A.2)

χ = 3.7− 0.65 exp(−(1.5− log10Rep)2

2
) (A.3)

Cd =
24

Rep
(1 + 0.15Re0.687

p ) (A.4)

where Cd is the drag coefficient for a single unhindered particle for Rep less

than 1000 (Schiller and Naumann [1935]) and the pre-factor ε−χ accounts for
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the presence of neighboring particles. This type of drag law was first proposed

by Wen and Yu [1966], with a pre-factor ε−3.7. However, the drag law was not

applicable for ε < 0.8 . Thanks to the modifications of Di Felice [1994], the

drag law is valid on a wide range of porosity.

The second drag law is based on the numerical simulations of Beetstra et al.

[2007]:

F ∗drag = 3πd∗µ∗(u∗ −U ∗)g(ε,Rep) (A.5)

g(ε,Rep) =
10(1− ε)

ε2
+ ε2(1 + 1.5

√
1− ε)

+
0.413Rep

24ε2
(
ε−1 + 3ε(1− ε) + 8.4Re−0.343

p

1 + 103(1−ε)Re−0.5−2(1−ε)
p

)

(A.6)

B Mathematical description of the Gaussian Kernel interphase

coupling method

We first show how any Eulerian quantity and its derivatives can be recon-

structed at a Lagrangian position. Starting with a Taylor expansion of an

Eulerian quantity φ about the particle position:

φ(x) = φ(ri) +
∑
m

[
(x− ri)

∂φ(ri)

∂xm

]
+ ... (B.1)

We multiply both sides by a symmetric kernel function centered at the parti-

cle’s position, W(x− ri), and integrate over the flow domain Ω :

∫
Ω
φ(x)W(x−ri)dx = φ(ri)

∫
Ω
W(x−ri)dx+

∑
m

[
∂φ(ri)

∂xm

∫
Ω

(x− ri)W(x− ri)dx
]
+...

(B.2)
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Neglecting all the derivative terms, we can have an estimation of φ(ri):

φ(ri) =

∫
Ω
φ(x)W(x− ri)dx∫
Ω
W(x− ri)dx

(B.3)

Due to the symmetry of the kernel, integral of the terms with odd-order deriva-

tives are zero far from the boundaries. Hence the error produced by the trun-

cation of the derivative terms is of order |x−ri|2 for the interior particles, and

of order |x − ri| for particles near the boundaries. Now we estimate the first

derivative of φ(xi). We replace W(x − ri) with the derivative of the kernel

∂W(x−ri)
∂xm

in equation B.2:

∫
Ω
φ(x)

∂W(x− ri)
∂xm

dx =
∫

Ω
φ(ri)

∂W(x− ri)
∂xm

dx+ (B.4)

∑
m

[
∂φ(ri)

∂xm

∫
Ω

(x− ri)
∂W(x− ri)

∂xm
dx

]
+ ... (B.5)

By neglecting second- and higher-order derivatives and rearranging equation

B.5 we have:∫
Ω

[φ(x)− φ(ri)]
∂W(x− ri)

∂xm
dx =

∑
m

[
∂φ(ri)

∂xm

∫
Ω

(x− ri)
∂W(x− ri)

∂xm
dx

]
(B.6)

In a 1-D system, B.6 directly yields to an expression for the derivative:

dφ(ri)

dxm
=

∫
Ω

[φ(x)− φ(ri)]
dW(x− ri)

dxm
dx∫

Ω
(x− ri)

dW(x− ri)
dxm

dx

, m = 1 (B.7)

In order to avoid singular values in the denominator, the dW(x−ri)
dxm

needs to

be an anti-symmetric function. Similar to 17, the truncation error is of order

|x − ri|2 for the interior particles, and of order |x − ri| for particles near
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the boundaries. In a 3-D system, B.6 represents a set of linear equations for

different components of the derivative:

AX = B (B.8)

A =



∫
Ω

(x1 − ri,1)
∂W(x− ri)

∂x1

dx

∫
Ω

(x1 − ri,1)
∂W(x− ri)

∂x2

dx

∫
Ω

(x1 − ri,1)
∂W(x− ri)

∂x3

dx

∫
Ω

(x2 − ri,2)
∂W(x− ri)

∂x1

dx

∫
Ω

(x2 − ri,2)
∂W(x− ri)

∂x2

dx

∫
Ω

(x2 − ri,2)
∂W(x− ri)

∂x3

dx

∫
Ω

(x3 − ri,3)
∂W(x− ri)

∂x1

dx

∫
Ω

(x3 − ri,3)
∂W(x− ri)

∂x2

dx

∫
Ω

(x3 − ri,3)
∂W(x− ri)

∂x3

dx


(B.9)

X =



∂φ(ri)
∂x1

∂φ(ri)
∂x2

∂φ(ri)
∂x3


, B =



∫
Ω

[φ(x)− φ(ri)]
∂W(x− ri)

∂x1

dx

∫
Ω

[φ(x)− φ(ri)]
∂W(x− ri)

∂x2

dx

∫
Ω

[φ(x)− φ(ri)]
∂W(x− ri)

∂x3

dx


(B.10)

In practice, the matrix inversion is done only once and the solution is

explicitly derived. Similarly, higher-order derivatives can be achieved by

replacing the kernel with its high-order derivatives in equation B.2 and

following the same procedure. In our formulations, however, we do not need

such expressions.

So far, we have shown how to reconstruct a particle property from the back-

ground fluid field. For the reverse operation, i.e., projecting the particles in-

formation on the Eulerian field, the procedure is essentially similar. We start

with a Taylor expansion of a particle quantity φ about an arbitrary Eulerian

position φ(xj):

φ(x) = φ(xj) +
∑
m

[
(x− xj)

∂φ(xi)

∂xm

]
+ ... (B.11)

49



We multiply both sides by a symmetric kernel function centered at the position

of the selected Eulerian point, W(x − xj), and integrate over Ω. V total
p =

⋃Np
i=1 Vi. By neglecting all the derivative terms we have:

φ(xj) =

∫
Ω
φ(x)W(x− xj)dx∫
Ω
W(x− xj)dx

(B.12)

Given that Ω = Ωf ∪ V total
p where V total

p =
⋃Np
i=1 Vi, B.12 expands as:

φ(xj) =

∫
Ωf

φ(x)W(x− xj)dx+
∫
V total
p

φ(x)W(x− xj)dx∫
Ω
W(x− xj)dx

(B.13)

Given that any particle variable is constant over the respective particle domain

and is zero over the fluid domain, B.13 can be transformed to:

φ(xj) =

Np∑
i=1

φ(ri)W(ri − xj)Vp,i∫
Ω
W(x− xj)dx

(B.14)

Although not required in our formulations, all the derivatives of a particle

property at an Eulerian position can also be achieved in a similar fashion.

C Grid and kernel size refinement analysis in DEM-CFD simula-

tions

We choose a range of 0.5 ≤ ∆x−1 ≤ 3 to investigate the impact of grid

resolution on computed solutions. We denote δsup = 2δ0.5 as the kernel support

size. In our grid-refinement analysis, we set δsup = 2, while the influence of δsup

50



on the predicted solution is subsequently investigated. For the sake of brevity,

we limit our analysis only to one set of parameters: Rein = 6, ρr = 10.

We study the sensitivity of particle fluctuations to grid resolution in DEM-

CFD simulations in Fig. B.1. As a first remark, the successive grid refinement

enhances the level of particles fluctuations in both axial and transverse direc-

tions up to one grid cell per diameter. We see a non-negligible improvement

of the predicted solution by using a GK method and a more refined grid

size. These improvements are particularly noticeable in the transverse direc-

tion, where particles motion is mostly driven by fluid fluctuations rather than

mean flow. Solutions predicted by GK-1 to GK-3 are almost insensitive to grid
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Figure B.1. Grid refinement analysis for DEM-CFD simulations. Evolution of (a)
axial and (b) transverse granular temperature as a function of time in the liquid/solid
regime.
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Figure B.2. Kernel support size refinement analysis for DEM-CFD simulations. Evo-
lution of (a) axial and (b) transverse granular temperature as a function of time in
the liquid/solid regime.
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resolution. This was predictable since DEM-CFD simulations are intrinsically

controlled by the averaging operation. When the BC method is adopted, the

grid refinement implicitly influences the local averaging length scale and in

turn the level of fluctuations. With the GK method, however, the local aver-

aging is decoupled from the grid size thanks to a smooth filtering kernel and

its length scale is hence adjusted by the kernel support.

Finally, we study the impact of the kernel support size δsup on the predicted so-

lution. We choose the case with 2 grid points per diameter, GK-2, and perform

different simulations for a range of kernel support sizes. A kernel support size

of less than two diameters is not acceptable since it violates the basic principle

of locally averaged Navier-Stokes equations on which our model is based: the

local averaging volume should be about an order of magnitude larger than the

particle diameter. The upper bound is also limited by the transverse domain

size which is 8 diameters. We hence choose 2 ≤ δsup ≤ 4 as a reasonable range

for the kernel support size analysis. Fig. B.2 show how kernel size influences

particles granular temperature in both axial and transverse directions. With

an increasing kernel size, we further suppress local fluid fluctuations and in

turn drag force agitations. As a result, particles granular temperature dimin-

ishes as kernel size increases. As a general trend, employing a large kernel

support with the GK method seems to provide similar results to those pro-

vided by the BC method and large grid sizes. In other words, refining the

grid size and filtering it at the projection step is redundant from a modeling

standpoint. We hence choose a kernel support with δsup = 2 for the rest of our

analysis.
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