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Résumé — Création automatique de modèles de composants pour l’optimisation et le contrôle de
véhicules hybrides — L’optimisation de l’utilisation des groupes moto-propulseurs (GMP) modernes
nécessite de modéliser le système de manière quasi-statique avec une logique inverse (“Backward Qua-
sistatic Model’’ – BQM), en particulier dans le cas des GMP hybrides. Cependant, les modèles utilisés
pour la simulation réaliste de ces GMP sont souvent dynamiques à logique directe (“Forward Dynamic
Model’’ – FDM). Cet article présente une méthodologie pour obtenir les BQM des composants de GMP
actuels directement issus de la limite quasi-statique des FDM correspondants de manière analytique.
Grâce à l’aspect paramétrique de cette procédure, il n’est pas nécessaire de relancer une campagne
de simulations après chaque changement du système modélisé : il suffit de modifier les paramètres
correspondants dans le BQM. Cette approche est illustrée par trois cas d’étude (moteur turbo, moteur
électrique et batterie), et l’effet d’un changement de paramètre sur le contrôle de supervision d’un
véhicule hybride est étudié en simulation hors-ligne, en co-simulation et sur un banc d’essai HiL adapté
aux architectures hybrides (HyHiL).

Abstract — Automated Model Generation for Hybrid Vehicles Optimization and Control — System-
atic optimization of modern powertrains, and hybrids in particular, requires the representation of the
system by means of Backward Quasistatic Models (BQM). In contrast, the models used in realistic
powertrain simulators are often of the Forward Dynamic Model (FDM) type. The paper presents a
methodology to derive BQM’s of modern powertrain components, as parametric, steady-state limits
of their FDM counterparts. The parametric nature of this procedure implies that changing the system
modeled does not imply relaunching a simulation campaign, but only adjusting the corresponding
parameters in the BQM. The approach is illustrated with examples concerning turbocharged engines,
electric motors, and electrochemical batteries, and the influence of a change in parameters on the
supervisory control of an hybrid vehicle is then studied offline, in co-simulation and on an HiL test
bench adapted to hybrid vehicles (HyHiL).
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NOMENCLATURE

A{in;exm;exh} External surface: intake manifold, exhaust manifold, exhaust pipe
C{e;tc;m} Torque: engine, turbocharger, motor

Cq,{tv;he,eq;wg;exh,eq} Discharge coefficient: throttle, exchanger (equivalent), waste gate, exhaust pipe (eq.)

cp,{a;exh} Constant pressure specific heat: air, exhaust

C{Ni;MH} Concentration: nickel, metal hydride

D Mass flow rate through the engine

D{in j;exh;t;t,corr;wg} Mass flow rate: injector, exhaust, turbine, turbine (corrected), waste gate

h{exm;exh} Conductive heat exchange coefficient: exhaust manifold, exhaust pipe

H{in;exm;exh} Convective heat transfer coefficient: intake manifold, exhaust manifold, exhaust pipe

I{d;dt;q;qt} Current: direct, direct (transferred), quadrature, quadrature (transferred)

I{m;m,max;b} Current: motor, motor (maximum), battery

k{Ni;MH} Electrode parameter: nickel, metal hydride

Ls Stator inductance

mair Inducted air mass

N{e;tc;tc,corr} Rotational speed: engine, turbocharger, turbocharger (corrected)

ncell No. of battery cells

p Number of pole pairs

p{in;c;e} Pressure: intake manifold, compressor exit, exchanger exit

p{exm;t;0} Pressure: exhaust manifold, turbine exit, ambient

P{m;m,max;b} Electric power: motor, motor (maximum), battery

Q{ f ;exm} Fuel lower heating value, heat flow at the engine exhaust

R{a;s;i;cell} Gas constant, resistance: serial, parallel, battery cell

S {tv;tv,max;wg;wg,max} Cross section: throttle, throttle (maximum), waste gate, waste gate (maximum)

S {he,eq;exh,eq} Cross section: exchanger (equivalent), exhaust pipe (equivalent)

T{in;a,in;c;e} Temperature: intake manifold, intake manifold (air), compressor exit, exchanger exit

T{exm;s,exm;s;s,exh} Temperature: exhaust manifold, exh. manifold (surface), exh. pipe, exh. pipe (surf.)

T{t;re f ,t;tb} Temperature: turbine exit, turbine (reference), turbine (main flow exit)

T{0;cool} Temperature: ambient, coolant

U{d;q;b;oc;re f } Voltage: direct, quadrature, battery, open circuit, reference

Ved Engine displacement

x Auxiliary variable

ε{a;exh} Compression factor: air, exhaust
(
εi =

γi−1
γi

)
η{v;ind;c;exm;t;m} Efficiency: volumetric, global (fuel–torque), fuel–exhaust, compressor, turbine, motor

ϕm Magnetic flux

Π{c;t} Pressure ratio: compressor, turbine

ω Rotational speed: motor

ξ Battery SOC

INTRODUCTION

Hybrid propulsion systems are nowadays increasingly rec-
ognized as one of the few possibilities of combining low
CO2 emissions, acceptable range, and good performance in
road vehicles. In spite of their complexity with respect to
conventional powertrains, hybrids offer additional degrees
of freedom that can be optimized.

Optimization of hybrid energy management (supervisory
control) ensures that the hybrid operation along, e.g., a drive
cycle, is optimal with respect to some dynamic criterion.
Such criterion is typically related to energy consumption and
subjected to several constraints. On the other hand, optimal
dimensioning consists of selecting the best choice in terms

of components. If the same criteria are used, the simultane-
ous optimization of both task is possible (co-optimization,
see Rousseau et al., 2008; Sundström et al., 2008).

The optimization and control of hybrid powertrains is
increasingly based on system modeling in contrast to heuris-
tic strategies dictated by experience only. Although model-
based techniques are inherently more flexible than heuris-
tic strategies, however often they are still structured for
a specific hybrid architecture. The literature offers sev-
eral examples concerning parallel hybrids but also series
and combined hybrids (see the comprehensive survey in
Sciarretta and Guzzella, 2007). Many of these examples
develop a control law (ECMS) based on the formulation
of an optimal control problem. However, this formula-
tion depends on the specific hybrid architecture. Such a
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constraint makes difficult studying the impact of the archi-
tecture on the energy consumption and performance. More-
over, a control structure developed for one architecture is
hardly reusable for different ones.

Thus it would be beneficious to explore the possibility
of deriving a generic model-based control structure for any
type of hybrid powertrain. That structure would enable para-
metric studies and co-optimization of the powertrain con-
figuration, not only of the component characteristics. Also
reusability of data and results from one hybrid application
to another would be enhanced.

Key factors for pursuing such a program are: (i) a generic
system model, which is able to represent several config-
urations using the same set of equations belonging to the
class of Backward Quasistatic Models (BQM) (1) used in
optimization, (ii) a generic control structure emerging from
the harmonization of different ECMS algorithms and capa-
ble of dealing with a generic BQM, (iii) a dedicated testing
tool that is able to experimentally represent various hybrid
architectures.

Concerning (i), a generic optimization-oriented model is
used in the software tool HOT (Hybrid Optimization Tool),
developed at IFP (Chasse et al., 2009b). With regard to (ii),
the equivalence of the ECMS with Pontryagin’s Minimum
Principle (PMP, Serrao et al., 2009) ensures that the core
of HOT can be used as an online controller (Chasse et al.,
2009b), which thus profits of the same generality as HOT’s
system model.

As for (iii), a solution that is implemented at IFP implies
the use of the Hardware-in-the-Loop (HiL) concept. In
this HiL hybrid test bench (HyHiL), the power provided or
absorbed by the hybrid components (motors, battery, etc.)
is physically emulated. This emulation is made possible
thanks to dynamic models of the hybrid components that
run in real time in the system control hardware (Del Mastro
et al., 2009). It should be noticed that these models are
not BQM’s, but rather they belong to the class of Forward
Dynamic Models (FDM), which differ from the BQM with
respect to causality and temporal resolution (Guzzella and
Sciarretta, 2007). With the help of a library of such models,
it will be possible to change the hybrid architecture under
test. The controller should then automatically adapt accord-
ing to the steps (i)–(ii) mentioned above thanks to its generic
structure.

Ensuring that the FDM’s used to emulate the hybrid pow-
ertrain and the corresponding BQM’s used in the controller
are always consistent with each other is an important and a
little studied problem. To cope with that, the simplest solu-
tion consists of launching a simulation campaign for each
system represented (Murgovski et al., 2008). The FDM of

(1) A library of BQM’s called QSS is publicly available for academic
purpose at the URL http://www/imrt.ethz.ch/research/qss/. See also
Guzzella and Amstutz (1999).

the system should be run for every combination of the oper-
ating conditions in order to Build Quasistatic Maps (BQM)
point-by-point. The disadvantage of such a technique is
that there are virtually as many maps as the combinations
of system parameters. For such a reason, artificial neural
networks have been adopted in similar problems, e.g., by
Delagrammatikas et al. (2004).

An alternative methodology consists of deriving the
BQM’s as parametric, steady-state limits of their dynamic
counterparts. Each FDM is defined by parameters (dimen-
sioning, coefficients, maps, etc.) that affect the equations
representing the behavior of the system modeled. The
steady-state behavior can be sought by letting the dynamics
vanish in the system of differential equations constituting
the model. The solution of such steady-state system is the
BQM sought. It will be parametric, i.e., it will depend on
a subset of the parameters of the FDM. Thus changing the
modeled system does not imply relaunching a simulation
campaign, but only adjusting the corresponding parameters
in the BQM.

The proposed method is applicable to any component of
modern powertrains for which a consolidated dynamic mod-
eling technique exists. After having introduced FDM’s and
BQM’s in Section 1, and the associated tools in Section 2,
the paper presents developments concerning naturally-
aspirated and turbocharged engines (Sect. 3) as well as elec-
tric motors and electrochemical batteries (Sect. 4). In Sec-
tion 5 simulation and experimental results are illustrated and
discussed.

1 FDM AND BQM FOR HYBRID POWERTRAINS

Different classes of models are usually used in real-time
simulation and control of modern powertrains. Among sev-
eral other characteristics, they mainly differ with regard to
(i) causality and (ii) temporal resolution.

With respect to the causality, a distinction is often made
between forward and backward models. Recall that in mod-
ular modeling, each component of the system is simulated
as a stand-alone subsystem, which exchanges variables with
the other subsystems through connectors. Typical connec-
tors are pairs of power factors (e.g., torque and speed, cur-
rent and voltage, etc.). Connectors are non-causal when
all physical effects are described only with equations or
other relationships, without any input/output prescription.
However, in many applications connectors are causal, which
means that input and output variables have to be assigned
at each connector (2). With respect to the philosophy that
inspires the choice of the inputs and outputs, backward mod-
eling assigns both the power factors at a single connector as

(2) Modelica/Dymola is an example of a simulation environment based on
non-causal connectors, while Simulink or AMESim are examples of
simulation environments of the causal type.
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Figure 1

Forward and backward causality patterns for an engine system.

inputs or outputs. In contrast, in forward modeling at each
connector one power factor is selected as an input, the other
as an output. Examples of forward and backward causality
for an internal combustion engine are illustrated in Figure 1.

As for the model temporal resolution, the key distinction
lies between quasistatic and dynamic models. The former
class does not contain state variables, and all the dependen-
cies between variables are intended to be the same as in the
case of steady state.

The performance of a powertrain and its controllers
along a prescribed drive cycle is conveniently assessed
using the Backward Quasistatic Modeling (BQM) approach
in which the flow of input variables is directed from the
end of the propulsion chain (the wheels) toward the prime
movers (the engine). Although internal powertrain dynam-
ics are neglected, the overall prediction can be very accurate
(Guzzella and Amstutz, 1999). The BQM approach is also
naturally suitable in powertrain control. Indeed, the “torque
control’’ structure of modern powertrains, including hybrid
powertrains, is such that at each time the driveline speed
can be measured while the torque demand is estimated from
the accelerator pedal using several mappings. Then, follow-
ing the propulsion chain backwards, the torque and speed
demand can be predicted, e.g., at the output stage of the
engine.

On the other hand, Forward Dynamic Modeling (FDM)
finds its natural place in system simulators. Not only the
forward causality can represent the internal dynamics of the
system, but it also well represents the cause-and-effect rela-
tionships, enlightening the effect of the control variables on
the instantaneous powertrain performance. A consequence
of this approach is that the vehicle speed must be calculated
as a function of the other power factor, namely, the traction
force. Therefore, in order to follow a prescribed drive cycle,
a model of a ‘driver’ is needed to demand more or less power
to the prime movers.

A hierarchical structure illustrating the role of FDM’s
and BQM’s in powertrain simulation and control as well as
their interactions is shown in Figure 2. The figure clearly
distinguishes quasistatic models, while dynamic models can
have very different temporal resolutions. Two main classes

Figure 2

Hierarchical structure of FDM and BQM interactions.

are recognizable according to their relationships with con-
trollers. Component controllers (e.g., engine controllers,
motor controllers, etc.) are usually based on dynamic mod-
els with a medium-frequency temporal resolution. The val-
idation of such controllers is thus necessarily entrusted to
higher frequency models.

As an example, in internal combustion engines the
medium-frequency class is represented by the well-known
Mean-Value Engine Models (MVEM), which have a tem-
poral resolution of one engine cycle. Engine controllers
are more and more based on MVEM’s (air loop control,
fuel loop control, etc.). In contrast, high-frequency mod-
els of engines typically have a temporal resolution of one
or few crank angles, thus representing the dynamics inside
the cylinders, etc. Similar considerations apply for motors,
batteries, and other components of modern powertrains.

In contrast to component-level controllers, powertrain-
level controllers are based on quasistatic models, see Fig-
ure 2, and thus their validation necessitates FDM’s of the
MVEM type. Ensuring that the FDM used to emulate the
hybrid powertrain and the corresponding BQM used in the
controller are always consistent with each other is an impor-
tant and a little studied problem.

The methodology illustrated in the following sections
consists of deriving the BQM using two steps. In a first step,
the steady-state behavior of the FDM is sought by letting
its dynamics vanish in the system of differential equations
constituting the model. The resulting model is quasistatic
but still with the forward causality (FQM). Its role here is
to determine the admissible inputs for the BQM, which is
derived in a second step by changing the causality.

Notice that both the FQM and the BQM will be paramet-
ric, i.e., they will depend on a subset of the parameters of the
original FDM. Thus changing the modeled system does not
imply relaunching a simulation campaign, but only adjust-
ing the corresponding parameters in the FQM and BQM
generation.
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Figure 3

Tool chain for hybrid control development based on the hierar-
chical modeling structure of Figure 2.

Figure 4

Schematic representation of the HyHiL setup for a hybrid pow-
ertrain.

2 TOOLS

The generic hierarchical modeling structure of Figure 2
reveals the importance of the model generation process,
which is described by the arrows pointing from FDM’s to
FQM’s and then to BQM’s. While the rest of the paper will
present some examples of such a model generation, this sec-
tion shows how the various modeling levels are integrated
into a chain of tools for control design and prototyping, see
Figure 3.

The QM’s are used for real-time model-based supervi-
sory control as well as for offline optimisation. The offline
optimization stage consists of calculating the evolution of
powertrain power factors along a prescribed drive cycle,
that are optimal with respect to some mathematical crite-
rion (typically, the minimization of the fuel consumption
over the cycle). The software tool named HOT, developed
and validated at IFP (Chasse et al., 2009b) uses BQMs
(static maps) to represent the powertrain components and
a generic model structure to represent various hybrid con-
figurations. Unlike other offline optimisation tools, which
mostly apply Dynamic Programming techniques (Rousseau
et al., 2008; Sundström et al., 2008; Scordia et al., 2005),
HOT is based on the Pontryagin minimum principle, i.e.,
on the direct application of the optimal control equations
(Rousseau et al., 2007; Serrao et al., 2009). In the next
future, HOT will integrate an automated QM generation pre-
processor in order to build the necessary static maps from
mean value models (FDM’s).

Online supervisory control are also more and more based
on modeling and optimisation. The ECMS controller devel-
oped at IFP (Chasse et al., 2009a) use BQM’s as in offline
optimisation to calculate the optimal control outputs. In
order to validate an ECMS controller, a first approach is to
continuously send the control outputs to a real-time running
powertrain simulator. As shown in Figure 3, this simulator

must be based on mean-value FDM’s to ensure a fair val-
idation of the supervisory controller. Such a procedure is
known as co-simulation and it is often preliminary to the
validation of the controller on a real system.

As a final step of the control prototyping chain, the
ECMS-based controllers are integrated in a testing concept
for hybrid powertrains called HyHiL. This concept couples
a real engine test bench with FDM’s running in real time
that emulate the transmission chain as well as the hybrid
components (e.g., battery, electric motor, power electron-
ics, etc.). Unlike similar engine-in-the-loop concepts (Filipi
et al., 2006; Jeanneret et al., 2004), high-frequency models
are used for the drivetrain and hybrid components. The goal
of the HyHiL concept is to test a component at a time in an
environment that realistically represents a hybrid powertrain
including drivability issues. As depicted in Figure 4, the
engine test bench is controlled in such a way that the speed
and the torque at the engine output shaft represent the out-
come of a driver request (e.g., to follow a drive cycle) and the
output of the supervisory controller that splits such a request
between the engine and the electric motor(s). Similarly
to the co-simulation scenario, the ECMS controller needs
BQM’s for the physical engine as well as BQM counterparts
of the FDM’s emulating the hybrid drivetrain.

3 AUTOMATED QM GENERATION FOR ENGINES

3.1 Naturally-Aspirated Engines
This section illustrates the method of generating a BQM for
a naturally-aspirated engine with the purpose of presenting
simple developments that will be later extended to more
complex engine systems. Since mean-value modeling of
engines is an established technique (Guzzella and Onder,
2004), the relevant equations will be listed below without
further comments on their derivation.
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Figure 5

Connections between submodels of a naturally-aspirated
engine.

3.1.1 Equations

The main submodels of a naturally-aspirated engine are con-
nected as in Figure 5. For each of the submodels, the
static equations describing its steady-state, mean behavior
are extracted from the corresponding FDM. For the meaning
of the variables, refer to the nomenclature.

Throttle Valve

The air mass flow rate through the throttle valve is given by
the nozzle equation (3)

D =
S tvCq,tvP0√

T0
Cm

(
Pin

P0

)
(1)

The quasistatic hypothesis implies that the mass flow rate D
is constant along the air path.

Intake Manifold

The temperature in the intake manifold is calculated from an
energy balance,

Dcp,a(Tin − T0) = AinHin(Ta,in − Tin) (2)

Cylinders

The intake mass flow rate is usually expressed in terms of
volumetric efficiency that is often parameterized as a func-
tion of intake pressure and engine speed,

D =
Pin

RaTin
ηv(Pin,Ne)

Ne

4π
Ved (3)

Likewise, the torque generation is represented by an indi-
cated efficiency map as a function of air mass and engine
speed. Pumping losses are also considered to obtain the
effective (shaft) torque,

Ce =
1

Ne

(
ηind (mair,Ne) Q f Din j − Ne

4π
Ved (P0 − Pin)

)
(4)

(3) Also known as the Barré de Saint-Venant equation.

The air mass inducted in one cylinder is related to mass
flow rate through the equation

mair =
4πD
Ne

(5)

Moreover, fuel consumption Din j is proportional to D or
mair, considering a fixed air to fuel ratio.

3.1.2 Resolution

Besides the constant parameters (eleven) and the tabulated
data (two maps), Equations (1-5) contain seven unknowns
(D, S tv, Ne, Ce, mair , Pin, Tin). If two of the unknowns
are imposed, the other five variables can be solved for. In
the FQM, S tv and Ne are imposed. In the BQM, the torque
setpoint Ce and Ne are imposed.

The solution procedure is detailed in Appendix both for
the FQM and the BQM.

An example output of the FQM generation is the graph in
Figure 6, where the torque curves for several throttle com-
mands are shown. These curves explicitly yield the maxi-
mum and minimum engine torque, which will be used later
in the BQM generation to saturate the torque input.

An example output of the BQM generation is the graph of
Figure 7, showing a Din j map obtained by solving the pro-
cedure above for several admissible torque and speed values
(saturated with respect to the output curves of the FQM).

3.2 Turbocharged Engines

Mean-value modeling of turbocharged engines is a well-
known technique that is also frequently adopted as a basis
for model-based control. See Müller et al. (1998), Moraal
et al. (1999), Eriksson (2007) for further details.

Figure 6

Torque curves as a function of the throttle valve command and
engine speed for a naturally-aspirated engine.
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Figure 7

Fuel consumption map of a naturally aspirated engine.

3.2.1 Equations

The main submodels of a turbocharged engine are connected
as in Figure 8. For each of the submodels, the static equa-
tions describing its steady-state, mean behavior are extracted
from the corresponding FDM.

In the following, nozzle equations will be denoted by the
function BSV defined as

BS V(S ,Cq, Pup, Pdown, Tup) =
S CqPup√

Tup

Cm

(
Pdown

Pup

)
(6)

Compressor

The compressor behavior is described by static maps and
first-principle equations. The characteristic curve map
yields

Pc = P0 Πc(D,Ntc) (7)

while an isentropic efficiency map is used to calculate down-
stream temperature as

Tc = T0

(
1 +
Πc(D,Ntc)εa − 1
ηc(D,Ntc)

)
(8)

Moreover, the compressor torque is calculated using energy
balance,

Ctc =
D

Ntc
cp,a(Tc − T0) (9)

Heat Exchanger

Heat exchangers are variously simulated in FQM’s. A possi-
ble choice is with the assumption of several pressure losses
in series representing connecting pipes and the exchanger

itself. Here a lumped equivalent pressure loss is considered
in such a way that

D = BS V(S he,eq,Cq,he,eq, Pc, Pe, Tc) (10)

Also, it is assumed that at steady state the temperature of
air downstream of the exchanger equals the temperature of
the coolant that is given by the map

Te = Tcool(Ne,Ce) (11)

Throttle Valve, Intake Manifold, Cylinders

The models of the throttle valve, the intake manifold, and the
cylinders are the same as in the naturally-aspirated engine
model, except for the fact that Pe, Te replace P0 and T0 at
the inlet of the throttle, while Pexm replaces P0 at the outlet
of the cylinders. Thus

D = BS V(S tv,Cq,tv, Pe, Pin, Te) (12)

Dcp,a(Tin − Te) = AinHin(Ta,in − Tin) (13)

D =
Pin

RaTin
ηv(Pin,Ne)

Ne

4π
Ved (14)

Ce =
1

Ne

(
ηind(mair,Ne)Q f Din j − Ne

4π
Ved(Pexm − Pin)

)
(15)

and Equation (5) holds for mair.

Figure 8

Connections between submodels of a turbocharged engine.
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An additional equation is now necessary to find the tem-
perature at the exhaust, Texm, which is done with a third
engine map (besides ηv and ηind) representing the heat flux
to the exhaust,

Qexm = ηexm(mair,Ne)Q f Din j (16)

Exhaust Manifold

The exhaust temperature is found from an energy balance
applied to the exhaust manifold involving a variable wall
temperature and neglecting the radiating contribution,

Texm =

Dcp,aTin + Qexm + Aexm
hexmHexm

Hexm + hexm
Ts,exm

Dexhcp,exh + Aexm
hexmHexm

Hexm + hexm

(17)

The mass flow rate through the exhaust manifold is
Dexh = D + Din j.

Turbine

The turbine behavior is described by static maps and first-
principle equations. The characteristic curve map yields

Dt =
Dt,corr(Πt,Ntc,corr)√

Texm
Pexm (18)

where Πt = Pexm/Pt and Ntc,corr = Ntc
√

Tre f ,t/Texm.
Downstream temperature is calculated using an isen-

tropic efficiency map

Ttb = Texm

(
1 − ηt(Πt,Ntc,corr) ·

(
1 − Π−εexh

t

))
(19)

Moreover, the turbine torque is given by

Ctc =
Dt

Ntc
cp,exh(Texm − Ttb) (20)

The mass flow rate through the waste gate is calculated
with the nozzle equation,

Dwg = BS V(S wg,Cq,wg, Pexm, Pt, Texm) (21)

The sum of the mass flow rate through the waste gate and
through the turbine gives the total mass flow rate at exhaust,

Dexh = Dwg + Dt (22)

Downstream of the turbine, the mass flow coming from
the turbine and the waste gate mix together into a single flow,
whose temperature is given by

Tt =
DtTtb + DwgTexm

Dexh
(23)

Exhaust Pipe

The mass flow rate through the pipe is calculated with the
nozzle equation,

Dexh = BS V(S exh,eq,Cq,exh,eq, Pt, P0, Tt) (24)

The exhaust temperature is found from an energy balance
applied to the exhaust pipe involving a variable wall temper-
ature and neglecting the radiating contribution,

Ts =

Dexhcp,exhTt + Aexh
hexhHexh

Hexh + hexh
Ts,exh

Dexhcp,exh + Aexh
hexhHexh

Hexh + hexh

(25)

3.2.2 Resolution

Besides the constant parameters and tabulated data, the 20
Equations (7-24) contain 23 unknowns. Thus if three of the
unknowns are imposed, the other twenty variables can be
solved for. In the FQM, S tv, S wg, and Ne are imposed. In the
BQM, Ce and Ne are imposed together with the additional
constraint on the values of S tv and S wg, that

S wg = S wg,max if S tv � S tv,max (26)

The resolution procedure is described in Appendix.
Example outputs of the FQM and BQM generation are the
torque curves of Figure 9 and the fuel consumption map of
Figure 10. Notice that the maximum torque curve visible in
Figure 10 can be easily extracted from the data in Figure 9
by enveloping the maxima of the torque curves at various
throttle or waste gate commands.

Figure 9

Torque curves of a turbocharged engine as a function of the
throttle valve command (0-100) and the waste-gate command
(100-200), as well as the engine speed.
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Figure 10

Fuel consumption map of a turbocharged engine.

4 AUTOMATED QM GENERATION FOR HEV

4.1 Electric Machines

In this section, the approach illustrated for engines is applied
to a different component of EVs and HEVs, i.e., elec-
tric motors. This development considers only one type of
motors, namely, the Permanent Magnet Synchronous Motor
(PMSM).

4.1.1 Equations

Similarly to other types of motors, FDM’s of PMSM are
based on the electric circuit approach representing the
machine characteristics as lumped electric parmaters such
as resistances, inductances, etc. The equivalent circuit of a
PMSM with iron losses is depicted in Figure 11 (Sun et al.,
2008; Urasaki et al., 2000).

The steady-state equivalent circuit equations yield

Ud = RsId − pωLsIqt = RsId + Ri(Id − Idt) (27)

Uq = RsIq + pω(LsIdt + ϕm) = RsIq + Ri(Iq − Iqt) (28)

Figure 11

Equivalent electrical circuits of a PMS Motor (ωe � pω).

Cm = pϕmIqt (29)

In absence of iron loss, Id = Idt and Iq = Iqt

4.1.2 Resolution

The five Equations (27-29) contain eight unknowns (Ud, Uq,
Id, Iq, Idt, Iqt, Cm, ω), besides the constant parameters. Both
in the FQM and in the BQM, only two variables have to
be imposed, thus one equation is still necessary to solve the
system. This missing equation describes the motor control
strategy.

In Maximum Torque per Ampere (MTA) control
(Mohamed and Lee, 2006), the torque is maximized with
respect to Id and Iq with the constraint that I2

q + I2
d = I2

m. For
the system under study, this strategy leads to

Id = −ωLs

Ri
Iq � −x(ω)Iq (30)

regardless of the value of Im.
Therefore it is possible to calculate the quasistatic dq cur-

rent and voltage as a function of motor torque and speed,
which are imposed in the BQM,

Iqt =
Cm

pϕm
(31)

Iq = Iqt +
x

1 + x2

ϕm

Ls
(32)

Idt = − x2

1 + x2

ϕm

Ls
(33)

The electric power Pm = UdId+UqIq, i.e., the output variable
of the BQM, is calculated as

Pm = ωCm +
xω

1 + x2

ϕ2
m

Ls
+

[
Rs(1 + x2) + Rix2

]
·

·
(
C2

m

ϕ2
m
+

( x
1 + x2

)2 ϕ2
m

L2
s
+

2x
1 + x2

Cm

Ls

) (34)

from whence the efficiency ηm = ωCm/Pm follows. The
quasistatic modeling is completed by the physical limits
imposed on the electric power Pm < Pm,max and on the
current Im < Im,max, which impose a limit to torque that is
variable with speed.

4.2 Batteries

Batteries are often represented in system-level simulators in
a quasi-static way as simple equivalent circuits, like in Fig-
ure 12. The equivalent electric circuit comprises a voltage
source and a resistance, both varying with the state of charge
and temperature. In contrast, battery dynamics is variously
represented. FDM of automotive batteries range from black-
box or ‘gray-box’ equivalent circuit models (Kuhn et al.,
2006; Takano et al., 2000) that try to reproduce battery
dynamics with networks of resistances and capacitances,
to electrochemical models (Newton and Paxton, 1997; Wu
et al., 2001; Botte et al., 2000; Zhang and White, 2007).
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Figure 12

Simple equivalent circuit of an automotive traction battery.

4.2.1 Equations

In Bernard et al. (2008), a lumped-parameter electrochem-
ical model has been presented for Ni-MH batteries, which
comprises among the state variables the concentrations of
the reactant species and the electrode reference potentials,
while the State Of Charge (SOC) is calculated from the
nickel concentration. Neglecting the influence of the side
reactions (involving the production or absorption of gaseous
oxygen) that are relevant only for high values of SOC, and
other dynamic effects, a simplified cell FDM consisting of
four equations is derived as⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

U̇re f = f (Ure f , s)
Ub = g(CNi,CMH , Ib,Ure f , Tb)
ĊNi = kNiIb

ĊMH = −kMH Ib

(35)

where Ib is the cell output current (positive if discharging),
s = sign(Ib), Ub is the output voltage of the battery cell, Ure f

is the reference potential of the nickel electrode, CNi and
CMH are the nickel and the metal hydide concentrations, Tb

is the temperature, and f (·), g(·) are nonlinear functions that
depend on many electrochemical and geometrical parame-
ters, as the constants kNi and kMH do. The cell SOC is

ξ = 1 − CNi

CNi,max
(36)

A static counterpart of the first two equations of the
set (35) can be extracted as

Ub = g(CNi,CMH , Ib,U∞re f (s), Tb) (37)

with U∞re f (s) s.t. f (Ure f , s) = 0. Conversely, the SOC
dynamics is that of a pure integrator and in such a way it
cannot generate static equations. Instead, the SOC is related
to CNi through Equation (36), while the concentration CMH

is related to CNi via the balance of total number of moles,
kNiCMH + kMHCNi = const. Consequently, Equation (37)
reduces to

Ub = h(ξ, Ib, Tb) (38)

where

ξ̇ = − kNiIb

CNi,max
(39)

The latter equation compares with the well-known
Coulomb-counting equation that is the baseline to estimate
the SOC online. The term CNi,max/kNi is equivalent to the
nominal battery capacity.

4.2.2 Resolution

The set of Equations (35) has six unknowns. Thus if two
of the unknowns are imposed, the other four variables are
solved for. In both FQM and BQM, the temperature Tb can
be treated as an input (exogeneous variable). Moreover, in
the FQM the current Ib is imposed, while in the BQM the
electric power Pb = IbUb is imposed. In order to solve
Equation (38) in terms of Pb in closed form, the equiva-
lent circuit approximation of Figure 12 is introduced. The
cell parameters Uoc and Rcell are derived by linearizing the
function h(·) around a current I0,

Ub ≈ h(ξ, Tb, I0) +
∂h
∂Ib

∣∣∣∣∣
I0

· (Ib − I0) (40)

Since U∞re f depends on the sign of the current, h(·) is lin-
earized twice, for ±I0. This expression yields two values of
Uoc and Rcell for the equivalent circuit, according to s that is
also the sign of the power Pb,⎧⎪⎪⎨⎪⎪⎩Uoc(ξ, Tb, s) = h(ξ, Tb, sI0) − ∂h

∂I

∣∣∣
sI0
· sI0

Rcell(ξ, Tb, s) = ∂h
∂I

∣∣∣
sI0

(41)

Therefore the linearization parameters that do not depend
on Ib, thus the battery BQM can be solved from the equiv-
alent circuit equations including the number of cells in
series ncell,

Ib =
Uoc

2Rcell
−

√(
Uoc

2Rcell

)2

− Pb

ncellRcell

Ub =
ncellUoc

2
+

√(ncellUoc

2

)2

− ncellRcellPb

(42)

Moreover, a battery local ‘efficiency’ can be calculated as

ηb =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Ub

Uoc
, Pb > 0

Uoc

Ub
, Pb < 0

(43)

Notice that Equation (42) implies that the power is lim-
ited by the condition of having a positive quantity under the
square root, so that the maximum power delivered by the
battery equals ncellU2

oc/(4Rcell).

5 RESULTS

5.1 Model Generation Results

5.1.1 Automated Generation Procedure

The method presented in Section 3 was implemented as a
Matlab (4) routine that automatically generates a FQM and

(4) MATLABr© is a software developed by The MathWorks, Inc.
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a BQM from a FDM of a turbocharged engine coded in
the AMESim (5) environment. The FDM is a Mean-Value
Engine Model for what concerns the engine combustion and
breathing processes with a detailed dynamic representation
of the air and exhaust flows in the engine pipes. All the
maps and parameters used in the model generation were
downloaded from the original FDM.

It is possible to download the parameters from an
AMESim model to the Matlab workspace by using the
AMESim toolbox in Matlab. While it is relatively straight-
forward to extract the parameters from submodels with a
single instance, like the engine MVEM or the turbocharger
model, it is more difficult to get parameters from elements
that have several instances, e.g., the section of a pipe. The
number of instances should be known in advance but, as this
number may change from one model to another, making this
extraction automatic problematic.

The solution proposed consists of using the XML file
related to the AMESim model, which contains all the model
elements and the connections between these elements. By
reading this XML file, it is possible to distinguish the dif-
ferent instances of the pipe submodel (or any other element
that is needed), and then download the correct values from
AMESim. This extraction has been performed with a Mat-
lab script and a Java package, by using the DOM (6) to cope
with the XML language.

The results of the engine model generation have been
validated by launching a simulation campaign on the FDM
of the HyHiL 2� turbocharged engine. The FDM was run
for several combinations of the commands and the engine
speed. Each run was pursuited until stabilisation. The result-
ing steady-state values of torque and other variables were
then recorded.

Figure 13 shows the comparison of these torque val-
ues with those predicted by the FQM. Similarly, Figure 14
shows the comparison between the stabilized fuel consump-
tion of the FDM and the corresponding values predicted by
the BQM.

The figures clearly show that the accuracy of the pro-
posed model generation method is quite satisfactory. The
small differences (always below 5%) can be explained with
some simplifications adopted in the equations of Section 3
with respect to the original FDM, particularly for what con-
cerns the spatial discretization of pipes and heat exchangers
as well as some details on the shape of the BSV function
that describes mass flow rates.

5.1.2 Models Comparison

The BQM models automatically generated are used both
in HOT and in the ECMS as representing the system to

(5) AMESimr© is a software developed by LMS Imagine S.A.
(6) Document Object Model. For more information, visit

http://www.w3.org/DOM/.

Figure 13

Comparison between the output torque from the FQM and the
FDM of the HyHiL turbocharged engine.

Figure 14

Comparison between the fuel mass flow rate calculated by the
BQM and the FDM of the HyHiL turbocharged engine.

be controlled. In both cases, the generic control structure
is automatically adapted when a new set of parameters is
defined in the FDM’s. To illustrate such an adaption, the
parallel hybrid vehicle emulated in the HyHiL test bench
(Del Mastro et al., 2009) has been taken as a baseline. The
main parameters of its components have served to build the
the BQM’s as in the previous sections.

The HyHiL engine is a 2� turbocharged engine. The
engine fuel consumption map (experimental data) is shown
in Figure 15 together with the BQM generated in Sec-
tion 3.2, to which a new torque limit has been added to rep-
resent the real engine operating range. The figure shows a
good agreement between measured data and model outputs.

Similarly, the measured efficiency data of the permanent-
magnet, synchronous electric machine are shown in Fig-
ure 16, alongside with the map generated by the BQM of
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Figure 15

Comparison between the engine consumption map of the
HyHiL turbocharged engine as given by the BQM (top) and
measured (bottom).

Figure 16

Comparison of the efficiency map of the HyHiL electric
machine as given by the BQM (top) and as provided by the
manufacturer (bottom). Parameters: Rs = 0.2 Ω, ϕm =

0.88867 V·s/rad, Ls = 0.002835 H, Ri = 0.3 ·ω+0.5 Ω, p = 1.

Section 4.1 using the data listed in the figure legend. The
quantitative differences observed can be explained by the
difficulty to take into account the iron losses (Ri) in a realis-
tic way. Here, the air gap equivalent resistance is considered
as increasing linearly with speed, but higher order models
have been proposed, e.g. by Zhu et al. (2001), which could
lead to a better agreement. The static losses in the power
electronics have not been modeled, thus they are included
in the motor parameters. It is important to remark at this
point that the availability of tabulated experimental data is
a BQM in its own and it can be used as such both in HOT
and in the ECMS. However, the adaption of the map to vari-
ations of parameters can only be done effectively by using a
parametrable BQM.

In order to validate the battery BQM of Section 4.2, FDM
data are used here instead of experimental results, since bat-
tery ‘efficiency’ maps like the one defined in Equation (43)

are not commonly available (7). However, an experimen-
tal validation of the electrochemical FDM has been already
presented, e.g., in Bernard et al. (2008) for typical charge-
discharge profiles and thus it can be considered here as rep-
resentative of the real behavior of the battery. Efficiency
maps for the NiMH battery used in HyHiL are shown in
Figure 17. Clearly, the agreement is good except for high-
current values, where the nonlinear effects that have been
neglected in the BQM become relevant.

5.2 Parameter-Sensitive Optimization Results

A further analysis is aimed at showing how changes in
system parameters affect the powertrain optimal operation

(7) The main experimental difficulty is that the SOC should be kept con-
stant while varying the current, in order to sweep all the points of the
map.
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calculated by HOT and that controlled by the ECMS. In
particular, two system parameters, namely, motor power and
battery capacity, are varied with respect to the baseline case
as listed in Table 1. The results below refer to the same
drive cycle (NEDC) performed in charge-sustaining mode,
that is, the battery SOC at the end of the cycle is kept close
to the initial value. Both in HOT and in the ECMS, that is a
consequence of the optimal control algorithms adopted.

TABLE 1

Baseline and modified data for the electric motor and the battery
of the HyHiL system

Case Motor power Battery capacity

1 (basel.) 45 kW 5 Ah

2 15 kW 2.5 Ah

3 22.5 kW 1.25 Ah

State of Charge (--)

State of Charge (--)

Figure 17

Comparison of the efficiency map of the HyHiL battery
(NiMH) as given by the FDM (top) and the BQM (bottom).
Parameters: capacity = 5 Ah, ncell = 96, voltage = 115 V.

5.2.1 Optimization with HOT

Since HOT is purely based on BQM’s to represent the sys-
tem, changes in the latter directly affect the trajectories cal-
culated, as shown in Figures 18, 19.

The results are plotted in terms of engine and motor
operating points in the respective efficiency maps, along the
NEDC speed profile. With HOT, these points result from the
dynamic minimization of the overall fuel consumption with
the major constraint of battery charge sustaining along the
cycle. In this case, reducing the size of the electric motor
reduces the room for recharging the battery, both using
regenerative braking and using the engine. The latter influ-
ence is also visible in the engine operating points, which
exhibit a trend in moving toward lower load regions when
case 2 is applied. The use of the engine is then restricted by
the generating limits of the electric machine.

5.2.2 ECMS in Co-simulation

The online controller ECMS uses the same models as HOT
to calculate the optimal control outputs. On the other hand,

Figure 18

Operating points of the engine on the NEDC with HOT for the
data cases 1 and 2, see Table 1.
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Figure 19

Operating points of the motor on the NEDC with HOT for the
data cases 1 and 2, see Table 1.

the controller effects on the powertrain operation are inves-
tigated by sending the control outputs to corresponding
FDM’s that are run simultaneously (as described in Sect. 2).
Contrarily to the previous scenario, now the driving sched-
ule is not known in advance but it is estimated continuously
from the action of a virtual driver that tries to follow the
NEDC by adapting the current vehicle speed to the pre-
scribed one acting on the pedals.

Another difference with respect to the HOT case is that
co-simulated FDM’s appropriately include the dynamics of
the components. This is clearly shown in Figures 20, 21,
where several transient operating points appear in addi-
tion to a quasistatic behavior that is similar to that of Fig-
ures 18, 19. The figures also show that, in such a scenario
as well, shifting from case 1 to case 2 makes the operating
points of the engine move towards lower load (and lower
efficiency) zones.

5.2.3 ECMS in the HyHiL Test Bench

In the HyHiL test bench control outputs of the ECMS con-
troller are sent to a real engine on the one hand, and to real-

Figure 20

Operating points of the engine on the NEDC in co-simulation
for the data cases 1 and 2, see Table 1.

time FDM’s of the other components (e.g., battery, electric
motor) on the other hand. These FDM’s are then used to
control the bench dynamometer controller, as shown above
in Figure 4. Data are collected from real sensors on the
engine and the dynamometer, and from virtual sensors in the
models. Figures 22, 23 show the operating points measured
during a NEDC test (followed by a virtual driver as in the
co-simulation scenario).

The results of the baseline case and of the case 2 (not
shown) are very similar to the other scenarios (HOT and co-
simulation). The figures also show the results for the case 3,
where the motor power is sufficient to enable relatively high-
load, high-efficiency operation of the engine (contrarily to
case 2). However, the battery size reduction leads to a much
more aggressive SOC control, which implies several oper-
ating points where the engine is strongly loaded to recharge
the battery. The result of this operation is clearly seen in



N Verdonck et al. / Automated Model Generation for Hybrid Vehicles Optimization and Control 129

Figure 21

Operating points of the motor on the NEDC in co-simulation
for the data cases 1 and 2, see Table 1.

Figure 22 in terms of a larger dispersion of the engine oper-
ating points from the best efficiency zone.

CONCLUSION

The paper has presented the concept of automated model
generation for hybrid powertrains. In particular, a para-
metric building of backward and forward QM’s from their
respective FDM counterparts has been proposed with the
goal of serving as a prerequisite to perform complex opti-
misation and prototyping tasks with dedicated tools (HOT,
HyHiL). Some examples have illustrated the concept for
engines (both naturally-aspirated and turbocharged) and
electric components of HEVs. The equations derived show
the feasability of the proposed procedures, while the sim-
ulation results show that such a procedure is equivalent in
terms of accuracy to longer simulation campaigns. More-
over, the effect of changes in the components’ parameters

Figure 22

Operating points of the engine on the NEDC with HyHiL for
the data cases 1 and 3, see Table 1.

and of the consequent map adaption is clearly visible in the
optimisation and online control results.

APPENDIX

Naturally-Aspirated Engines

Forward Resolution

Given S tv and Ne, D can be deduced from Equation (1) if the
flow through the throttle is sonic, since Cm depends only on
the gas properties for sonic flows. In this case, Equation (2)
yields Tin and Pin is found with Equation (3). Once Pin has
been found, the sonic hypothesis can be checked. If it is
true, then mair and Ce are calculated with Equations (5, 4),
respectively. Else, the proposed solution consists in assum-
ing a value for Pin, deducing D from Equation (1), then Tin

from Equation (2), and finally calculating a new value for
Pin with Equation (3). If the two Pin’s are equal, a fixed
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Figure 23

Operating points of the motor on the NEDC with HyHiL for
the data cases 1 and 2, see Table 1.

Figure 24

Flowchart of FQM generation for a naturally-aspirated engine.

point has been found, and mair and Ce are calculated with
Equations (5, 4), respectively. This procedure is illustrated
in Figure 24.

Backward Resolution

Given Ce and Ne, no equations can be solved directly. The
proposed solution is to assume a value for Pin, then calculate

Figure 25

Flowchart of BQM generation for a naturally-aspirated engine.

Figure 26

Flowchart of FQM generation for a turbocharged engine.

D and Tin from (2) and (3), and finally calculate a new Pin

with (4) and (5). If this value matches the first guess, a fixed
point has been found, and S tv is calculated with (1). This
procedure is illustrated in Figure 25.

Turbocharged Engines

The resolution procedure is inspired by the same consid-
erations illustrated in the previous section for naturally-
aspirated engines, thus it is not further detailed. For the
FQM, four algebraic loops have been identified. For the
BQM, a distinction has been made between the cases in
which the throttle valve command is active (S tv � S tv,max)
and the waste gate command is active (S wg � S wg,max).
The proposed methods of resolution are illustrated in Fig-
ures 26-28.
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Figure 27

Flowchart of BQM generation for a turbocharged engine:
waste gate totally open.
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