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Résumé — Reconstruction de coupes pétrolières par maximisation d’entropie. Application aux
essences de FCC — Dans le domaine pétrolier, les coupes sont généralement des mélanges complexes
de plusieurs centaines à plusieurs millions d’espèces chimiques différentes. De ce fait, les outils
analytiques, même les plus performants, ne permettent pas de séparer et d’identifier l’ensemble des
composés présents. Les fractions pétrolières sont donc actuellement caractérisées soit via des descripteurs
macroscopiques moyens (densité, analyse élémentaire, résonance magnétique nucléaire, etc.), soit à l’aide
de techniques séparatives (distillation, chromatographie gaz ou liquide, spectrométrie de masse, etc.) qui
ne quantifient cependant que quelques grandes familles de molécules. Les méthodes de reconstruction de
coupes pétrolières sont des approches informatiques qui permettent d’évoluer vers un détail plus
moléculaire en se basant sur le principe suivant : définir des mélanges simplifiés mais cohérents de
composés chimiques à partir de données analytiques parcellaires et de connaissances expertes du procédé
étudié. Ainsi, la méthode de reconstruction par maximisation d’entropie, proposée dans cet article, est
une technique récente et puissante permettant de déterminer les fractions molaires d’un mélange préétabli
de composés chimiques en maximisant un critère entropique et en respectant les contraintes analytiques
fixées par le modélisateur. L’utilisation de cette méthodologie permet de réduire le nombre de degrés de
liberté du système de quelques milliers (correspondant aux fractions molaires des composés) à quelques
dizaines (correspondant aux paramètres de Lagrange associés aux contraintes analytiques) et ainsi de
diminuer fortement le temps de calcul nécessaire à la résolution du problème. Cette approche a été
appliquée avec succès à la reconstruction d’essences de FCC en prédisant précisément la composition
moléculaire de ce type de coupes pétrolières à partir d’une distillation simulée et d’une analyse PIONA
globale (Paraffines, Isoparaffines, Oléfines, Naphtènes et Aromatiques). L’extension à d’autres types de
naphtas (naphtas Straight Run, naphtas de Coker, naphtas hydrotraités, etc.) est très aisée.

Abstract — Reconstruction of Petroleum Feedstocks by Entropy Maximization. Application to FCC
Gasolines — In the petroleum industry, the oil fractions are usually complex mixtures containing several
hundreds up to several millions of different chemical species. For this reason, even the most powerful
analytical tools do not allow to separate and to identify all the species that are present. Hence, petroleum
fractions are currently characterized either by using average macroscopic descriptors (density, elemental
analyses, Nuclear Magnetic Resonance, etc.) or by using separative techniques (distillation, gas or liquid
chromatography, mass spectrometry, etc.), which quantify only a limited number of families of molecules
however. Reconstruction methods for the petroleum cuts are numerical tools, which allow to evolve
towards a molecular detail and which are all based on the following principle: defining simplified but
consistent mixtures of chemical compounds from partial analytical data and from expert knowledge of
the process under study. Thus, the reconstruction method by entropy maximization, which is proposed in
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INTRODUCTION

In the petroleum industry, the oil fractions are usually complex
mixtures containing from several hundreds to several millions
of different chemical species depending on their cut points.
For this reason, even the most powerful analytical tools do
not allow to separate and identify all the compounds that are
present. Petroleum fractions are therefore characterized ana-
lytically, either by using average macroscopic descriptors
(density, elemental analyses, nuclear magnetic resonance,
etc.) or by using separative techniques (distillation, gas or
liquid chromatography, mass spectrometry, etc.) which quantify
only a limited number of families of molecules however.

To compensate for this absence of a detailed analytical
description, computational techniques have been developed
to arrive at a molecular-level representation of petroleum
fractions. These methods, coined molecular reconstruction
methods, allow to create simplified but consistent mixtures of
compounds from partial analytical data by injecting expert
knowledge. They are based on different strategies that
depend on the type of feedstocks to rebuild. For the heaviest
petroleum fractions (vacuum gas oils, atmospheric residues,
vacuum residues), the main approach consists in sampling
randomly different statistical distributions of structural blocks
which are the basic elements of the molecules present in the
mixture after reconstruction [1-8]. For the lightest petroleum
cuts (gasolines, kerosenes, gas oils), the majority of the
methods is based on a predefined set of compounds which
is supposed to be representative of the molecules that are
actually present in the fraction under investigation. Thus, the
technique consists of calculating the molar fractions of the
compounds in the database in order to verify the set of ana-
lytical constraints which is associated with the feedstock to
be represented [9-18].

The reconstruction method described in this article is part
of the latter set of strategies. The technique is based on a pre-
defined set of compounds whose molar fractions are calcu-
lated by maximizing an information entropy criterion subject
to constraints. After a description of the theory used to

develop this reconstruction method by entropy maximization,
an application will be presented for gasolines withdrawn
from the Fluid Catalytic Cracking process (FCC).

1 DESCRIPTION OF THE MOLECULAR
RECONSTRUCTION METHOD BY ENTROPY
MAXIMIZATION

1.1 Concept

The feedstock reconstruction by entropy maximization is
based on the Shannon’s information theory developed in
1948 [19], which is still applied in many scientific fields such
as quantum chemistry or electronics. From this theory,
Shannon defines an entropic criterion as follows:

(1)

with

(2)

E represents the Shannon entropy, N is the number of possible
states and pi is the probability of the state i. To summarize,
Shannon’s entropy is a measure of the homogeneity of the
probability distribution pi. The higher the entropy value, the
more uniform the distribution is. When the criterion is associ-
ated with constraints, maximizing the Shannon entropy is
equivalent to determining the most uniform distribution
which verifies these constraints.

In the case of feedstock reconstruction, the probabilities pi
have to be replaced by the molar fractions xi of the N com-
pounds present in the petroleum mixture. The usefulness of
the entropy maximization to molecular reconstruction relies
on two fundamental characteristics:
– if there are no constraints (or no petroleum analyses), it is

impossible to favor one compound of the database over
the others. In this case, all molar fractions xi are equal to
1/N. The distribution is thus uniform;
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this article, is a recent and powerful technique which allows to determine the molar fractions of a
predefined set of chemical compounds by maximizing an entropic criterion and by satisfying the
analytical constraints given by the modeler. This approach allows to reduce the number of degrees of
freedom from several thousands (corresponding to the molar fractions of the compounds) to several tens
(corresponding to the Lagrange parameters associated with the analytical constraints) and to greatly
decrease the CPU time required to perform the calculations. This approach has been successfully
applied to reconstruct FCC gasolines by precisely predicting the molecular composition of this type of
feedstocks from a distillation and an overall PIONA analysis (Paraffins, Isoparaffins, Olefins,
Naphthenes and Aromatics). The extension to other naphthas (Straight Run naphthas, Coker naphthas,
hydrotreated naphthas, etc.) is straightforward.
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– when constraints (or petroleum analyses) are added, the
method modifies the molar fractions so as to verify these
constraints but with a molar fraction distribution that stays
as uniform as possible. In the special case of linear con-
straints, a semi-algebraic solution is possible and allows to
decrease greatly the number of unknowns and the CPU
time required to resolve the problem.
The different steps of the feedstock reconstruction by

entropy maximization (cf. Fig. 1) are thus the following:
– creation of a molecular database which is as representative

as possible of the set of feedstocks to rebuild (Fluid
Catalytic Cracking gasolines, Straight Run naphthas,
Light Cycle Oil gasoils, etc.);

– introduction of the constraints associated to the different
petroleum analyses for each feedstock. When these con-
straints are linear or can be transformed into linear con-
straints, the solution space of the maximization problem
can be significantly reduced and a semi-algebraic resolu-
tion of the problem can be derived;

– adjustment of the molar fractions by maximizing the
information entropy criterion associated with the previous
constraints.

1.2 Creation of a Predefined Database
of Compounds

The creation of the initial database of compounds is extremely
important because the choice of the molecules allows
introducing additional information which are not necessarily
present in the petroleum analyses but which are well-known
to the experts. That is why each type of feedstock must have

its own initial database. For example, the Light Cycle Oil
gas oils (LCO) are known to contain a lot of aromatic com-
pounds with small side chains due to the cracking reactions
in the Fluid Catalytic Cracking (FCC) process. Similarly,
they only have benzothiophenes and dibenzothiophenes as
sulfur compounds. Introducing sulfides or aromatic com-
pounds with long side chains in a LCO-specific database is
therefore not only useless but very harmful because the
future reconstructed mixtures might contain some of these
compounds which do not exist in the actual LCO feed-
stocks. During the creation of the predefined database of
compounds, it is therefore very important to verify that the
compounds of the database are representative of the studied
feedstocks and that the mixture obtained with a uniform
distribution (xi = 1/N ∀i ∈ N) has properties close to those
of the feedstock. The importance of latter property will be
illustrated and dealt with in more detail in the example
application of the method.

To create these specific databases and avoid these problems
of selection, two different approaches have been developed at
IFP Energies nouvelles:
– experimental method: this method is used for the light

petroleum cuts when detailed Gas Chromatography (GC)
analyses exist and allow to determine qualitatively the
different compounds that are present in the studied feed-
stocks. These compounds identified by the GC analyses
are then used to build the database. This is the most efficient
method because no selections or assumptions are needed
concerning the presence or not of a compound in the initial
database;

– coupling method: this method uses another reconstruction
method, the stochastic reconstruction, to create the initial
molecular database. For a more detailed description of this
approach, the reader is referred to other articles [1-4; 6; 8]
concerning this reconstruction technique.
An other solution consists in judiciously selecting a limited

number of model compounds based on expert knowledge, as
proposed by Liguras and Allen [9-11], Eckert and Vanek
[16-18] or Van Geem et al. [20-21].

In all cases, when the initial database is finally created, it
is necessary to know the various pure component properties
of the selected compounds. Some properties can easily be
calculated from the molecular structure of the compound,
such as its chemical formula, its molecular weight, its 1H
Nuclear Magnetic Resonance signature (NMR), its 13C NMR
signature, its mass spectrometry family and its Paraffins/
Isoparaffins/Olefins/Naphthenes/Aromatics (PIONA) family.
For other properties, group contribution methods need to be
employed. Table 1 lists the different methods used to calcu-
late these properties. In this work, specific group contribution
methods (Annex A) have been developed for the normal
boiling point and the density at 20°C.
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Analytical data Predefined set of compounds

Building of the linear constraints matrix

Maximization of the information entropy
criterion under linear constraints

Calculation of the molar fractions
of the predefined set of compounds

Optimization of the Lagrange parameters

Mixing rules

Figure 1

Scheme of feedstock reconstruction by entropy maximization.
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1.3 Introduction of the Petroleum Analyses

For each feedstock to be rebuilt, the introduction of its
own petroleum analyses allows first of all to eliminate the
compounds of the initial database that can not be present in
the final mixture. To this aim, each analysis allows to filter
the database in the following manner:
– elemental analysis: this filter eliminates all the com-

pounds of the initial database which contain a type of
atom not detected by the corresponding analysis. For
example, if the sulfur content is equal to 0, all the sulfur
compounds of the initial database are removed;

– mass spectrometry: this filter eliminates all the compounds
of the initial database that belong to a mass spectrometry
family that is not detected by the analysis;

– PIONA analysis: this filter eliminates all the compounds
of the initial database that belong to a PIONA family that
is not detected by the analysis;

– 1H and 13C NMR analyses: this filter eliminates all the
compounds of the initial database which contain a type of
hydrogen or carbon that is not detected by the analyses;

– simulated distillation: this filter eliminates all the com-
pounds of the initial database that have normal boiling
points lower than the initial point or greater than the final
point of the distillation;

– molecular weight: no specific filter;
– specific gravity: no specific filter.

When the initial database has been filtered to eliminate
the “impossible” compounds, the various properties of the
mixture can be obtained from the pure component properties
of each compound (Pi,,j) and the mixture composition (xi)
via the corresponding mixing rules (Fj) of each property j.
For some analyses, such as a distillation curve or a PIONA
analysis, the mixing rule is not a simple algebraic expression
but a conditional expression. The calculated mixture proper-
ties can now be compared to the experimental values of each

property for the petroleum fraction to be reconstructed. This
therefore leads to the following set of exact constraints:

(3)

where x Vector of molar fractions xi

xi Molar fraction of the compound i

Fj Mixing rule for property j

Pj Experimental value of property j for the petroleum
fraction (constraint j)

J Total number of constraints

The total number of constraints J groups together all the
constraints of the various analyses. It should indeed be
stressed that the PIONA analysis for example can contain up
to 5 constraints (one for each family), while the 13C NMR
analysis contains up to 7 constraints.

When the mixing rules are linear or can be transformed
into linear mixing rules, a semi-algebraic resolution of the
maximization problem can be derived (see Sect. 1.6). In such
a case, the mixing rules of Equation (3) can be transformed
into J exact linear constraints, which are grouped together
into a matrix system:

(4)

where fj Equality term for the constraint j
fi,j Parameter of the compound i for the constraint j
xi Molar fraction of the compound i
N Number of compounds in the database after filtering
J Total number of constraints

In the simplest example of a linear mixing rule as
Equation (4), the equality term fj for constraint j equals the
experimental value of property (Pj) for the petroleum frac-
tion, while fi,j corresponds to the value of the pure compo-
nent property j for compound (Pi,,j). In order to account for
the conditional expressions in some mixing rules (distilla-
tion curve or a PIONA analysis) and in order to improve
the numerical stability, the terms fj and fi,j may be transfor-
mations of these values Pj and Pi,,j, respectively. Table 2
lists the set of equations used to obtain fi,j and fj for all the
petroleum analyses used in the feedstock reconstruction
algorithm. In this table, the majority of the analyses are
calculated by a simple mass balance (elemental analyses,
average molecular weight, PIONA analysis, mass spec-
trometry and NMR analyses). However, for the simulated
distillation and the specific gravity, some hypotheses must
be made. For the simulated distillation, the compounds of
the mixture are supposed to leave the chromatography col-
umn by increasing normal boiling points. The simulated
distillation is then considered as a True Boiling Point dis-
tillation (TBP). For the specific gravity, the mixture of com-
pounds is considered as ideal and no excess molar volume is

f f x j Jj i j i

i

N

= ⋅ ∀ ∈
=

∑ ,

1

  

P F j Jj j= ( ) ∀ ∈x   
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TABLE 1

Methods used to calculate molecular properties of compounds

Pure compound properties
Associated methods used

References
for the calculation

Chemical formula by inspection

Molecular weight by inspection

Mass spectrometry family by inspection

PIONA family by inspection

1H NMR signature by inspection

13C NMR signature by inspection

Specific gravity by group contribution method [6], Annex A

Normal boiling point by group contribution method [6], Annex A
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added when the average molar volume of the mixture is
calculated. Consequently, the specific gravity of the mixture
is determined by the following linear mixing rule:

(5)

with dcalcSpecific gravity of the mixture

wi Weight fraction of the compound i

di Specific gravity of the compound i

N Number of compounds in the database after filtering

1

1d

w

dcalc
i

ii

N

=
=

∑

1.4 Entropy Maximization without Constraints

When there are no constraints (except the sum of molar
fractions which must always be equal to 1), the introduction
of the mole fraction balance (Eq. 2) by means of a
Lagrange multiplier μ into the Shannon entropy criterion
(Eq. 1) applied to the mole fractions leads to the following
constrained criterion:

(6)ξ μx( ) = − ⋅ + ⋅ −
⎛

⎝
⎜

⎞

⎠
⎟

==

∑∑ x x xi i i

i

N

i

N

ln 1
11
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TABLE 2

fi,j and fj for the petroleum analyses used in feedstock reconstruction

Petroleum analyses Associated fi,j Associated fj

Elemental analyses wt% fi,j = Mi · %Xexp / 100 – nXi · MX fj = 0

Molecular weight – fi,j = Mexp – Mi fj = 0

wt%
if family i = family k, fi,j = Mi · (%Fk

exp / 100 – 1)
fj = 0

Mass spectrometry
if family i ≠ family k, fi,j = Mi · %Fk

exp / 100

vol% if family i = family k, fi,j = Mi / di · (%Fk
exp / 100 – 1)

fj = 0
if family i ≠ family k, fi,j = Mi / di · %Fk

exp / 100

wt% if family i = family k, fi,j = Mi · (%Fk
exp / 100 – 1)

fj = 0

PIONA analysis
if family i ≠ family k, fi,j = Mi · %Fk

exp / 100

vol% if family i = family k, fi,j = Mi / di · (%Fk
exp / 100 – 1)

fj = 0
if family i ≠ family k, fi,j = Mi / di · %Fk

exp / 100

1H NMR analysis – fi,j = nHi,k – %Hk
exp / 100 ·nHi fj = 0

13C NMR analysis – fi,j = nCi,k – %Ck
exp / 100 ·nCi fj = 0

wt% if Tbi < Tbk
exp, Fi,j = Mi · (1 – %Fk

exp / 100)
fj = 0

Distillation
if Tbi > Tbk

exp, Fi,j = – Mi · %Fk
exp / 100

vol% if Tbi < Tbk
exp, Fi,j = Mi / di · (1 – %Fk

exp / 100)
fj = 0

if Tbi > Tbk
exp, Fi,j = – Mi / di · %Fk

exp / 100

Specific gravity – fi,j = Mi · (1 / di – 1 / dexp) fj = 0

Notations

Mi Molecular weight of the compound i (g/mol)

nXi Atom number of the element X in the compound i (X = C, H, S)

nAi Total number of atoms in the compound i

di Specific gravity of the compound i (g/cm3)

nHi,k Number of hydrogen atoms of type k in the compound i

nHi Total number of hydrogen atoms in the compound i

nCi,k Number of carbon atoms of type k in the compound i

nCi Total number of carbon atoms in the compound i

Mexp Molecular weight of the mixture (g/mol)

%Xexp Experimental (weight or molar) fraction of the element X in the mixture (X = C, H, S)

%Fk
exp Experimental (weight or volume) fraction of the family k

%Hk
exp Experimental molar fraction of the type of hydrogen k in the mixture

%Ck
exp Experimental molar fraction of the type of carbon k in the mixture

dexp Specific gravity of the mixture (g/cm3)

MX Molecular weight of the element X (X = C, H, S)

Family i Type of the family of the compound i. It is a family MS or PIONA

Family k Type of the currently studied family. It is a family MS or PIONA
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At the optimum, if a solution exists, the following rela-
tions must be satisfied:

(7)

Or,
(8)

By summing Equation (8) for i = 1 to N, we obtain:

(9)

Introducing exp(1 + μ) = N in Equation (8), one finally
obtains:

(10)

The first characteristic of the entropy maximization is then
verified. Without constraints, the distribution of the com-
pounds in the database is uniform. All the molar fractions are
equal to 1/N, with N the total number of compounds of the
database after filtering.

1.5 Entropy Maximization with Exact Non-linear
Constraints

The introduction of exact non-linear constraints (Eq. 3) in the
entropy criterion with the Lagrange multipliers λj leads to the
following equation:

(11)

After deriving Equation (11) with respect to all xi, the
following relations are obtained:

(12)

This leads to:
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Introducing Equation (14) into Equation (11) allows
obtaining the following relation:

(16)

The entropy criterion of Equation (11) with J non-linear
constraints contained N + J unknowns, i.e. the Lagrange mul-
tipliers λj of each constraint and the mole fraction xi of each
compound. As the constraints are non-linear, the reformulated
problem in Equation (16) may still contain up to N + J
unknowns, depending on the non-linearities in the mixing
rules Fj. Maximization of the entropy criterion under non-
linear constraints is therefore a non-trivial task due to the
high dimension of the solution space.

1.6 Entropy Maximization with Exact Linear
Constraints

The introduction of exact linear constraints in the entropy
criterion with the Lagrange multipliers λj allows obtaining
the following equation:

(17)

After deriving Equation (17) with respect to all xi, the
following relations are found:

(18)

This leads to:
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(21)

Introducing Equation (20) into Equation (17) allows
finally to obtain the following relation:
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Maximizing the entropy criterion under J exact linear con-
straints (Eq. 17 with N + J unknowns) is now elegantly
reduced to maximizing Equation (22) which only contains J
unknowns, the Lagrange multipliers λj of each constraint.
Hence, the solution space of the maximization problem has
been significantly reduced from several thousands (the molar
fractions of the compounds contained in the initial database)
to a few tens (the Lagrange parameters associated to the con-
straints). The maximization of the latter non-linear equation
can be done by classic optimization methods such as, for
example, the conjugate gradient method. When the values of
λj are determined at the optimum, the molar fractions xi of the
compounds can be calculated using Equations (20) and (21).

To illustrate the entropy maximization with exact linear
constraints, an example is given using a database containing
ten compounds. The molecular weights of these compounds
are respectively equal to 100, 110, 120, 130, 140, 150, 160,
170, 180 and 190 g/mol. The entropy maximization is then
used to rebuild three mixtures which have respectively an aver-
age molecular weight of 115 g/mol (example 1), 142 g/mol
(example 2) and 178 g/mol (example 3). After optimization,
the obtained values of λ, the Lagrange multiplier associated
with the constraint on the average molecular weight, are
respectively 0.049195 (example 1), 0.003644 (example 2)
and – 0.059655 (example 3). Using Equations (20) and (21)
finally allows to obtain the molar fractions of each compound
for the three examples (Tab. 3 and Fig. 2).

If the molar distribution of the database would have been
uniform (xi = 0.1, 1 ≤ i ≤ 10), the obtained mixture would

have had an average molecular weight of 145 g/mol, which
will be referred to as the equimolar molecular weight of the
database. As can be observed, two cases appear depending
on the average molecular weight to be fitted to:
– if the average molecular weight to be fitted to is very

different from the equimolar molecular weight (examples
1 and 3), the absolute value of λ is relatively high and the
entropy maximization largely favors some compounds
that are extreme with respect to their properties. This is
due to the exponential term of Equation (20);

D Hudebine and JJ Verstraete / Reconstruction of Petroleum Feedstocks by Entropy Maximization. 
Application to FCC Gasolines

443

TABLE 3

Results of the 3 examples of reconstruction with exact constraints

Molar fractions

Molecular weightCompounds
(g/mol)

Example 1 Example 2 Example 3

1 100 0.3914 0.1172 0.0021

2 110 0.2393 0.1130 0.0038

3 120 0.1463 0.1089 0.0069

4 130 0.0895 0.1050 0.0126

5 140 0.0547 0.1013 0.0228

6 150 0.0334 0.0977 0.0414

7 160 0.0205 0.0942 0.0752

8 170 0.0125 0.0908 0.1366

9 180 0.0076 0.0875 0.2481

10 190 0.0047 0.0844 0.4504

Optimized parameter λ 0.049195 0.003644 –0.059655

Average molecular weight 115 g/mol 142 g/mol 178 g/mol
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Results of the 3 examples of reconstruction with exact constraints.
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– if the average molecular weight to be fitted to is close to
the equimolar molecular weight (example 2), the value λ
is near zero and the mole fraction distribution is almost
uniform.

It is for this reason that it is important to stress that the
initial database of compounds must be as characteristic as
possible of the feedstocks to be rebuilt. The database should
also have mixture properties (based on an equimolar mixture)
as close as possible of the properties of the feedstocks to be
reconstructed in order to avoid the appearance of a limited
number of dominating molecules.

1.7 Entropy Maximization with Linear Constraints
Containing Uncertainties

Up to now, all the constraints have been qualified as “exact”
because the entropy maximization method forced the system
to exactly fit the different constraints. But analytical data also
contain measurement errors. Moreover, the hypotheses used
to determine some of the properties of the rebuilt mixture
also introduce some deviations. Trying to perfectly fit to the
experimental data is therefore completely pointless. This is
why Equation (17) can be modified to handle K constraints
with uncertainties in the following manner:

(23)

where σk Uncertainty on the constraint k

K Total number of constraints with uncertainties

The system resolution is then similar to the case with
exact linear constraints. The intermediate equations are:

(24)

If we define the normalized residuals as:

(25)

we have finally:
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The new non-linear equation to maximize is then:

(29)

Maximizing Equation (29) allows to determine the values
of the normalized residuals εk at the optimum. The molar
fractions xi can then be calculated by using Equations (27)
and (28).

Now, taking again the example of entropy maximization
with the database containing ten compounds, it is possible to
introduce uncertainties on the molecular weight. Recall that
the initial database is composed of 10 compounds which have
respectively a molecular weight of 100, 110, 120, 130, 140,
150, 160, 170, 180 and 190 g/mol. If the mixture is equimolar,
its average molecular weight is equal to 145 g/mol (termed
the equimolar molecular weight of the database). The entropy
maximization is then used to rebuild three mixtures which
have an average molecular weight of 160 g/mol but with dif-
ferent values of uncertainties defined by σ: 1 (example 4), 10
(example 5) and 100 (example 6). After optimization, the
obtained values of ε are respectively 0.0192646 (example 4),
0.16894221 (example 5) and 0.13857154 (example 6). Using
Equations (27) and (28) finally allows to obtain the molar
fractions of the compounds for each of three examples (Tab. 4
and Fig. 3).

As can be observed, the smaller the value of σ, the more
the system is constrained and tends to the value of average
molecular weight to be fitted to (160 g/mol). Conversely, the
higher the value of σ, the less the system is constrained and
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TABLE 4

Results of the 3 examples of reconstruction with constraints
with uncertainties

Molar fractions 

Molecular weightCompounds
(g/mol)

Example 4 Example 5 Example 6

1 100 3.622E-02 4.168E-02 9.388E-02

2 110 4.392E-02 4.935E-02 9.519E-02

3 120 5.325E-02 5.843E-02 9.652E-02

4 130 6.456E-02 6.918E-02 9.787E-02

5 140 7.828E-02 8.191E-02 9.923E-02

6 150 9.491E-02 9.699E-02 1.006E-01

7 160 1.151E-01 1.148E-01 1.020E-01

8 170 1.395E-01 1.360E-01 1.034E-01

9 180 1.692E-01 1.610E-01 1.049E-01

10 190 2.051E-01 1.906E-01 1.063E-01

Parameter σ 1 10 100

Optimized parameter ε 0.0192646 0.16894221 0.13857154

Average molecular weight 160 g/mol 158 g/mol 146 g/mol
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the more it tends to the equimolar mixture (which is the base
case when there are no constraints).

1.8 Entropy Maximization with Introduction
of Normal Distributions

In the cases of exact linear constraints or linear constraints
with uncertainties, the entropy maximization method tends to
favor the compounds with extreme properties to the detri-
ment of more average components. This is due to the expo-
nential term of the functions that allow to calculate the molar
fractions (cf. Eq. 20 and 27). However, it is known that the
most of distributions of compounds in petroleum fractions
are not exponential but rather of a Gaussian type with a
majority of components with average properties and few
extreme compounds. To force some of the characteristics to
follow a specific statistical distribution, it is possible to add a
new constraint for each of these characteristics. In case one
wants to impose a normal distribution on a given characteris-
tic, the following constraint has to be included in addition to
its equality constraint (exact or with uncertainties):

(30)

with σ°m Standard deviation of the normal distribution linked
to constraint m.
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The general equation to maximize is then the following:

(31)

with νm The Lagragian parameter corresponding to the
normal distribution constraint of characteristic m

[L] A subspace of the J exact constraints and the K
constraints with uncertainties

After intermediate calculations, the entropy maximization
amounts to maximizing the non-linear equation:
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Results of the 3 examples of reconstruction with constraints with uncertainties.
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with:

(33)

Maximization of the function ξ is performed by a classic
numerical method such as the conjugate gradient method.
After optimization, the resulting parameters (λλ, εε and νν)
allow to calculate the molar fractions by means of the follow-
ing equation:

(34)

To illustrate this new type of constraints, the example of
the molecular weight can be taken again. In the present case,
the target average molecular weight of the mixture is exactly
142 g/mol. A new constraint on the molecular weight is also
added to force the system to have a normal distribution. The
entropy maximization is then used to rebuild three mixtures
with different standard deviations on the molecular weight:
σ° = 5 (example 7), σ° = 10 (example 8) and σ° = 20 (example
9). The obtained molar fractions and the optimized parameters
λ and ν are given in Table 5 and Figure 4.

As can be observed, the addition of this new constraint
allows to force the system to have a normal distribution (Fig. 4)
instead of the non-realistic exponential distribution (Fig. 2).
However, this modification increases the number of parame-
ters to determine. Thus, the parameter λ of the examples 1 to
3 is replaced by the couple (λ, ν) of the examples 7 to 9.
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It is interesting to notice that the introduction of normal
distributions by inclusion of additional constraints is only
required when no information is given concerning the distrib-
ution of the compounds by volatility (normal boiling point or
carbon number for instance). If a distillation curve is intro-
duced as input data, this type of constraints is not necessary
because the distillation already contains, by definition, some
information on the distribution by volatility.

446

TABLE 5

Results of the 3 examples of reconstruction with normal repartitions

Molar fractions 

Molecular weightCompounds
(g/mol)

Example 7 Example 8 Example 9

1 100 0.0000 0.0001 0.0287

2 110 0.0000 0.0024 0.0640

3 120 0.0001 0.0355 0.1144

4 130 0.0432 0.1942 0.1644

5 140 0.7151 0.3910 0.1898

6 150 0.2400 0.2897 0.1761

7 160 0.0016 0.0790 0.1313

8 170 0.0000 0.0079 0.0787

9 180 0.0000 0.0003 0.0379

10 190 0.0000 0.0000 0.0147

Parameter σ° 5 10 20

Optimized parameter λ –0.007783 0.000000 0.000914

Optimized parameter ν 0.019490 0.005000 0.001093

Average molecular weight 142 g/mol 142 g/mol 142 g/mol
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Figure 4

Results of the 3 examples of reconstruction with normal repartitions.
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1.9 Preliminary Conclusions

The entropy maximization algorithm is an elegant method
which allows to rebuild different types of feedstocks from partial
analytical information. For that, a Shannon’s entropy criterion is
used, which is subject to the analytical constraints. Maximized
under linear constraints (exact or with uncertainties), the mathe-
matical expression of this criterion can be reorganized to allow
for a semi-algebraic resolution of the problem with a decrease of
the number of unknowns from several thousands (the molar
fractions of the compounds contained in the initial database) to a
few tens (the Lagrange parameters associated to the constraints).
The decrease of the number of unknowns limits the CPU time
required to reach the solution. The various theoretical aspects of
this method have been presented above:
– without information (or without constraints), the obtained

solution is an equimolar distribution of the set of the
predefined compounds;

– when some information is introduced, the distribution is
distorted in order to satisfy the new constraints. The
information can be injected under the form of exact linear
constraints (see Sect. 1.6) or constraints containing uncer-
tainties (see Sect. 1.7).
This methodology has however one main drawback that

needs to be recalled here. Indeed, because the calculation of
the molar fractions requires the use of exponentials, it is
possible to obtain some unrealistic distributions leading the
presence of a few predominating compounds, all the others
having molar fractions close to 0. To avoid this problem, one
solution consists in having an initial set of compounds whose
properties (when the distribution is considered as equimolar)
are close to the properties to be fitted. Another possibility
proposed in this article is to use additional constraints that
force the system to have normal distributions instead of
exponential distributions (see Sect. 1.8).

In order to illustrate this methodology for the feedstock
reconstruction, different applications can be proposed such as
LCO reconstruction for example [6-7]. In this paper, the
reconstruction of various FCC gasolines by entropy maxi-
mization is presented. The advantage of FCC gasolines is
that this type of petroleum feedstock can be analytically char-
acterized by Gas Chromatography. The latter method allows
to directly define the compounds that need to be present in
the initial database without using some expert hypotheses.
Moreover, the validation of the concept of entropy maxi-
mization is more practical in this application because there is
a direct analytical access to the molecular composition of the
various FCC feedstocks, allowing for a detailed comparison.

2 APPLICATION TO THE RECONSTRUCTION 
OF FCC GASOLINES

The hydrodesulfurization of the FCC gasolines has become
an important field of research as the sulfur content has been

decreased drastically in the on-road gasolines: 350 wt ppm
before 2000, 50 wt ppm from 2005 and 10 wt ppm in 2009
for the European Union countries for example. Indeed, the
largest part (over 90 wt%) of sulfur in gasoline pool comes
from FCC gasoline. Refiners have then to hydrodesulfurize
this fraction selectively to remove sulfur while minimizing
olefins hydrogenation in order to maintain a high octane
number in the final product [22].

In order to simulate the hydrodesulfurization process, it is
necessary to correctly describe the FCC gasolines on a
molecular level. For that, it is possible to use some Gas
Chromatography techniques that allow to detect and to quan-
tify the different chemical compounds present in this type of
petroleum fractions. However, in some cases, the available
information on the gasoline can be less detailed and the only
accessible data concerns partial analyses such as distillation
or PIONA.

In this particular configuration, the entropy maximization
can be applied to rebuild FCC gasolines and to determine
their molar composition. In this article, we propose to show
more precisely how the reconstruction method can be applied
to rebuild FCC gasolines using only the simulated distillation
and the overall PIONA information. For that, it is necessary
to correctly define the database of compounds that will be
used during the reconstruction.

2.1 Creation of an Initial Database of Representative
Compounds by Means of a Qualitative Approach
(Database G)

In order to rebuild the initial database of molecules, a
first possibility consists in determining analytically which
are the characteristic molecules present in the FCC gasolines.
It is therefore necessary to know the molecular composition
of some FCC gasolines so as to identify the various chemical
compounds which can be encountered in this type of oil frac-
tions. This first operation can be carried out using a Gas
Chromatography analysis. Table 6 provides general informa-
tion on 15 FCC gasolines used for the definition of the initial
database of molecules.

From these FCC gasolines, it is possible to build an
average gasoline by calculating an equimolar mixture of the
15 gasolines defined in Table 6. This mixture allows to cover
a large domain of compounds and to include the smallest and
the largest molecules that can be found in FCC gasoline cuts.
The compounds, detected by Gas Chromatography and hav-
ing a non-zero molar fraction are then added to the initial
database of molecules. Once these operations carried out, the
database, referred to as database G, contained 230 different
compounds. Table 7 lists the names of the first 20 com-
pounds and the last compound of this database G. In the
absence of information, i.e. in the absence of simulated
distillation and PIONA, the entropy maximization method
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supposes an equimolar mixture. Each of the 230 com-
pounds of the database then has a molar fraction equal to
1/230 or 4.348 × 10-3. The corresponding mixture thus has
molar fractions that are completely different when com-
pared to a standard FCC gasoline. Hence, the properties of
this mixture are far from those of typical FCC gasolines, as
shown in Table 8. Indeed, the average density and the
average molecular weight are too high in comparison to a

conventional FCC gasoline, while both the distillation data
and the carbon number distribution are very atypical. This
point is particularly important because, even though the
initial database of molecules contains all compounds which
may actually be present in FCC gasolines, its mixture
properties in the absence of information are very different
from those of typical FCC gasolines. When using this data-
base G to reconstruct various FCC gasolines by means of

448

TABLE 6

General information on the 15 FCC gasolines used for the definition of the initial database of molecules

Simulated Density at 15°C RON indices MON indices Hydrogen content Average Mw P/I/O/N/A

distillation (°C) (g/cm3) (-) (-) (wt%) (g/mol) (wt%)

#1 –6.0-244.0 0.7390 91.8 79.8 13.53 99.4 4.3/24.4/35.7/6.0/29.7

#2 4.0-243.0 0.7323 91.6 80.0 13.66 96.0 4.3/28.8/32.4/5.7/28.8

#3 4.0-241.0 0.7318 91.7 81.2 13.66 95.6 4.3/28.8/32.3/5.8/28.8

#4 0.0-181.0 0.7129 92.0 79.5 14.16 90.2 4.3/28.1/47.6/6.5/13.5

#5 24.0-202.0 0.7327 94.0 80.8 13.62 94.0 3.6/22.9/44.0/5.7/23.8

#6 15.0-201.0 0.7297 93.6 80.8 13.67 92.9 3.7/23.3/44.3/5.8/22.9

#7 0.0-204.0 0.7138 92.8 80.5 14.15 89.7 4.6/32.5/37.6/7.6/17.6

#8 0.0-201.0 0.7181 92.2 80.5 14.11 90.8 5.8/32.1/35.4/8.2/18.5

#9 –8.0-203.0 0.7189 92.0 79.6 14.08 92.5 4.6/25.8/47.2/6.9/15.5

#10 23.0-190.0 0.7354 91.8 79.3 13.84 98.0 4.5/24.2/44.1/8.4/18.8

#11 54.0-189.0 0.7470 90.0 78.7 13.70 102.8 4.2/24.2/41.0/9.6/21.00

#12 2.0-178.0 0.7102 93.3 80.9 14.17 87.9 4.3/29.8/43.1/7.7/15.0

#13 0.0 -145.0 0.6769 94.0 82.0 14.91 79.3 5.4/35.6/48.9/5.8/4.3

#14 2.0-239.0 0.7510 92.8 80.9 13.31 99.9 4.0/23.8/34.6/6.4/31.3

#15 –4.0-252.0 0.7462 92.7 81.3 13.36 97.7 3.9/25.8/32.0/7.1/31.3

Database G (qualitative) Database G+ (quantitative)

Index Name of the compound Index Name of the compound

#1 1,1,2-trimethylcyclopentane #1 1,1,2-trimethylcyclopentane

#2 1,1,3-trimethylcyclopentane #2 1,1,2-trimethylcyclopentane

#3 1,1-dimethylcyclohexane #3 1,1,2-trimethylcyclopentane

#4 1,1-dimethylcyclopentane #4 1,1,2-trimethylcyclopentane

#5 1,2,3,4-tetramethylbenzene #5 1,1,2-trimethylcyclopentane

#6 1,2,3,5-tetramethylbenzene #6 1,1,2-trimethylcyclopentane

#7 1,2,3-trimethylbenzene #7 1,1,2-trimethylcyclopentane

#8 1,2,4,5-tetramethylbenzene #8 1,1,2-trimethylcyclopentane

#9 1,2,4-trimethylbenzene #9 1,1,2-trimethylcyclopentane

#10 1,2-butadiene #10 1,1,2-trimethylcyclopentane

#11 1,2-dimethyl-3-ethylbenzene #11 1,1,2-trimethylcyclopentane

TABLE 7

List of the compounds contained in the database for FCC gasolines reconstruction

Database G (qualitative) Database G+ (quantitative)

Index Name of the compound Index Name of the compound

#12 1,2-dimethyl-4-ethylbenzene #12 1,1,2-trimethylcyclopentane

#13 1,3,5-trimethylbenzene #13 1,1,2-trimethylcyclopentane

#14 1,3-butadiene #14 1,1-dimethylcyclohexane

#15 1,3-diethylbenzene #15 1,1-dimethylcyclohexane

#16 1,3-dimethyl-4-ethylbenzene #16 1,1-dimethylcyclohexane

#17 1,3-dimethyl-5-ethylbenzene #17 1,1-dimethylcyclohexane

#18 1,4-dimethyl-2-ethylbenzene #18 1,1-dimethylcyclohexane

#19 1,5-dimethylcyclopentene #19 1,1-dimethylcyclohexane

#20 1,C2,T4-trimethylcyclopentane #20 1,1-dimethylcyclohexane

… … … …

#230 trimethylcyclopentene #50 003 trimethylcyclopentene
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the above-presented entropy maximization algorithm with 
constraints containing uncertainties, the introduction of
simulated distillation and overall PIONA analyses was not
sufficient to counter this initial bias. After reconstruction,
the resulting mixture typically contained a limited number

of predominant molecules, the others having a very low
molar fraction. Hence, although the resulting mixtures
have the same properties as the FCC gasoline to be recon-
structed, their molecular composition is very different from
the experimentally measured composition (Fig. 5). The use
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Figure 5

Comparison of the prediction for the gasoline #A depending on the choice of the initial database G or G+.
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of a simple qualitative database, such as this database G, is
therefore not advised for molecular reconstruction by entropy
maximization, unless normal distributions are judiciously
introduced on some or all of the properties. In the latter case,
the user also has to correctly choose the value for the stan-
dard deviation of the normal distribution linked to each con-
straint. This choice being tricky, an alternative database has
been developed based on a quantitative approach.

2.2 Creation of an Initial Database of Representative
Compounds by Means of a Quantitative
Approach (Database G+)

To build a quantitative initial database of molecules, the
same compound is introduced several times in the data-
base. The frequency of each compound is directly given by
the product of its molar fraction in the average gasoline
and the selected total number of molecules in the quantita-
tive initial database. For example, the total number of mol-
ecules in the quantitative initial database can be fixed at
50 000. The molar fraction of each of the 230 compounds
is thus multiplied by 50 000 to obtain its frequency F and
each compound is introduced F times to finally obtain a
database of 50 003 molecules, referred to as database G+,
as shown in Table 7. The fact that the database contains
50 003 molecules instead of 50 000 is due to round-offs.
The distribution in this database of 50 003 molecules is
uniform with respect to these 50 003 molecules, but with
respect to the 230 compounds of the database the actual
molar distribution of the average FCC gasoline is obtained.
Indeed, when a mixture is rebuilt in absence of information
(i.e. each of 50 003 molecules of the database G+ then has
a molar fraction of 1/50003 or 1.9999 × 10-5), its character-
istics are this time equal to the properties of the average
gasoline (Tab. 8), which are, by construction, very close to
the properties of typical FCC gasolines. As will be detailed
in the next section, when starting from this new database
G+ to reconstruct various FCC gasolines by means of the
above-presented entropy maximization algorithm with con-
straints containing uncertainties, the mere use of simulated
distillation and overall PIONA analyses allows to obtain a
very good molecular representation of the actual feedstock.
This is totally different from the results obtained with data-
base G as is illustrated in Figure 5.

2.3 Prediction of the Molecular Composition of a FCC
Gasoline from its Distillation and PIONA

From the quantitative initial database G+ of FCC gasoline
compounds, it is possible to predict the molecular composi-
tion of FCC gasolines by simply using its distillation data and
its overall PIONA analysis. For that, the reconstruction by
entropy maximization is employed using linear constraints
with uncertainties as described in the theoretical part of this
article. Three different gasolines (1 present in the equimolar
mixture used to build the initial database, together with 2
new gasolines) have been rebuilt according to this algorithm.
Table 9 gives the input data (distillation and overall PIONA
analysis) for these 3 gasolines.

The FCC gasolines have initially been rebuilt by using
both databases G and G+. After reconstruction, the
obtained mixtures have distillation and PIONA analyses
that are very close to the analytical data of the gasoline,
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TABLE 8

Properties for the equimolar distribution of the databases G and G+

Properties of Properties of

the database G the database G+

when equimolar when equimolar

distribution distribution

Density at 15°C (g/cm3) 0.7701 0.7326

Average molecular weight (g/mol) 117.5 94.3

Elemental analysis

Carbon content (wt%) 86.24 86.38

Hydrogen content (wt%) 13.40 13.60

Sulfur content (wt%) 0.36 0.02

PIONA

Paraffins content (wt%) 6.61 4.35

Isoparaffins content (wt%) 27.77 26.37

Olefins content (wt%) 28.87 39.03

Naphthenes content (wt%) 11.65 6.90

Aromatics content (wt%) 25.10 23.34

Distillation

0 wt% (°C) –31.7 –31.7

5 wt% (°C) 47.0 23.1

10 wt% (°C) 69.2 33.9

20 wt% (°C) 92.1 49.3

30 wt% (°C) 111.1 68.8

40 wt% (°C) 125.0 80.8

50 wt% (°C) 144.3 98.5

60 wt% (°C) 174.0 112.0

70 wt% (°C) 189.1 134.6

80 wt% (°C) 209.9 147.2

90 wt% (°C) 236.7 175.8

95 wt% (°C) 254.3 200.4

100 wt% (°C) 267.6 267.6

Carbon distribution

C3-C5 (wt%) 5.21 20.55

C6-C8 (wt%) 40.75 55.18

C9-C11 (wt%) 34.57 22.49

C12-C14 (wt%) 16.95 1.78

C15-C17 (wt%) 1.58 0.00

C18+ (wt%) 0.94 0.00
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whatever the initial database G or G+. However, the
obtained molecular compositions are very different
depending on the initial database used. To illustrate these
differences, comparisons between calculated and experi-
mental molecular compositions of gasoline #A are given
in Figure 5. The Root Mean Squared Error (RMSE) is also
shown in Figure 5 as an indicator of the quality of both
reconstructions. Further statistical comparison of both
results can be found in Table 10. With database G, the
obtained molecular composition differs significantly from
the experimental composition, as shown in Figure 5 and
indicated by a RMSE value of 0.84 mol%. In contrast to
this, the molecular composition obtained with the database
G+ is much closer to the experimental composition (Fig.
5) with a RMSE value of 0.25 mol%. This result can eas-
ily be explained. Since the initial database G is poorly rep-
resentative of FCC gasolines in the absence of constraints,
it is very difficult for the entropy maximization method to
correct this initial bias without major modification of the
molar composition of the initial set of compounds. This is
due to the fact that the only information available in data-
base G concerns the presence of the compounds, and not
their typical abundance. In contrast, database G+ contains

not only the information on the type of the compounds
that are present, but also on their average mole fraction.
Consequently, the molecular composition obtained using
database G+ is much more representative of the experi-
mental mole fractions. For this reason, only the recon-
structions performed with the database G+ are presented
here, and database G has been abandoned for real-life
applications.

After reconstruction of the 3 FCC gasolines with the data-
base G+, the results demonstrate a very good agreement
between the experimental mole fractions of the 230 identified
species obtained by Gas Chromatography and the calculated
mole fractions obtained by reconstruction using only the dis-
tillation data and overall PIONA analysis as input data. This
is illustrated by the various statistical indicators in Table 10
and by the parity plots in Figures 6, 7 and 8, which underline
the efficiency of this approach. Indeed, the use of initial data-
base G+ allows to start from the average FCC gasoline and
reduces the need for important modifications of the molar
fractions of the molecules in the database, which allows to
avoid the appearance of a limited number of predominant
molecules.

It is also important to note that the use of the simulated
distillation in the input data guarantees a Gaussian distribution
of the compounds as function of their normal boiling points or
their carbon numbers, thereby avoiding the introduction of

D Hudebine and JJ Verstraete / Reconstruction of Petroleum Feedstocks by Entropy Maximization. 
Application to FCC Gasolines

451

TABLE 10

Statistical evaluation of the results obtained by entropy maximization 
of various FCC gasolines

Gasoline index #A #A #B #C

Used database database G database G+ database G+ database G+

RSS ((mol%)2) 124.5 11.0 19.8 24.7

RMSE (mol%) 0.84 0.25 0.31 0.41

MPE (-) 1.10 0.03 –0.05 0.01

AAD (mol%) 0.49 0.15 0.13 0.18

RSS: Residual Sum of Squares ( )

RMSE: Root Mean Squared Error ( )

MPE: Mean Percentage Error ( )

AAD: Average Absolute Deviation 

where N is the total number of compounds, xi is the experimental molar

fraction of the compound i and x̂i is the calculated molar fraction of the

compound i obtained by entropy maximization.

(AAD
N

x xi i= ⋅ −∑1 ˆ )

MPE
N

x x

x
i i

i

= ⋅
−⎛

⎝
⎜

⎞

⎠
⎟∑1 ˆ

RMSE
x x

N

i i
=

−( )∑ ˆ 2

RSS x xi i= −( )∑ ˆ 2

TABLE 9

Analytical data used to rebuild 3 different FCC gasolines

Gasoline #A Gasoline #B Gasoline #C (1)

Simulated distillation

0 wt% 54°C 54°C 0°C

5 wt% 55°C 69°C 23°C

10 wt% 69°C 73°C 23°C

20 wt% 75°C 93°C 30°C

30 wt% 89°C 112°C 37°C

40 wt% 99°C 128°C 40°C

50 wt% 112°C 144°C 55°C

60 wt% 123°C 164°C 61°C

70 wt% 137°C 177°C 70°C

80 wt% 145°C 194°C 81°C

90 wt% 162°C 213°C 99°C

95 wt% 169°C 230°C 112°C

100 wt% 189°C 254°C 145°C

PIONA

Paraffins content 4.21 wt% 3.75 wt% 5.38 wt%

Isoparaffins content 24.25 wt% 20.11 wt% 35.65 wt%

Olefins content 41.02 wt% 32.11 wt% 48.93 wt%

Naphthenes content 9.57 wt% 7.04 wt% 5.76 wt%

Aromatics content 20.95 wt% 36.99 wt% 4.28 wt%

(1) Gasoline #C corresponds to Gasoline #13 used to build the initial database of
compounds
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Figure 6

Parity plot of the molecular composition between GC analysis and reconstruction by entropy maximization – Case of the FCC gasoline #A.
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Figure 7

Parity plot of the molecular composition between GC analysis and reconstruction by entropy maximization – Case of the FCC gasoline #B.
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additional constraints that force normal distributions (see Sect.
1.8) but require additional input data (standard deviation of
the Gaussian distribution for each constraint) from the user.

CONCLUSION

The entropy maximization algorithm is an elegant molecular
reconstruction method that adjusts the molar fractions of
the compounds of a database to verify constraints that are
related to the properties of the feedstock to be rebuilt. 
The theoretical study described in this article allowed to
illustrate the following aspects:
– the construction of the initial database of compounds is

extremely important because the database must contain
compounds that actually exist in the petroleum mixtures.
That is why each type of feedstocks should have its own
initial database which may depend on the origin of the
crude oil and the refinery processes;

– when the initial database is built, it is necessary to trans-
late the mixture properties into constraints. When these
constraints are linear or can be transformed into linear
constraints, the entropic criterion can be elegantly reorga-
nized, thereby significantly reducing the solution space of

the optimization problem, and a semi-algebraic resolution
of the entropy maximization problem can be utilized.

– when there are no constraints, the entropy maximization
method creates an equimolar mixture, i.e. each molar
fraction is equal to 1/N;

– when exact constraints are added, the entropy maximization
method modifies the uniform distribution to strictly satisfy
these new constraints;

– because the petroleum analyses contain uncertainties, the
use of exact constraints is not always ideal. In this case,
the entropy maximization method can be modified to han-
dle to constraints with uncertainties. The resolution of the
problem is similar to the case with exact constraints;

– when the properties of the initial database are far from the
properties of the feedstock to be rebuilt, the entropy maxi-
mization method leads to a molar fraction distribution that
is characterized by a limited number of predominant mol-
ecules, the others having a much lower molar fraction.
This is due to the exponential term in the equations that
calculate the molar fractions from the Lagrange multipli-
ers. To counter this phenomenon, it is possible to include
new additional constraints which force the solution to
have Gaussian-type distributions.
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Parity plot of the molecular composition between GC analysis and reconstruction by entropy maximization – Case of the FCC gasoline #C.

ogst09097_Hudebin  22/07/11  17:17  Page 453



Oil & Gas Science and Technology – Rev. IFP Energies nouvelles, Vol. 66 (2011), No. 3

The main advantage of molecular reconstruction by entropy
maximization resides in the fact that the system with N
unknowns (i.e., the molar fractions of the N compounds of
the database) is reduced to a system with J + K + L
unknowns (i.e., the Lagrange multipliers and normalized
residuals associated to the constraints). Depending on the
type of petroleum fractions to be reconstructed, N can have
an order of magnitude ranging from several hundreds to sev-
eral tens of thousands. In real case problems, the number of
analytical constraints lies typically between 10 and 40. This
clearly illustrates that the entropy maximization technique
allows to transform an ill-posed optimization problem into a
constrained optimization problem with a unique solution,
while strongly reducing the computational burden.

Applied to the reconstruction of FCC gasolines, this
method was employed to determine the molecular composi-
tion of this type of petroleum fractions from partial analyses
such as a distillation curve and an overall PIONA analysis.
In a first approach, a qualitative database containing 230 dif-
ferent compounds typical of FCC gasolines has been elabo-
rated from detailed gas chromatographic analyses of 15
feedstocks. As this database initially represents an equimolar
mixture of the 230 compounds with properties that are very
different from those of typical FCC gasolines, the entropy
maximization algorithm can not efficiently counter this ini-
tial bias and leads to the presence a limited number of domi-
nating molecules. Although the resulting mixtures have the
same properties as the FCC gasoline to be reconstructed,
their molecular composition is highly unrealistic.

Hence, an alternative database has been developed based
on a quantitative approach, in which the same compound is
introduced several times in the database in proportion to its
molar fraction. The advantage of this quantitative database
resides in the fact that the properties of the corresponding
equimolar mixture are by construction very close to those of
typical FCC gasolines. Applying the entropy maximization
method to this quantitative database allows to accurately
predict the molecular composition of various FCC gasolines,
starting only from their distillation data and overall PIONA
analyses. The predicted compositions can be now used to
develop molecular-level kinetic models for post-treatment
processes, such as selective hydrodesulfurization.
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ANNEX A

The aim of this annex is to propose to the reader the new
group contribution correlations [6] that were developed to
estimate the normal boiling point and the density at 20°C of
different compounds from their 2D structure.

A.1 Description of the Compound Databases Used
to Develop the Group Contribution Correlations

In order to calibrate the group contribution correlations for
the normal boiling point and the density at 20°C, an initial
database of pure compounds has been created from the com-
piled TRC database [23]. At the time of writing, the database
contains 2 569 hydrocarbon and sulfur compounds but can be
easily extended by including nitrogen and oxygen com-
pounds if required. For each compound, the database con-
tains the following properties:
– the boiling point for a given pressure. In the majority

cases, the pressure is equal to 1 atm, but for some com-
pounds, the boiling point has been determined under
reduced pressure;

– the liquid density at 2 temperatures. In the majority cases,
the first temperature is 20°C while the second temperature
is 25°C. However, some compounds are solid at these
temperatures and the density is then given at the saturation
temperature.
After removing the compounds whose boiling point is not

provided at atmospheric pressure, the initial database is
reduced to 1 827 compounds. This new database corresponds
to the calibration database which will be used to develop the
correlation for the normal boiling point Tb. Table A.1 gives
an overview of this database in terms of number of chemi-
cal families and atom number families.

When the initial database is filtered to keep compounds
whose density is at 20°C, the number of compounds is equal
to 1 845. This new database whose main characteristics are
also given in Table A.1 is then used to determine the correla-
tion for the density at 20°C.

A.2 Description of the Group Contribution
Correlations Used to Calculate the Normal
Boiling Point and the Density at 20°C

Group contribution methods are a set of more or less 
complex correlations that allow to calculate the properties of
pure compounds from their chemical structure. They are
based on the principle that a molecule can be broken down
into a certain number of elementary chemical groups which
may be either single atoms (aromatic carbon, naphthenic car-
bon), pairs of atoms (olefinic, cyanide), or larger functional
groups (carboxyl, amide). Each group, whatever its place in
the molecule, has its own contribution that adds to the

properties of the molecule. The general equation used to
calculate a property P using a group contribution method is
therefore as follows:

(A.1)

where P Property to be determined
f( ) Relation between the property and the group

contributions

 
P f n Ci i

i
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⎛

⎝
⎜

⎞

⎠
⎟∑
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TABLE A.1

Number of compounds contained in the different databases
by chemical family and by total number of atoms (except hydrogen)

Chemical families Calibration Calibration

database for Tb database for d20

Paraffins 727 726

Olefins 195 195

Diolefins 29 29

Alkynes 83 83

Mononaphthenes 174 174

Dinaphthenes 16 10

Trinaphthenes 4 0

Monoaromatics 118 118

Diaromatics 70 46

Triaromatics 13 3

Tetraaromatics 8 4

Mononaphtheno-monoaromatics 85 158

Mononaphtheno-diaromatics 3 2

Dinaphtheno-monoaromatics 2 2

Bicyclohexyls 16 16

Biphenyls 63 49

Cycloolefins 42 42

Thiols 48 45

Sulfides 61 58

Thiophenes 18 17

Others 52 68

Total 1 827 1 845

Total number of atoms Calibration Calibration

(except hydrogen) database for Tb database for d20

Hydrocarbon compounds with

5 to 12 carbon atoms 1 237 1 239

Hydrocarbon compounds with

13 to 20 carbon atoms 309 329

Hydrocarbon compounds with

21 to 42 carbon atoms 154 157

Sulfur compounds with

5 to 12 atoms (C + S) 95 88

Sulfur compounds with

13 to 20 atoms (C + S) 28 28

Sulfur compounds with

21 to 42 atoms (C + S) 4 4

Total 1 827 1 845
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ni Number of groups of type i
Ci Contribution of a group of type i

Applied to the case of the prediction of the normal boiling
point, Equation (A.1) used in this work has the following
form:

(A.2)

where Tb Normal boiling point of the pure compound (K)
Tb,0 Reference normal boiling point (K)
ni Number of groups of type i
ΔTb,i Contribution for Tb of a group of type i

  
exp /

, ,
T T n Tb b i b i

i
0( ) = ⋅∑ Δ

The density at 20°C is predicted by means of Equation
(A.3) and Equation (A.4):

(A.3)

(A.4)

with d20 Density at 20°C of the pure compound
(g/cm3)

M Molecular weight of the pure compound
(g/mol)

  
V n Vm i m i

i

20 20= ⋅∑ Δ
,

  
d M

Vm

20

20
=
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TABLE A.2

Contributions of the different structural groups for the calculation of the normal boiling point and the density at 20°C

Structural groups
Calculation of Tb

(a) Calculation of d20

Number(b) Contribution Number(b) Contribution

–CH3 aliphatic 5 333 0.87577 5 520 32.14

–CH2– aliphatic 8 617 0.31012 8 842 16.38

>CH– aliphatic 1 325 –0.33431 1 346 –0.93

>C< aliphatic 482 –0.92606 491 –19.45

–CH2– naphthenic 1 319 0.38519 1 333 13.93

>CH– naphthenic substituted 395 –0.25190 438 –1.16

>CH– naphthenic condensed 42 –0.13434 20 –3.98

>C< naphthenic disubstituted 44 –0.98407 92 –15.89

>C< naphthenic substituted and condensed 6 –0.82463 4 –18.28

=CH2 olefinic 141 0.86394 141 29.70

=CH– olefinic 281 0.32322 288 13.55

=C< olefinic 120 –0.25744 117 –4.12

=C= olefinic 8 0.40947 8 8.79

=CH– cycloolefinic 72 0.37022 77 10.97

=C< cycloolefinic condensed 0 –0.14931 0 –6.94

=C< cycloolefinic substituted 34 –0.22548 49 –4.03

CH triple bound 45 0.80414 44 25.79

C– triple bound 109 0.38502 114 8.85

=CH– aromatic 2 280 0.38136 2 166 11.22

=C< aromatic substituted 714 –0.14943 678 –6.15

=C< aromatic condensed peripherical 420 0.00673 476 –7.74

=C< aromatic condensed internal 8 –0.39948 2 –10.97

–SH thiophenolic 9 1.51910 6 27.55

–SH aliphatic or naphthenic 36 1.53226 37 28.67

–S– aliphatic 32 0.92809 28 12.53

–S– thiophenic 17 0.71371 16 12.46

–S– naphthenic 8 1.01684 9 9.81

–S– benzoïc 8 0.87408 9 12.34

–S– disulfide 16 0.74243 16 14.53

Molecule with 1 ring 383 0.89744 383 25.44

Molecule with 2 rings 267 1.76513 301 52.10

Molecule with 3 rings 19 3.10092 7 73.74

Molecule with 4 rings 8 5.62178 4 100.00

(a) Group contributions in relation to Tb,0 = 307.63 K.
(b) Total number of structural groups present in the calibration database.
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– average absolute deviation: 5.7 K;

– standard deviation: 7.4 K.

The parity plot comparing the experimental normal boil-
ing points and those calculated by the group contribution
method is given in Figure A.1. The corresponding error dis-
tribution is illustrated in Figure A.2.

For the prediction of the density at 20°C, the statistical
data after optimization are:

– average absolute relative error: 1.13%;

– average absolute deviation: 0.0090 g/cm3;

– standard deviation: 0.0129 g/cm3.

The parity plot comparing the experimental densities at
20°C and those calculated by the group contribution method
is given in Figure A.3. The corresponding error distribution
is illustrated in Figure A.4.

V20
m Molar volume of the pure compound at

20°C (cm3/mol)
ΔV20

m,i Contribution for d20 of a group of type i
(cm3/mol)

After the multi-linear regression carried out on the
calibration databases for Tb and d20, the resulting values of
the contributions for the various structural groups for both
properties are given in Table A.2. The total number of the
structural groups in the both calibration databases is also
indicated.

A.3 Validation of the Developed Group Contribution
Correlations

After optimization, the statistical properties for the group
contribution method for the normal boiling point are:
– average absolute relative error: 1.20%;
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Figure A.1

Parity plot for the prediction of the normal boiling point.
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Figure A.2

Error distribution for the prediction of the normal boiling point.
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Figure A.3

Parity plot for the prediction of the density at 20°C.
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Figure A.4

Error distribution for the prediction of the density at 20°C.
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