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Résumé — Investigation numérique des instabilités hydrodynamiques de risers chantants —
Le transport offshore de gaz utilise souvent des conduites flexibles. Elles sont fabriquées en enroulant en
hélice un ruban d’acier ; au contact bord à bord des tours d’hélice, une cavité apparaît. Le gaz s’écoule en
conduite et rencontre cette cavité à intervalles réguliers, toujours avec la même forme. Dans certaines
conditions d’usage, des vibrations acoustiques de grandes amplitudes apparaissent. En effet, devant
chaque cavité, il y a une couche de cisaillement où une instabilité de type Kelvin-Helmholtz apparaît.
L’écoulement rencontre un très grand nombre de fois la cavité sur son chemin et une question se pose :
existe-t-il un écoulement stabilisé ?
Les résultats des simulations des grandes échelles de la turbulence sont présentés en référence mais elles
sont extrêmement coûteuses. Cela justifie le développement de solutions numériques de l’équation d’Orr-
Sommerfeld pour analyser les longueurs d’onde spatiales et temporelles générées par la couche de
mélange qui siègent devant les cavités.
Tout d’abord, nous introduisons la problématique des conduites flexibles et l’analyse de quelques
modèles RANS et LES. En second lieu, une étude bibliographique décrit l’état de l’art au sujet des
vibrations induites par cavité. Troisièmement, nous établissons l’équation d’Orr-Somerfeld et posons le
problème que nous voulons résoudre en termes de discrétisations numériques de valeurs propres
généralisées basées sur des schémas aux différences finies d’ordre 4. Le choix des valeurs propres
significatives parmi toutes celles fournies par la solution discrète est alors une difficulté sérieuse que nous
avons résolue.

Abstract — Numerical Investigation of Hydrodynamic Instabilities in Singing Risers — Offshore
transportation of gaseous fluids frequently relies on flexible pipes. Flexible pipes are obtained from the
helicoidal rolling of steel tape which induces a geometrical cavity from edge to edge. Along the pipe, the
gas infinitely encounters the edge to edge cavity of the same shape at regular interval. In some service
conditions, acoustic vibrations of huge amplitude can arise. Indeed, in front of each cavity, there is a
shear layer where Kelvin-Helmholtz instability can occur. The flow encounters a large number of cavities
on its path which gives rise to a new specific problem: is there a stabilized flow?
Results of large eddy scale simulations are presented as a reference but they are very costly. This gives
reason to develop a numerical solution of the Orr-Sommerfeld equation in order to analyze the temporal
and spatial wave lengths generated by the shear layers in front of the cavities. 
First, we introduce the problem of flexible risers and the analysis of some RANS and LES modeling.
Second, a bibliographical study describes the state of the art about vibrations induced by cavity. Third,
we state the Orr-Sommerfeld equation and set the problem we want to solve in terms of generalized eigen
values Numerical discretizations are based on finite difference approaches of fourth orders. The choice
of the relevant eigen values among all those provided by the solutions of the numerical problem is the
main difficulty to be tackled.
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INTRODUCTION

This study is related to flexible risers used in offshore gas
transport. They are used to link parts that are rigidly fixed to
the seabed with other parts which are subjected to sea and
wind fluctuations. Their typical length is about one kilometre.

In some service conditions in which the fluid is a dry gas,
acoustic vibrations have been observed. Such a phenomenon
has never been observed when the fluid is a liquid. Acoustic
vibrations induce a large increase of the pressure losses which
can significantly obstruct the mass flow. It has been conjectured
that the periodically repeated cavities of the flexible pipe wall
are to blame.

Pipe flexibility comes from the spiralling of the innermost
steel tape. Flexible risers are made of several layers rolled in
a complex manner. An internal steel layer holds the tube in
case of internal pressure drop.

From now on, we consider only the internal layer (see
Fig. 1) in contact with the fluid. This layer is not waterproof.
That is why it is wrapped in a plastic sheet. When pressure is
set, the plastic sheet is inflated and the metallic layer is
assumed to be free of its movements and constrains both
sides by static pressure.

As gas flows in the pipe, it encounters a joint located from
edge to edge with a mixing layer observed in front of the
joint, which is called the cavity. The cavity is indefinitely
repeated with approximately the same shape all along the
tube wall. The clip length is 1 to 2 cm, so that the number of
clips per kilometer of riser is one hundred thousand, that is to
say close to infinity.

The behaviour of the mixing layer changes from one clip
to the following clip since the flow is repeatedly perturbed all
along the axis by the cavities. The question we ask therefore
is does a stabilized flow exist or not?

1 DESCRIPTION OF THE CONFIGURATION

We describe hereafter a typical configuration; flowing fluid
is natural gas which can be considered as pure methane.
At 170 bar, the density and cinematic viscosity of methane

are ρ = 150 kg/m3 and μ = 2.10-5 kg/ms. In service, the
velocity ranges in [0, 25] m/s.

The inner diameter of the riser ranges from 3 to 20 inches.
In service configuration, the Reynolds number is no less than
10 million. The sound velocity is assessed at 410 m/s, so that
in the range of these parameters the Mach number remains
less than 0.05. The temperature is assumed to be 20°C.

The characteristics of this problem are a very high Reynolds
number, a very low Mach and an infinite repetition of the
clips. Thus, it is a new problem with respect to the number of
cavities encountered.

For a 3-inch diameter tube on which we now focus, the
average length of a clip is L = 15.5 mm (see Fig. 1) and that
of the cavity mouth is L/2. With the depth of the cavity, the
shape ratio (L/2)/h is close to one. However, considering the
helix roll of the wall, the transverse extension of the cavity is
close to infinity. The shape of the cavity is not rectangular
but rather a horn-shape with only 2 sides.

1.1 Remarks

Remark 1
A plastic internal liner loses its plasticity with very low tem-
peratures in case of cryogenic gas transport. A solution con-
sists of removing the plastic liner and in using an internal
catenary flexible pipe made of metallic bellows to withstand
the very low temperature and to provide flexibility. Such cor-
rugated pipes (see Brac [4]) are waterproof because of the
metallic continuity of the catenary. Therefore, the corru-
gated pipe is very different from the spiralling pipe which is
not waterproof and needs an outer plastic liner. Static pressure
is applied only on the internal side of corrugated hoses but on
both sides of spiralling risers.

Consequently, the eigen modes of the structure are different
for corrugated and spiralling pipes. The results for one are
not right for the other.
Remark 2
Many experiments have been made with methane flowing
in a spiralling 3-inch diameter pipe, typically at 25 bar at

Fluid

Figure 1

Set of 11 helicoidal turns showing the cavities and sketch of the clip of the innermost steel layer.

ogst110127_Brac  21/09/12  10:35  Page 672



J Brac et al. / Numerical Investigation of Hydrodynamic Instabilities in Singing Risers 673

atmospheric temperature. The test of the pipe under consider-
ation consists in comparing the results with those of 2 other
kinds of pipes of the same diameter: a smooth metallic cylin-
drical pipe, a PVC spiralling pipe. Some resonances corre-
spond to the expected radial modes (~ 6 500 Hz) and exist
with all the 3 types of tubes. Others also appear for the 3 types
of pipes in the interval [2 500-4 500] Hz, in which case we
conclude that they are due to a device outside the pipe.
Nevertheless, we observe at f = 1 300 Hz, a typical resonance
with only the spiralling pipe. This resonance has been
observed during sweeps of increasing and decreasing flow
velocity, with pipe in one sense and also in the opposite sense.
Consequently, the riser under consideration has been observed
as a singing riser.

1.2 Outline

The material is organized as follows:
– in Section 2, a bibliographical study describes the state of

the art about vibrations induced by cavities. They could be
generated by flows of various Reynolds and Mach
numbers;

– in Section 3, we set the problem of flexible risers and discuss
some results obtained by RANS and LES modeling. We
develop a methodology to build a relevant mesh for LES
modeling and to analyze the results of this numerical
approach. This analysis also presents eigen modes of the
structure;

– in Section 4, we focus on the instability developed at the
entrance of the cavity by means of the Orr-Sommerfeld
equation. We set the problem we want to solve in terms of
generalized eigen value problems. Numerical features are
developed through finite elements and finite difference
approaches of various orders. The choice of the relevant
eigen values among all the eigen value solutions of our
numerical problem is a difficulty that we had to face.
Particular care is devoted to comparison with results

available in the literature. Finally, an original enhancement is
obtained by enlightening the results obtained by LES modeling
by means of the Orr-Sommerfeld equation solutions.

2 LITERATURE SUMMARY OF INSTABILITIES
ON CAVITY

In his classical theory for flow instability, Rayleigh [43] first
developed a general linear stability theory for inviscid
parallel shear flows, and showed that a necessary condition
for instability is that the velocity profile has a point of
inflection. Later, Tollmien [52] succeeded in showing that
Rayleigh’s criterion also constitutes a sufficient condition for
the amplification of disturbances for velocity distributions of
the symmetrical type or of the boundary-layer type.

Lin [33] pointed out the dual roles of viscosity: small
viscosities have essentially a destabilizing effect while an
increase of Re improves stability. In high viscosity (low Re)
flow, viscosity dissipates energy at a level which stabilizes.

To sum up, it is now well-known that the presence of an
inflection point on the velocity profile of an inviscid flow is a
sufficient and necessary condition for hydrodynamic instability,
but the role played by viscosity is complex and remains
partially unknown. The acoustic wave generated by the
instability is currently called Tollmien-Schlichting wave.

When a flow passes in front of a cavity, a shear layer
appears and an inflexion point has to be present in the velocity
profile because there is a main eddy with reverse velocity
inside the cavity. This shear layer is the virtual interface of
separation between the main flow and the flow locked in the
cavity. Michalke [35-37] considered the thickness of the
shear layer by means of a th-velocity profile and later Tam
and Block [50] and Larcheveque et al. [24-25] took into
account a momentum thickness.

Going deeper into fluid flowing in front of a cavity, we
distinguish three kinds of phenomena both linked with the
pressure:
– convection phenomena such as eddies moving at the flow

velocity; these make the vorticity field crowded; they rep-
resent a field force moving on the flow and able to impact
on the downstream part of the wall of the cavity. Besides,
the solid structure which encloses the flow, has its own
eigen frequencies. Consequently, a tonal phenomenon
generated inside a flow, can stimulate an eigen vibration
of the structure and awaken it. Generally speaking, it is
not easy to know if the causality is included in a convec-
tion phenomenon or in an acoustic phenomenon as soon
as the structure itself radiates acoustic waves in the fluid
acting as added mass. This phenomenon is classified as
fluid-structure interaction;

– acoustic waves which are pressure waves (compression
and dilatation) travelling at the sound velocity (remember
that shear waves cannot exist in a fluid) [18, 20]. The
acoustic phenomenon is then due to the geometry of the
cavity where an acoustic resonance takes place. A comb
of modes can be determined. Tam and Block [50]
indicates M = 0.2 as an upper limit for such phenomenon.
Larcheveque et al. [24] refer to this class of phenomena as
fluid-resonant. (see also Ricot’s thesis [44]);

– acoustic radiation can also be linked to the shear inside
vortices; the frequencies they can radiate during convection
depend on the scale of the vortices. They can impact the
wall, somewhere on the downstream part of the cavity and
a much stronger and tonal acoustic emission can then
occur. Rossiter [47] considers an acoustic feedback which
perturbs the upstream entrance of the cavity. This
perturbation plays the role of a conductor to synchronize
the traffic on the shear layer and clamps an auto-oscillation
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at a tonal frequency depending on the main flow.
Larcheveque et al. [24-25] carefully develop this
mechanism which takes place when M > 0.2 and classify
this kind of phenomena as fluid-dynamic.
It can be noted that instabilities always enrich the vorticity

field but the existence of an acoustic radiation depends on the
energy of the vortices which is difficult to forecast. This
contribution is opposite to the downstairs Kolmogorov’s
scales which say that “for a given scale, vortices only provide
energy to vortices of immediately smaller scales”. Indeed, in
case of instability, vortices enlarge their own scale and
reinforce their energy content along the shear layer. 

In terms of modeling, convection phenomena can be
pointed out by means of an incompressible formulation if
Mach < 0.15 (flow not altered by acoustic radiation) even if
acoustic radiation phenomena themselves can only be
modelled by means of a compressible formulation (flow
altered by acoustic radiation). 

Elegant approaches using the Lighthill [29-31] equation
have been studied. The main idea is to locate the acoustic
point sources in an incompressible model and assess their
energy level by means of the Lighthill tensor and in a next
step, compute Green’s functions of their far field radiation.
Ffowcs Williams and Hawkings [14], Powell [41] and Howe
[19] adopt similar approaches using the Lighthill tensor.

2.1 Flow Dynamic Considerations

Rossiter [47] provides the Strouhal number of the auto
oscillation of the shear layer (see Fig. 2).

The oscillation includes respectively a convection go and
an acoustic back such that period T and Strouhal number St
are formulated as:

(1)T
f

L

U

L

c U
St

fL

U

n

Mc

= = +
−

= =
−
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1
      

α
κ

L Cavity length c Sound velocity

U∞ Velocity far from the cavity Mach of the flow

Uc Convection velocity (κ = 0.57)

n Number of eddies simultaneously on the shear layer

α Time delay between eddy impact and beginning of acoustic radiation

Rossiter takes into account flows with Mach numbers
greater than 0.4 (if M < 0.4, the acoustic back travel is close
to negligible). It can be noticed that only the length of the
cavity influences the period. Thus, the tonal frequency of the
unstable flow in front of the cavity can be expressed in terms
of an empirical correction with two empirical coefficients α
and κ.

Bilanin and Covert [7] propose a calculation of the
coefficients α and κ. The mixing layer is considered as a
vorticity line excited at the upstream corner. Therefore, its
fluctuations mean that the cavity has been filled in and emptied
half a period later. This in and out phenomena is considered to
be the source of the acoustic radiation. Bilanin and Covert’s
formula is globally the same as Rossiter’s formula but free of
empirical parameters; in particular, it is more accurate at
lower Mach.

Tam and Block [50] have enhanced the Bilanin and
Covert’s formula accounting for the cavity depth h as well as
the thickness θ of the momentum layer which is not yet
considered as just a vorticity sheet.

The mixing layer is subject to oscillations and impacts the
downstream corner at full strength if in a low position (see
Fig. 3); in such a case, an acoustic radiation can occur. When
the mixing layer is in a high position (see Fig. 3) [17], it
has a weak impact on the corner and no acoustic radiation is
emitted.

κ =
∞

U

U
c

M
U

c
= ∞

Shear layer

Cavity

Figure 2

Mixing layer in front of a cavity according to [47]. Acoustic
back from down stream corner is drawn in red wave fronts.

Compression
wave front

B B

Figure 3

From [50], on the left, the mixing layer dives into the cavity
and hits the wall at full strength. On the right, above the
down stream, the vortices do not impact on the wall.
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They state that the ratios L/h and L/θ play an important
rule for the acoustic radiation. When M ≥ 0.2, the Tam and
Block formulation is relevant. For smaller M, the relationship
to assess the Strouhal number seems to be very different from
those for greater M. Their results are no longer correlated with
the experimental results; the underlying phenomena are not
the same if M is smaller or greater than 0.2. When M ≤ 0.1, the
acoustic resonance inside the cavity volume is a preferential
mode. This filling/ejection mechanism is also described by
Gharib and Roshko [15] as a wake mode.

Moreover, some authors such as Karamcheti [22] stress
the major influence of the state of the incoming boundary
layer on the level of the mixing layer fluctuation. Larcheveque
et al. [24] more recently acknowledge this important remark
and point out a higher level of momentum growth rate at the
entrance of the cavity.

Plumbee et al. [40] suggests that the tonal noise comes
from the turbulence and the structure initiates the resonance
by taking its energy from a small part of the large spectrum
of the turbulence. It is now widely admitted that this is
impossible.

In conclusion, in case of flow on cavity, three kinds of
phenomena have been classified: flow-structure, flow-resonant
and flow-dynamic. Literature indicates that flow-resonant
coupling is not very probable if M < 0.15. However, the mixing
layer can provide a rich vorticity field which can generate
flow-structure or flow-resonant coupling in case of low Mach.

Some interesting summaries of flow on cavity are to be
found in Larcheveque et al. [24], Peters [39], Powell [41] and
Leonard [27] for vortex methods. 

2.2 Analysis Tools

A set of widely used tools for instability analysis, includes:
– momentum and vorticity thickness of the shear layer of

the average flow, Sarohia [48];
– pressure spectra of points chosen inside the shear layer of

the average flow;
– correlations and spectra of the shear layer extracted from

LES, Larcheveque et al. [24];
– Schlieren visualizations of convective and acoustic

phenomena;
– coherent structures displayed by means of the Q and λ2

criteria, Brac et al. [3], Jeong and Hussain [21];
– analysis of the velocity and Reynolds stress profiles of

RANS and LES modeling, Larcheveque et al. [24];
– phase analysis and measurement (correlation between

different space locations), Sarohia [48] and Larcheveque
et al. [24].
By means of the momentum thickness, a growth of the

mixing layer can be pointed out; the frequencies and their
harmonics can be found in the pressure spectra at a set of
locations in the shear layer.

Schlieren is very expressive in terms of wave front and
vortex object.

Horizontal and vertical velocity component profiles point
out the inflow/outflow process in the cavity mentioned
previously.

Q and λ2 criteria provide the contouring of the coherent
structures and allow their trajectories and their impact on the
downstream corner of the cavity to be followed.

The contribution of the LES modeling to enlighten the
instability phenomena due to the cavity is definitively stated
in [21].

Note also in [24] the calculation of the spectra by means
of Burg’s parametric estimator based on a maximum entropy
method. This method aims to decrease the small values by
smoothing the noise, increasing the peaks and enhancing
their resolution in the case of short-time samples.

2.3 Contribution of the Orr-Sommerfeld Equation

The instability in the shear layer in front of a cavity is linear
at the beginning (see [51, 52], Sect. 1 of Drazin and Reid [13]
and Lesieur [28]) and then becomes non-linear when the
mixing sheet rolls on itself. The Orr-Sommerfeld equation
models such instability and is obtained by introducing a
perturbed velocity profile in the Navier-Stokes equation and
then, by simplifying the terms at the first order of the
perturbation (details described in Annex):

(2)

In the case of inviscid gas, the equation is also known as
Rayleigh’s equation, a simpler one since the second member
becomes zero:

(3)

2.3.1 Michalke’s Previous Works 

Michalke solves Rayleigh’s equation and his results are
written in his three papers [35-37].

He considers an inviscid fluid; the th-type velocity profile is
unlimited and provides an inflexion point in the perpendicular
direction to the main stream:
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λ=LReL
–1/2 and Kolmogorov scale 

(vr is the rotation speed of the vortex).

On pipe axis, k = 1.6 m2/s2 and ε = 0 m2/s3; the largest
values are located in the cavity vicinity k = 5 m2/s2 and
ε = 20 000 m2/s3. The variation intervals of the scales are
6 · 10–4 < L < 3 · 10–2, 5 · 10–5 < λ < 6 · 10–4, 3 · 10–6 < η < 10–5

in meters.

The mesh is built so that the cell size is everywhere smaller
then L/2 (at least, 2 cells per wave length locally equal to L)
and in the vicinity of the cavity, we endeavour to make cell
sizes of Taylor scale size. We remark that the strongest
constraint comes from the boundary layer since 1y+ = 2μm,
that is to say, less that the Kolmogorov scale (see [26, 45, 49]).
Consequently, we get about one hundred cells along the
mixing layer. RANS modeling is rerun using this new mesh
until it satisfies all these specifications. Then LES modeling
can be undertaken with the resulting mesh (see Fig. 4).

In order to stabilize turbulence of the flow, the velocity
field of the output section is sequentially set at the input
section, so that input and output velocity fields are identical
when converging. 

Since a geometry pattern is identically repeated in the z
direction, the pressure is periodic in the sense that the
pressure drop inside a pattern of length L including an integer
number of cavities is such that: 
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3 NUMERICAL MODELING

LES simulations have been carried out in several works to
analyze the pressure, velocity and vorticity fields around the
cavity. Care has to be taken for the meshing (see [3]); first of
all, we therefore explain our methodology for LES meshing.
Then, we investigate the possibility of fluid-resonant coupling
due to the geometry of the cavity. Thirdly, RANS and LES
modeling are analyzed with particular focus on the vorticity
field and on the shear layer momentum thickness. Finally, the
structural point of view is detailed.

3.1 Discretization of the Model

A coarse mesh is made and then RANS modeling is carried
out in order to map k and ε values. Then, the maps of
turbulence scales are managed; we deduce an interval of

scale variations for integral scale , Taylor scaleL
k

=
3 2/

ε

Rayleigh’s equation depending on two complex numbers α
and β and a complex function Φ becomes (see [43]):

with Φ(+∞) = –α and Φ(– ∞) = +α.

2.3.2 The case of Temporal Perturbation

Michalke changes variable and uses the result of Tatsumi and

Gotoh [51] stating that . It leads to:

with Φ(–1) = +α and Φ(1) = –α.

Separating real and imaginary components, the system of
equations becomes a system of coupled Ricatti equations:

(5)

Michalke gives the eigen shapes of Φr(z) and Φi(z) and

the values.

The max value of αci(α) corresponds to the temporal
frequency the most probably able to live in the system and
Michalke provides [αci(α)]max = 0.2067.

2.4 Conclusions

Many papers have considered flow on cavity for almost a
century. The cavity has different shape ratios but there is
nothing about a cavity infinitely repeated in the stream
direction. The flow dynamic coupling is the most studied for
flow with M > 0.2 and high Reynolds number; many tools
are described and their accuracy and efficiency are pointed
out to analyze the compressible Navier-Stokes solutions of
both RANS and LES modeling.

The literature also suggests that our configuration is
beyond the scope of fluid-dynamic coupling since M~0.05.
The high value of the Reynolds number has no influence on
the kind of coupling. A fluid-structure coupling is considered
possible and the eventuality of a fluid-resonant coupling is still
open; our configuration which is based on the repetition of
the cavity, has so far never been investigated in the literature.
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Density is constant and Δp is assumed to be a constant
value, in stabilized flow, that is to say a large number of
cavities have been encountered. Thus, the local pressure
gradient is:

(7)

and it can be broken down into two parts:

• is the linearly-varying component of the pressure, 

• the gradient of a periodic component ∇p~(z) where p~(z) is
the periodic pressure field.
The periodic pressure is the pressure left over after

subtracting out the linearly-varying pressure. The linearly-
varying component of the pressure results in a force acting on
the fluid in the momentum equations. Because the value of β
is not known a priori, we iterate until the specified mass flow
rate (imposed through the averaged velocity) is achieved in
the computational model.

The periodic pressure field of the input section is set at the
output section in order to also make the residual pressure
field periodic. The model is therefore assumed to mimic a
domain of infinite length. Such periodicity is only possible if
the model includes an integer number of helix turns in order
to have exactly the same meshing on the input and the output
sections.

In conclusion, the mesh for the LES model is sensitive and
we propose a method to build such a mesh. Starting from a
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coarse RANS modeling mesh, we evaluate the turbulence
wave length and fit each cell to be locally twice smaller than the
integral scale. Iteratively, we converge to an LES appropriate
meshing. Moreover, with such periodic boundary conditions,
the problem is well-posed.

3.2 Helmholtz-Type Tube Resonance

We consider 2 types of acoustic resonance induced by the
geometry of the tube: longitudinal and radial modes. The
question under interest is (see [42]): does helix cavity alter
theses modes or not? Has it an own eigen mode? (see [2] for
acoustic in general [5, 6, 8-12]). Moreover, we focus on the
interval I1 = [100, 3 000] Hz which included the frequency
1 300 Hz where a resonance has been experimentally
observed (pipe of 3’ diameter).

Longitudinal modes: one turn of helix has a given length L
and the numerical model consists of n turns. Frequencies
depending on the average velocity u– and equal to f = u–/(nL)
would be present in the solution. They depend on the length of
the model and have been identified in the spectrum. For one
turn, we have (15 m/s, 1050 Hz), (20 m/s, 1400 Hz), (25 m/s,
1745 Hz). When the model includes n turns, these frequencies
are divided by n. Seven turns are needed to have L > D and the
basic frequency is then 155 Hz at 15 m/s. The basic frequency
tends to zero when the tube length becomes large. These
longitudinal modes and their harmonics are present in the n
turn mathematical model but they cannot be observed in
experimentation with tube of different and greater lengths.
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Figure 4

Integral, Taylor and Kolmogorov scales through a radius ending at the bottom of the cavity (red dotted line). The variation interval is
indicated for each scale.
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The longitudinal acoustic mode is 28 621 Hz for one turn.
Therefore, the longitudinal acoustic modes are out of scope.

Radial modes: the radial modes are given by:

where χnm represents the mth zero of the derivative of the
Bessel function of order n; namely, χ11 = 1.84.

For a three-inch diameter riser, the first radial acoustic
mode f r

11 = 3150 Hz is greater than 3 000 Hz and does not
depend on the number of turns (see Fig. 5). Accurate studies of
the Helmholtz-type resonance of the tube with and without the
cavities have been carried out using the Far Field Technologies
software. It states that the cylindrical radial modes are not
meaningfully altered by the presence of the helicoidal cavities.

Consequently, on the interval I1 under consideration, the
radial mode resonance is out of scope. The fluid-resonant mode
is excluded for interpreting phenomena whose frequencies
belong to I1.

3.3 RANS and LES Modeling

RANS and LES modeling are carried out using Fluent’s
solver. The sub-grid scale model is that of Smagorinsky-Lilly
(Cs = 0.1); a “bounded central differencing scheme” is used for
the momentum balance equation and a wall law avoids a very
fine mesh at the wall. Thus, boundary law is activated as long
as the thickness of the first cell at the wall ranges from 12 to

f
c

rn m
r nm
, =

χ
2π 

~300 y+ about (see [23] for more details about boundary
layer). Time step is dt = 5μs. Before having the stabilized flow
regime, we carry out as many steps as needed to pass through
at least 20 times the model length. This procedure is very
costly and with a model of 11 turns (35 million of hexahedral
cells), 2 weeks on 64 processors are necessary to get the
stabilized flow.

In Figure 6, LES and RANS velocity profiles are displayed
along a diametric line AB passing through a cavity. Numerous
fluctuations can be observed from one instant to another. LES
curves are snapshots frozen at successive times. The corre-
sponding RANS profile shows a coarser evolution of the
velocity; there is a close-up of the profile inside the cavity on
the right. Lots of inflexion points of the instantaneous curves
are averaged in the RANS profile and most of the nervous
inflexions disappear. One of them is maintained (see Fig. 6c)
at the entrance of the cavity. The reverse velocity is clearly vis-
ible inside the cavity; it points out a loop of fluid designed by
the cavity geometry.

3.4 Axial and Transverse Evolutions 
of the Vorticity Field

Figure 7 shows four snapshots of the oscillations of the
mixing layer in front of a cavity like the flapping of a sail in
the wind (4 snapshots of the radial derivative of the axial
component of the velocity). Figure 7 focuses on the upstream
corner where eddies rise.
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Figure 5

5 turns model on the left; quadratic pressure spectrum in a tube of 3’ diameter with 2 and 5 clips respectively. Note the radial mode at 3 153 Hz
and the strong first harmonic at 6 563 Hz.
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Figure 8 displays the eddies according to the λ2 criterion
as described in [3].

We observe the detachment of the eddies on the left, their
growth along the mixing layer and their impact against the
wall on the right. We also observe their lateral spreading
which is not disturbed since the transverse size of the cavity
is infinite.

The Helmholtz or vorticity equation is easily deduced
from the momentum balance NS equation; it is written as:

(8)

Both terms on the left side of the equation are the

convective derivative of the vorticity vector. The term

corresponds to a viscous dissipation while ω.∇u indicates a
spread of the vorticity lines in the transverse direction; it is
experimentally observed and Figure 9 illustrates this
evolution. That is why 2D turbulence modeling is not
relevant.

This snapshot shows the continuous mixing layer beneath
successive clips; a helicoidal component of the eddy trajectory

μ
ρ
Δu

∂
∂

∇ = ∇ + Δ
ω

ω ω
μ
ρt

u u u– . .

can be observed. The Kelvin Helmholtz instability generates
unsteady phenomena with poor continuity. What happens in
the cavity is very different from one cavity to another.

The Lighthill tensor mapping offers the location of the
acoustic sources but also the positions of the centers of high
and low pressure, depression and anticyclone. If Tij is the
Lighthill tensor, then the Lighthill equation is (see [29-31]): 

(9)

The following map shows the contouring of Tij at a given
instant in two radial sections. A traffic of two or three
vortices is displayed and illustrates the lateral variability of
the vorticity field. The blue-green area can emit acoustic
waves but the emission is low level and is not the basis of the
phenomena we observe in Figure 10.

3.5 Evolution of the Thickness of Shear Layer
Momentum Quantity

The thickness of momentum is defined by the means of the
following integral along the radial coordinate r from the axis
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Axial velocity component in m/s along the diameter A-B in m (for A, B locations, see Fig. 1). a) Many superimposed instantaneous velocity
profiles of LES modeling; b) same profile of RANS modeling; c) close-up in the neighborhood of B.

Figure 7

4 snapshots of the radial derivative of the axial velocity component in the vicinity of an upstream corner of cavity.
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of the tube to the bottom of the cavity where the axial
ordinate z is fixed:

(10)

θ0 is the value of the thickness when z << zA and z > zD.

Such calculation can be performed on maps of velocity
issues of RANS (as indicated in the literature summary) or
LES modeling. We present momentum thickness calculation
carried out on LES map of velocity; the section area has been
chosen in order to be located at a place where vorticity is
strong and phenomena well pronounced. In Figure 9, it is
clear that at certain locations, there is no inflexion point in
the velocity diametral line and consequently the momentum
thickness does not vary through the cavity mouth.

Along the radial lines of Figure 11 where U = 20 m/s, we
compute the values of thickness (corresponding velocity
profiles shown in Fig. 12a) and have plotted the dimensionless
momentum values in Figure 12b. The locations A, B, C and D
are plotted on the curve. The slope of the curve seems

θ z
u z r

U

u z r

U
dr

axis

wall
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⎞
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1 constant between B and C; it appears that the momentum
thickness is 0.0175 mm in the flow, increases to 0.45 mm
when passing through the cavity and goes back to 0.0175 mm
as soon as the cavity is passed. Consequently, a stabilized
flow exists when fluid-structure coupling is not taken into
account.

A slope of dθ/dz = 0.05 can be observed. Moreover, a
stronger slope seems to be present upstream of A and also
upstream of C, indicating a larger growth rate of the
momentum layer. Upstream of point A, this precursor is
linked with the cavities located before the considered cavity
although, upstream of C, the larger thickness could be
explained by the impact of the vortices on the wall.

In conclusion, we see a relevant level of momentum
exchange between the main stream and the mixing layer
since the shape ratio of the cavity is close to 1. However, the
duration of the exchange is short since the cavity is narrow
compared to the diameter.

Vorticity line

Spread of the vorticity line
Dissipation of the turbulent cinetic

energy molecular diffusion

Time

Figure 8

Snapshot of the vorticity field displayed by means of the λ2 algorithm; on the right, sketch of vortices evolution in the transverse direction to
the flow [3, 34].

Figure 9

Circumferential sections of static pressure displaying the
mixing layer and the lateral spreading of the vortices.

Figure 10

This snapshot represents two maps of radial section of Tij,
Lighthill tensor, extracted from LES modeling; blue and
green correspond to a low pressure area and red to high
pressure [19, 20, 29-31, 53].
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Several trials at other locations where vorticity is strong,
give similar results. For certain locations of line AB, there is
no inflexion in the velocity profiles. 

3.6 Structural Point of View

Finally, the eddies fed by the shear layer, impact the wall at
the downstream corner of each cavity. Eddies can be seen as
force field able to excite the solid structure made with the
steel tape as we can see in Figure 13 (deep blue spots) (see
[46] for vortex-body interaction).

The applied eddies load excites the shell made by the steel
tape wrapped around itself. According to the surface and the
frequency of the applied forces, the modal frequencies of the
structure may be requested for a structural motion, termed as
mode, when the eddies hit it. An eddy has to be a negative

pressure zone since the pressure gradient has to be opposed
to the centrifugal force to ensure the cyclostrophic equilibrium
[3]. Thus, a couple of forces is applied to the wall; it is linked
with a pair of local area of positive pressure (anticyclone)
and of negative pressure (vortex). Each couple is weak but
the spiral wall is submitted to the integral of the forces per
length unit and we count several tens of vortices per turn.

In the present study, the auto wrapped particularity of the
structure urged us into paying special attention to the
possibility of auto contact due to shell vibrations.

If the structure wants to develop a motion which is powered
by the fluid action, nothing (and even itself) must constrain
its motion in the obtained mode [1, 16].

To obtain the equations ruling the vibration theory of
plate, one must find the harmonic motion which can solve the
equations of equilibrium including the acceleration terms.
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Figure 11

Set of radial lines in the vicinity of a cavity.
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Figure 12

Partial views of LES velocity profiles before, through and after a cavity; dimensionless momentum thickness θ/θ0 with respect to the
dimensionless axial coordinate in z/θ0 computed using these profiles. Points A, B, C and D are indicated in the previous figure.
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In the case of a 3’-diameter tube, the first interval of
frequencies is I1 = [1 100, 1 450] Hz and the second one is
I2 = [3 050, 3 300] Hz. The first interval is linked to a mode
which is a two-lobe pattern mode and the second is described
by a three-lobe pattern mode. We focus our analysis on
interval I1 and on this specific mode which is depicted in
Figure 14.

Several clip geometries have been studied. The modes
depend on the thickness of the iron wall.

3.6.1 Frequency Content of the Mixing Layer

We intensively study a 3 turns model for three averaged
velocities 15, 20, 25 m/s.

Figure 15 displays the static pressure field (u– = 15 m/s)
along an axial line parallel to the tube axis, located 1 mm
below the cylindrical wall and passing in front of 3 succes-
sive cavities. The slope of the event points out a convective
velocity of u–wall = 9.2 m/s averaged on the line.

We deduce the frequency of the vortices on the shear
layer:

The pressure signal is fairly rough and what happens in one
cavity is different to what happens in other cavities at the
same time but also in the same cavity at different times.
Without coupling fluid and structure, events are not well
marked. However, we can observe three simultaneous
vortices in the central cavity around 7 ms. 

We also consider a frequency linked to the model length:

f
u

Lmodel
model

 
 Hz1 698= =

f
u

Lcavity
wall

cavity
 

  Hz1 1 285= =

Static pressure (Pa)

Figure 13

Pressure field at the wall on downstream side with flow at
mean velocity at 15 m/s. Negative pressure in blue (vortex)
and positive pressure in red (anticyclone) with respect to the
reference pressure. Pressure ranges from –103 to +1.5 × 103 Pa.

Figure 14

Views of 2 physical modes, obtained with Abaqus software.
On the first row, a compatible mode; on the second row, an
unphysical mode.

Notice the large magnification of the displacements.

The usual problem ends in an eigen value problem where,
M being the mass matrix and K the rigidity matrix, the eigen
value problem can be formulated as:

(–ω2M + K) ϕ = 0

where ω is the eigen frequency linked to the eigen vector ϕ;
the dimension of M and K matrices corresponds to the
number of degrees of freedom of the finite element model.

The resolution made thanks to the FEM analysis software,
ABAQUS, makes the modes free of constraints. But as was
previously noticed, there are forbidden displacements which
make penetration of material physically impossible. We filter
by hand the free modes in order to avoid the penetration of
the turns and keep the modes whose amplitude remains
compatible with the geometry. Only a few numbers of modes
result from this filtering.

One of the eigen modes of the flexible hose with large
exaggeration of the amplitude is shown in Figure 14. All the
realistic eigen modes assumed no overlapping of the turns
between them; indeed, we know that the vibrations do not
break the structure and consequently that overlap of the turns
does not really exist. Such an unrealistic and rejected mode is
also displayed in Figure 14.

The number of physical modes depends on the number of
turns included in the model. In the real case, the pipe length
can be seen as infinite. Since we did not use periodical
boundary conditions with ABAQUS FEM, we ran the analy-
sis for several turns of the helix structure. The modal analysis
delivers the modal trend for 3, 5, 7 and 11 turns of the steel
roll. This parameter study shows a fast converging frequency
interval in terms of turn for each mode.
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This frequency is spurious since it tends to zero when the
model length tends to infinity. This frequency cannot be
observed in service.

The results of the study with the three velocities u
–

are
gathered in Table 1 where velocities and frequencies are
taken into account with respect to the model length and the
cavity length. The difficulty is to assess the average velocity
in the shear layer. We present results of the average velocity
of an axial line. Indeed, shear layer is volumetric and
deviates somewhat from just an axial line which cannot
represent its whole behavior.

TABLE 1

Velocity and frequency in the whole model and on the axial line located
at 1mm of the wall

u
–

(flow) fmod el 1 u
–

wall (axial line) fcavity 1

m/s Hz m/s Hz

15 698 9.2 1 285

20 930 12.2 1 703

25 1 163 15.5 2 164

Traffic (see Fig. 11) with one, two or three vortex exists
and the scoop of this axial line is a very partial view of the
volumetric vortices traffic on the shear layer (see Fig. 8).
Animation shows numerous vortices on travel. Moreover, a
certain amount of vorticity goes from the output of a cavity

to the entrance of the next one in the stabilized flow. The
momentum thickness quantifies such an amount.

For three service velocities, Figure 16 displays the frequency
content (co-ordinate in Hz) and their magnitude (colors)
through the cavity (ordinate in mm). Frequency increases
with the velocity as can be observed for different groups of
information that can be followed from one case to another.

The slope of the pressure events is regular from one
velocity to another and indicates a constant velocity of the
vortices along the mixing layer. The continuous red line of
Figure 16 suggests a Strouhal St = 2. There is little activity of
the shear layer.

The red dashed line corresponds to the frequencies due to
the model length. They are spurious and tend to zero if the
model length increases. That indicates St = 0.7 for a three-
turns model.

Spectral analysis of the temporal content of an axial line
extracted from LES modeling provides frequency of the
cavity activity. These frequencies are not very present locally
and in the numerical model, perturbed by the spurious
frequencies due to the model length. However, numerous
spots of impact exist all along the downstream edge of the
helix cavity. Regarding the interval of eigen frequencies of the
structure, u

–
= 15 m/s generates frequencies in I1; u

–
= 20 m/s is

at the boundary of this interval and u
–

= 25 m/s is outside.
The mixing layer is the area where these eddies live and

their own spatial and temporal characteristics are difficult to
quantify. Frequencies are able to excite the structure until
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Figure 15

Static pressure records in a three turn model. AA-BB segment is at a cavity mouth. Blue corresponds to depression and red to anticyclone.
Average velocity 9.2 m/s along line AA-BB.
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20 m/s and for greater flow velocity, the hydrodynamic
excitation has no effect on structure.

Moreover, the cost of the incompressible LES modeling is
very high and requires many processors on a cluster during a
long period (typically 64 processors for a week for a three-
turn model). This modeling shows the activity of the cavity
shear layer. It is locally weak and frequencies able to excite
the structure exist for 15 m/s < u < 20 m/s; for 25 m/s,
hydrodynamic excitation would have no effect on structure.

4 RESOLUTION OF THE ORR-SOMMERFELD
EQUATION

The Orr-Sommerfeld equation represents the phenomenology
of a shear layer submitted to a perturbed velocity field at the
first order. It seems interesting to use it in order to set an
eigen value problem characterizing the stabilized flow in a
flexible riser. First of all, we performed Michalke calculations
using our own method. Then, beyond Michalke previous
works, we set an eigen value problem and solved it.

4.1 New Calculations: Resolution by Dichotomy

We revisited the Michalke problem using our own numerical
methodology since Michalke’s numerical method is not

detailed in his papers. We do not directly solve the eigen
value problem; but we use an order 2 Runge Kutta method
with constant step to solve Rayleigh’s equation. The solution
consists in a complex stream function Φ = Φr + iΦi and
2 complex numbers α = αi + iαi and β = βr + iβi. Temporal
perturbations are found with αi = 0 and the spatial perturba-
tions correspond to βi = 0.

The starting point is Φr(z = –1) = α and Φi(z = –1) = 0.
We solve the problem for βi given; then, the values of Φr and
Φi are found at z = 1. We change βi value by dichotomy until
the end values are correctly reached, with Φr(z = 1) = –α and
Φi(z = 1) = 0. Figure 17 shows that the resolution is stiff in
the sense that a very small change of the α value changes the
βi value considerably.

Remark: this problem is somewhat similar to a ballistic
ray tracing problem with a given starting angle at the source;
the ray ends somewhere and it can be paid with the starting
angle to reach a given ending location and then solve a two-
point ray tracing problem by successive approximations.

In this way, we confirm Michalke’s results obtained for
inviscid fluids.

Spectral theory is a recent theory which was not well-
known when Michalke was working. We suggest writing the
variational or weak formulation of Rayleigh’s problem and
solving it with a finite element method.
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Figure 16

Spectral evolution of the static pressure at mean velocities of 15, 20 and 25 m/s in front of 3 cavities. Red line concerns the cavity length,
dotted red line the model length, frequencies depending of their location on the line in the mixing layer.
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The boundary conditions are reached at the wall of the
tube. Between two cavities, the wall is located at the range R
of the axis but the depth of the cavity varies λ(z). Boundary
conditions are not yet at infinity and we impose asymmetric
Dirichlet’s conditions at the wall for ϕ at given z:

with ϕ(–R) = 0 and ϕ(R +λ(z)) = 0.
λ(z) is the function which describes the geometry of the

clip beyond the range R from the axis.
Panaitescu [38] proposes a method to solve this eigen value

problem by means of an second integral of Voltera’s equation.
This Voltera’s equation represents the kernel of a linear
function linked to an inferior triangular matrix. However, this
elegant formulation cannot solve the eigen value problem
efficiently, except to express a weak formulation of the
variational problem.

4.2 Resolution of the Orr-Sommerfeld Equation
with P2 Finite Elements

We consider a problem of temporal perturbation where α is
real and fixed, β is a complex number and ϕ a complex
function, both unknowns. The weak formulation of the
Orr-Sommerfeld equation is written in the functional space
X = ϕ∈H2([–ymin, +ymax],C) with ϕ(ymin) = ϕ(ymax) = 0 and
ϕ’(ymin) = ϕ’(ymax) = 0 so that solving the Rayleigh problem
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ϕ α ϕ ϕ
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⎞

⎠
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or solving the weak formulation is equivalent. The Lax-
Milgram theorem enables us to be sure that there is only one
solution, that is to say, the problem is well-posed. It becomes,
∀ψ∈X:

With P2 finite elements, the derivatives of the basis function
are not continuous, so that they are not in H 2. P2 elements
are not conform. It is not yet possible to find a subspace to
discretize the weak formulation. It could be necessary to
choose P3 elements but complexity of the calculation of the
integral increases considerably. Nevertheless, we try to solve
with only P2 elements and discuss later the result validity.

4.3 Resolution of Orr-Sommerfeld Equation
with Finite Differences

We now consider the finite difference method. The underlying
idea is that the error on the solution is of the same order as
the discretization of the derivative operator. At order 2, an
order 2 convergence could be expected and similarly at order
4. It is obvious that an order 4 finite difference method is
easier to implement than an order 3 finite element method.
Moreover, it will be easy to further increase the order of the
finite difference method.
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Real and imaginary components of Φr and Φi around a given right end value.
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At each node of number i of the mesh, we introduce the
discrete centered scheme of order 2 or order 4:

(11)

(12)

in the discretized equation:

At the boundary, some complementary values have to be
added; 2 values equal zero at order 2 and 3 values at order 4.

To solve this problem of generalized eigen values and
vectors, we build up a matrix and call a Lapack routine which
uses Arnoldi’s procedure. Calculations are carried out on a
standard work station in a few minutes.

4.4 Choice of the Eigen Values

The number of eigen values is equal to the dimension of the
linear system. But, all the eigen values are not physically
meaningful and it is difficult to separate the artificial eigen
values from the true values. It is necessary to sort which
values have a physical sense. Therefore, we compute the same
problem three times with different meshes. An elected eigen
values remain at the same location through the different
meshes as illustrated in Figure 18 for the eigen value (0.94,
0.36). An automatic procedure removes all the spurious eigen
values but sometimes, a finishing touch has to be done
manually.
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The computed values in many cases show that the discretized
eigen values converge when h decreases. We enhance the
final eigen value by using a Richardson’s extrapolation
formula from λ(h/2) and λ(h).

4.5 Results and Discussion

We use the velocity profile displayed in Figure 6. The whole
profile is on the left and there is a close-up inside the cavity
on the right. The inflexion point is clearly present at the
entrance of the cavity. The hydrodynamics instability is
analyzed below.

In Figure 19, we compare the eigen values found by
means of an FE of order 2 and FD of order 4. FE2 finds only
a part of the eigen values and their values seem quite bad
enough. It is clear that the P2 elements are not sufficient to
correctly solve this eigen value problem. Finally, we use an
FD4 method which turns out to be a good one. The most
probable frequency is 1 450 Hz with a magnitude of 3 300.
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Figure 18

Set of eigen values for several different discretizations.

Figure 19

Comparison of eigen values according to 2 methods: FE2 and
FD4.
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Remark: increasing the order of the method leads to an
increase in the size of the discretization step whilst keeping
the same level of accuracy. Thus, the number of eigen values
is smaller.

The influence of the viscosity is not easily accounted for.
Such modeling gives a quantitative response. Figure 20
presents three models using the FD4 method:
– Rayleigh’s equation (viscosity = 0);
– Orr-Sommerfeld equation with viscosity = 2 · 10-5 Pa.s;
– Orr-Sommerfeld equation with viscosity = 2 · 10-3 Pa.s.

The eigen values for viscosity = 0 and viscosity = 2 ·10-5 Pa.s
are very close; when viscosity is 100 times greater, the Orr-
Sommerfeld equation solution is very different according to
frequency and magnitude: energy in the mixing layer is
slightly dissipated by viscosity and the most probable
frequency shifts from 1 394 Hz to 1 204 Hz. Moreover, the

associated wave length moves from 6 mm to 7 mm. To
conclude, we see that the viscosity influence is negligible for
low viscosity while it plays a role, due to dissipation, for high
viscosity and for high Reynolds (decreasing magnitude and
frequency and increasing wave length). That is in accordance
with Lin’s [32] theory.

The results concerning the flow at u
–

= 20 m/s are now
described. The eigen values have been computed along the
8 radial lines of Figure 21. Figure 22 shows the magnitude of
the eigen values depending on the frequency (Fig. 22b is a
close-up of the small magnitudes of Fig. 22a); their greatest
magnitude (top of each curve), frequency, wave length and
radial location are to be found in Table 2. For lines 1-4, we
have relevant magnitudes with fairly small magnitude.
Similarly for lines 8-9, phenomena belong to the main stream.
Considering their radial location and their wave length, we can
think they are not linked to the cavity. In any case, since their
magnitude is weak, they are of little importance.

On lines 5 and 6, meaningful eigen events have to be
considered. Their wave lengths correspond to the cavity length
and for line 5, it can be thought that several vortices are present
in the detachment zone and a traffic with several vortices exists
in the shear layer. Six millimetres corresponds to the cavity
length and line 6 eigen value seems to have a physical
existence stimulated by the geometry of the mixing layer. To
conclude, this analysis points out the presence of a 6 mm wave
length of large amplitude at 1 500 Hz. The hydrodynamic
eigen mode: 2 400 Hz, 4 mm, corresponds to a step in the KH
instability life as the analysis of the momentum thickness
indicates in Figure 12. Beyond line 7, the linear regime modelled
by means of the Orr-Sommerfeld equation is probably overtaken
by the not yet linear vortex rolls and touches its limits.

Orr-Sommerfeld analysis provides a tool to understand the
instabilities of a flow in terms of spatial and temporal
content.
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Comparison of FD4 solution depending on the viscosity.

Figure 21

In an axial plane, the red circles indicate the location of the eigen functions.
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TABLE 2

The eigen values and locations of the eigen function

Axial Wave Radial

location length
Frequency Magnitude

location
Velocity

No. - value mm Hz m/s

1 - 0.0368 10.0 2 014.6 17.8 0.03407 20.1

2 - 0.0380 11.5 1 756.5 23.6 0.03430 20.2

3 - 0.0404 10.5 1 915.1 59.7 0.03515 20.1

4 - 0.0410 6.0 3 291.5 10.2 0.03520 19.7

5 - 0.0426 4.0 2 467.3 4 659.7 0.03844 9.9

6 - 0.0431 6.0 1 499.3 3 365.9 0.03848 9.0

7 - 0.0436 8.0 1 862.1 98.1 0.03775 14.9

8 - 0.0467 13.5 1 502.6 29.1 0.03557 20.3

9 - 0.0479 11.0 1 827.6 29.0 0.03526 20.1

The location of the max magnitude is plotted by a cross in
a circle and written in Table 2. A very meaningful eigen
event takes place along the shear layer at a wave length equal
to the cavity length.

CONCLUSIONS

The dry gas exported through a flexible riser raises a new
problem of hydrodynamic instability: in the case of infinite
repetition of a cavity rolled in helix around a cylindrical
shape, the transverse shape ratio of the cavity is then infinite.
The Reynolds number is very high (Re > 107) and the Mach
number very low (M ~ 0.05). A stabilized regime with high

vorticity is pointed out by means of incompressible LES
modeling but the unsteady flow is unstable in the vicinity of
the cavities regularly encountered. The momentum thickness
between two cavities becomes constant but its high value
contributes to the rise of vortices at the entrance of each
cavity. In this dynamic environment, the momentum content
of the vortices increases considerably all along the shear
layer travel but finally increases only slightly since the shear
layer length is small.

The area of vortex impacts is finely located at the output
of the cavity and follows the helix geometry of the clip.
Some holes judiciously calibrated at the vortex scale and set
in this area could reduce the strength of the force field which
hits the wall.

Indeed, at such a low Mach number (~ 0.05), the fluid is
nearly incompressible and acoustic phenomena of Rossiter-
type are unlikely to be possible. The result is no meaningful
acoustic radiation but a strong solicitation of the steel structure.
This result is in accordance with general considerations in the
literature.

Moreover, it has been stated that radial resonance due to the
cylindrical main shape of the hose was out of the frequency
range of the observed in-service vibration. An important feature
is that the helix cavity itself brings no relevant modification of
these resonance frequencies. Consequently, a fluid-structure
coupling takes place, depending on the mass and stiffness of
the steel shape. Therefore, the structure enters in resonance,
driving the gas column as an added mass; both structure and
gas radiate same acoustic waves. LES modeling shows the
cinematics of the vorticity field acting in the shear layer in
front of each cavity and its link between cavities in the
stabilized flow.
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DF4 solution for a mean flow of 20 m/s in a flexible hose. Close-up on the right for the smallest eigen values.
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The Orr-Sommerfeld equation solutions contribute to
enlightening this mechanism and to locating the eigen
functions the most stimulated by the instability. These
solutions are cheap to carry out in terms of computer time;
and the relevant eigen values can be sorted by means of
several numerical solutions of different discretizations based
on the finite difference method.
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ANNEX: ORR-SOMMERFELD EQUATION

In this annex, we state the Orr-Sommerfeld equation. First of all, we recall the incompressible steady Navier-Stokes equations:

(13)

We consider the following velocity and pressure profiles:

(14)

The perturbed equations are deduced by introducing this velocity profile in the NS equations:

We define the stream function Ψ1 of the perturbation as:

and the stream function is assumed to have the following shape:

(15)

α = αr + iαi and β = βr + iβi are complex numbers, the αr ∈ℜ is the spatial pulsation and βr ∈ℜ the temporal pulsation.

The numbers αi ∈ℜ and βi ∈ℜ are their respective expansion rates.

Temporal perturbation (αi = 0), Ψ1(x, y, t) = eβit Re(ϕ(y)ei(αrx–βrt))

Spatial perturbation (βi = 0), Ψ1(x, y, t) = e–αix Re(ϕ(y)ei(αrx–βrt))

We deduce the real perturbed fields: 

In order to linearize this equation, we neglect the term in ε and we obtain:

(16)

Derivating the first line of this equation and introducing it in the second line, we obtain the Orr-Sommerfeld equation: 
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Dimensionless equation
Some characteristic sizes are chosen: length L, and velocity Um. We deduce the following dimensionless variables:

(18)

The Orr-Sommerfeld equation becomes: 

(19)

Three dimensionless numbers appear: 

– Reynolds number

– Strouhal number

number αL, real when α is real.
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