
HAL Id: hal-01937572
https://ifp.hal.science/hal-01937572

Submitted on 28 Nov 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Thermal Stability of Gas Oil Hydrotreating Processes:
Numerical Issues of the Matrix-Eigenvalue Approach

J.-M. Schweitzer, M. Elia, C. López García, U. Ehrenstein

To cite this version:
J.-M. Schweitzer, M. Elia, C. López García, U. Ehrenstein. Thermal Stability of Gas Oil Hydrotreating
Processes: Numerical Issues of the Matrix-Eigenvalue Approach. Oil & Gas Science and Technology
- Revue d’IFP Energies nouvelles, 2010, 65 (5), pp.771-783. �10.2516/ogst/2010018�. �hal-01937572�

https://ifp.hal.science/hal-01937572
https://hal.archives-ouvertes.fr


Thermal Stability of Gas Oil 
Hydrotreating Processes: Numerical Issues

of the Matrix-Eigenvalue Approach
J.-M. Schweitzer1, M. Elia1, C. López García1 and U. Ehrenstein2

1 IFP Energies nouvelles-Lyon, Process Design and Modeling Division, Rond-point de l’échangeur de Solaize, BP 3, 69360 Solaize - France
2 IRPHÉ UMR 6594, Aix-Marseille Université, CNRS, 49 rue Joliot-Curie, 13384 Marseille Cedex 13 - France

e-mail: j-marc.schweitzer@ifpenergiesnouvelles.fr - marc.elia@ifpenergiesnouvelles.fr - clementina.lopez-garcia@ifpenergiesnouvelles.fr
ehrenstein@irphe.univ-mrs.fr

Résumé — Stabilité thermique de procédés d’hydrotraitement des gazoles : aspects numériques
de l’approche par valeurs propres matricielles — Les procédés qui mettent en œuvre des réactions
très exothermiques nécessitent une attention particulière afin d’éviter l’augmentation non contrôlée
de la température connue comme emballement thermique. Une analyse de stabilité thermique est
nécessaire afin d’établir les conditions d’opération sûre et productive des procédés exothermiques.
L’hydrotraitement de gazoles met en œuvre principalement des réactions d’hydrogénation ;
l’hydrotraitement de charges très insaturées comme les gazoles light cycle oil peut être fortement
exothermique. Pour cette raison, ce procédé fait l’objet d’une étude de stabilité thermique. La théorie
des perturbations a déjà été appliquée pour effectuer une analyse de stabilité de ce procédé en
conditions dynamiques. Cette méthode consiste à perturber le modèle et à résoudre le modèle
perturbé sous forme d’un problème aux valeurs propres. La condition de stabilité impose que toutes
les perturbations doivent s’amortir (tendre vers zéro) quand le temps tend vers l’infini. Quelques
aspects sur l’application de cette théorie ainsi que des aspects numériques sont étudiés dans ce travail
ainsi que leur effet sur les conclusions de stabilité. La formalisation de la solution du modèle perturbé
comme un problème aux valeurs propres standards est comparée au problème aux valeurs propres
généralisées. Aussi, le calcul du Jacobien par une approche numérique a-t-il été comparé au calcul
par les expressions analytiques. Dans les deux cas, les résultats sont comparés et l’influence sur les
résultats de stabilité/instabilité sont présentés.

Abstract — Thermal Stability of Gas Oil Hydrotreating Processes: Numerical Issues of the Matrix-
Eigenvalue Approach — Processes carrying out exothermic reactions must ensure safe operating
conditions to avoid uncontrolled thermal excursion, also known as runaway. Therefore, a thermal
stability analysis is necessary to determine the safe and productive range of operating conditions of
highly exothermic processes. Hydrotreating gas oil feeds consists mainly of hydrogenation reactions;
processing highly unsaturated feeds such as light cycle oils can be highly exothermic. For this
reason, a thermal stability study of this complex refining is performed. Perturbations theory has
already been applied to carry out a thermal stability study of this process under dynamic conditions.
This method consists in the perturbation of the hydrotreating reactor model and solution of the
perturbed model in the form of an eigenvalue problem. The stability condition imposes that all
perturbations must tend to zero when time tends to infinity. Some methodology and numerical aspects
applying this theory and the effect on stability results are tackled in this work. The formalization of
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NOMENCLATURE

a Reaction order of hydrocarbon pseudo-component in
the liquid phase

A Heat exchange surface (m2/m3)
b Reaction order of hydrogen in the liquid phase
C Concentration (mol/m3)
Cp Specific heat Capacity (J/kg/K)
Dax Axial dispersion coefficient (m2/s)
E Activation energy (J/mol)
H Henry coefficient
J Jacobian matrix
k0 Reaction rate constant at the reference temperature
nz Total number axial discretization steps
P Pressure (barg)
Pt Total pressure (barg)
Q Heat (W)
Rg Ideal gas constant (J/mol/K)
r Reaction rate (mol/s/kgcatalyst)
Sr Reactor section surface (m2)
Svoid Section surface between the heaters and the reactor

wall (m2)
t Time (s)
T Temperature (K)
Tc Reactor wall cooling temperature (K)
Tmean Average temperature along the reactor (K)
Tref Reference temperature (K)
u Superficial liquid velocity (m/s)
U Heat transfer coefficient (W/m2/K)
U Eigenvector
x Perturbation
x· Vector of perturbations
y⇀ Variables vector
z Axial coordinate (m)
Z LCO/(LCO+SR) volumetric ratio related to feed

composition

Subscripts and superscripts

g Gas
i Lump index or perturbation index
j Reaction index or eigenvalue index
k Current axial reactor coordinate

l Liquid
n Total number of variables
por Porosity
s Solid
steel Reactor steel
wall Reactor external wall

Abbreviations

F1 Material balance equation
F2 Thermal balance equation
F3 Gas-liquid equilibrium equation
F4 Pressure balance equation
F5 Reaction rates equation
FBP Final Boiling Point
HDT Hydrotreating
IBP Initial Boiling Point
LCO Light Cycle Oil gas oil
PDE Partial Differential Equation
SR Straight Run gas oil

Greek symbols

ε Holdup
ΔH Reaction heat (J/mol)
λ Eigenvalue
λ⎯ ax Effective thermal conductivity (W/m/K)
ν Stoechiometric coefficient
ρ Density (kg/m3)

INTRODUCTION

One of the security priorities involving highly reactive systems
is the thermal runaway risk. The temperature increase for the
reactions that follow an Arrhenius law induces the rise of the
heat generation that further increases the reaction tempera-
ture; this situation may result in a thermal runaway. Some
refining processes carry out highly exothermic reactions;
some examples are Fischer-Tropsch synthesis, hydrotreating,
hydrocracking and selective hydrogenations. Hydrotreating
(HDT) is one of the most important processes in the oil refin-
ing industry. There are more than one thousand HDT units all
around the world covering a capacity of about 45 millions of
barrels per calendar day [1]. Hydrotreating aims to purify oil
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the perturbed model solution as a standard eigenvalue problem or as a generalized eigenvalue
problem are presented. The computation of the Jacobian by a numerical approach or with the
analytical expressions is also carried out. In both cases, results are compared and their influence on
the stability/instability results is presented.



fractions to produce fuels at commercial specifications. It is
carried out at high hydrogen partial pressures and high tem-
peratures with a solid catalyst. Hydrotreating of gas oil cuts is
exothermic, the main reactions being aromatics and olefins
hydrogenation, hydrodesulfurization (HDS) and hydrodeni-
trogenation (HDN). The exothermic level attained mainly
depends on the content of unsaturated compounds in the gas
oil processed. This content depends on the gas oil type. Light
Cycle Oils (LCO) usually contain 70-80 weight percent of
aromatics and 5-10 weight percent of olefins. Hydrotreating
this kind of feeds is consequently highly exothermic. For
safety reasons and their poor quality, LCO hydrotreating is
carried out by dilution with less exothermic feeds. An alter-
native to improve diesel production can be the incorporation
of higher contents of LCO in the HDT feed stream. Thus, it
is necessary to determine the consequence on the process
exothermicity. For this reason, this study deals with the
thermal stability study of LCO hydrotreating.

Thermal stability analysis is an engineer’s support for
reactor design and operation. Such a study must guarantee
reliable operation and also ensure to attain the target selectiv-
ities and conversions. It is also essential to determine the
regions of operating conditions where the reactor behavior
becomes unreliable or dangerous (runaway regions). In prac-
tice, design of reactive systems is mainly based on a station-
ary criterion described by van Heerden [2]. The heat gener-
ated by the reactions and the heat removal is represented as a
heat removal efficiency diagram. The stationary stability is
verified if the slope curve of heat generated by the reactions
is lower than the slope of the heat transferred through the
wall. If this condition is not verified, three possible steady
states can be observed leading to unstable operation. Then, a
hysteresis behavior is observed.

Another approach for thermal stability analysis under
steady state conditions is parametric sensitivity. This method
evaluates the sensitivity of the system’s behavior following
to changes in parameters of the system. In the parametrically
sensitive regions the behavior of the reactor changes sharply
with small variations of inlet parameters. This situation can
lead to thermal runaway [3]. This concept has been widely
applied for chemical reactors thermal stability analysis
[4-14]. Both approaches, performed under stationary
conditions, help to define stability/instability maps as a
function of the most important parameters such as operating
conditions and model parameters. However, as the thermal
balance transient term is not taken into account, dynamic
stability cannot be ensured in the boundary of stationary
stability. The stationary stability is a necessary condition but
not sufficient to ensure stability. Hence, a dynamic analysis is
essential to confirm or enlarge the unstable regions
determined by the stationary study; the work presented here
is focused on the dynamic stability study.

The mathematical model consists of a system of Partial
Differential Equations which is nonlinear, in particular due to

the Arrhenius law of chemical reaction kinetics. By applying
dynamical system theory (cf. [15, 16]) to this system, steady
equilibrium states are determined. The Jacobian of the
nonlinear system at those stationary points defines the linear
dynamical system for small perturbation: if the linearized
system is stable, then small perturbations will ultimately
decay and the stationary point is linearly stable. If however
the linearized system is unstable, then even infinitesimal
perturbations will amplify and linear stability theory hence
provides sufficient conditions for instability. This dynamical
system approach is commonly used in mechanics and it has
also been applied in the field of chemical engineering. Aris
and Amundson [17] used this linear approach to assess the
stability of a reactor and the method was applied for control
purposes to decide which parameter is more efficient to
control an operating point (steady state). Perlmutter [18] also
exposed the application of dynamic linear stability theory to
chemical reactors.

While the application of the perturbation theory to chemi-
cal systems is not new, for most works reported in literature
[19-21] the reaction systems adopted are in general rather
simple, including simple reaction networks, and the reactors
are frequently assumed to be homogeneous or pseudo-homo-
geneous. More recent works deal with the modeling of local
hot spots in packed bed reactors [22-24].

Few studies of complex reactive systems, such as gas oils
hydrotreating, are available. In a previous work, a dynamic
thermal stability analysis of an HDT pilot plant has been
undertaken [25, 26]. The local stability of several steady-state
points was investigated using the linear stability approach. 

The contribution of this work is to apply this theory to a
fairly complex reactive system. The HDT model describes
the packed bed upflow reactor. It involves 3 phases (gas-
liquid-solid), 6 lumped chemical families and 3 boiling point
cuts. In this way, 18 Partial Differential Equations (PDE) and
18 algebraic equations constitute the model discretized in the
axial axis. A regulation system was implemented to deter-
mine the steady-state solution [25]. The Jacobian was
approximated using finite differences and the algebraic equa-
tions were explicitly solved to be able to apply the standard
eigenvalue problem formalism for the linear stability analy-
ses. Several cases were tested. The spectral analysis of the
eigenvalues indicating the stable/unstable behavior of the
reactive system is compared with dynamic simulations. An
excellent agreement was found between the simulations and
the stability analysis.

The present work focuses on formalism and numerical
assumptions for the spectral analysis of the Jacobian matrix.
The first objective is to determine the impact of the stability
conclusions if the problem is solved as a generalized eigen-
value problem instead of its corresponding standard eigen-
value problem. Another point addressed in this paper is the
accuracy of the Jacobian and the consequence on the stability
results. The numerical approach using finite differences to

J-M Schweitzer et al. / Thermal Stability of Gas Oil Hydrotreating Processes:
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calculate the Jacobian is easy to implement for such a complex
system. However, the order of magnitude of some variables
can be very different (for instance pressure in Pa versus
concentrations in mol/m3). Therefore, the estimation of some
derivatives may be less accurate. The analytical expressions
resulting from the PDE and algebraic equations are devel-
oped and used to calculate the exact Jacobian (analytical).
Results are compared to those obtained by the numerical
approach.

1 HYDROTREATING REACTOR MODEL

Gas oils hydrotreating is the refining process studied in this
work. Since main HDT reactions are exothermic (hydrogena-
tions), it is important to study the stability of the reactive sys-
tem. A reactor model has already been developed and is
described elsewhere [25]. The main features of this model are
described as follows. The model represents the triphasic gas-
liquid-solid system. The reactor has a fixed bed of solid cata-
lyst. The feed is injected in the reactor in upflow mode. Gas
flow is considered to be in plug flow while the liquid phase
flow is described by an axial dispersion model. The complex

chemical composition and reactivity of gas oils is taken into
account with 15 hydrocarbon lumps distributed in three boil-
ing point cuts. The chemical lumps are: triaromatics (TRI),
diaromatics (DI), monoaromatics (MONO), saturates (SAT),
sulfur compounds (SULF) and olefins (OLEF). The boiling
point cut ranges are: Initial Boiling Point (IBP) – 200°C,
200-300°C and 300°C – Final Boiling Point (FBP). The reac-
tion network is illustrated in Figure 1. Reactions taken into
account are aromatics hydrogenation (R1, R2, R5, R6, R9
and R12), olefins saturation (R4, R8 and R10) and
hydrodesulfurization (R3, R7 and R11). In addition hydrogen
and hydrogen sulfide have also to be taken into account (H2S
marked in gray since it is produced by hydrodesulfurization).
This results in 17 lumps (Tab. 1). Reaction kinetics is
described via a power law type as shown by Equation (1),
(lump i = 16 corresponds to hydrogen):

(1)

Parameters were fitted with pilot plant experiments carried
out at industrial operating conditions and real LCO gas oil
feeds.

The transient material balance for each lump is given by
Equation (2). This means that there are 17 PDE concerning
the material balance. The transient thermal balance of the
reactor is indicated in Equation (3) (see Eq. 2, 3).
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R3
R2

R1

TRI300°C-FBP + 2H2

DI300°C-FBP + 2H2

OLEF300°C-FBP + H2

SULF300°C-FBP + 5H2

MONO300°C-FBP + 3H2 + H2S

SAT300°C-FBP

DI200°C-300°C + 2H2

OLEF200°C-300°C + H2

SULF200°C-300°C + 5H2

MONO200°C-300°C + 3H2 + H2S

SAT200°C-300°C

OLEFIBP-200°C + H2

SULFIBP-200°C + 5H2

MONOIBP-200°C + 3H2 + H2S

SATIBP-200°C

R5
R4

R7
R6

R9
R8

R11

R12
R10

a)

b)

c)

Figure 1

Hydrotreating reaction scheme for 3 boiling point cuts.
a) 300°C-FBP cut, b) 200°C-300°C cut, c) IBP-200°C cut.
R1 to R12 indicate the hydrotreating reaction numbers.

TABLE 1

Reference of lumps in the hydrotreating model

Lump index (i) Reference

1 TRI300°C-FBP

2 DI300°C-FBP

3 MONO300°C-FBP

4 SULF300°C-FBP

5 SAT300°C-FBP

6 OLEF300°C-FBP

7 DI200°C-300°C

8 MONO200°C-300°C

9 SULF200°C-300°C

10 SAT200°C-300°C

11 OLEF200°C-300°C

12 MONOIBP-200°C

13 SULFIBP-200°C

14 SATIBP-200°C

15 OLEFIBP-200°C

16 H2

17 H2S



One should note that gas velocity also changes all along
the reactor. This is due to several facts: a) the temperature
profile may change along the axis of the reactor, b) H2 and
H2S are respectively consumed and produced and c)
hydrocarbon lumps are partially vaporized. As illustrated
by Equation (4), the last depends on gas-liquid equilibrium
(G-L-E) and also on temperature where the “Henry
constants” Hi are in fact variables since they are also
temperature and pressure dependent. There are 17 algebraic
equations describing the gas-liquid-equilibrium:

(4)

Moreover, as isobaric conditions are assumed, at each
time step and along the reactor’s axis the constant pressure
balance must be satisfied. Hence, an additional algebraic
relation is added to the reactor model:

(5)

In total, for the discretized system the number of PDE to
be solved, resulting in 17 × nz material balances for each
chemical lump and nz thermal balances, where nz is the
number of discretization points along the axis z of the reactor.
In addition, the algebraic relations associated with gas-liquid
equilibrium have to be solved, which gives rise to 17 × nz
G-L-E equations. Finally, the 1 × nz pressure balance
equations have also to be taken into account. The integration
along the z axis is carried out using an upwind scheme for the
convective terms and a centered scheme for the
diffusion–dispersion terms. An explicit 1st order Euler
scheme was used for integration in time. Results presented in
this work are all obtained for a discretization with nz = 50.

2 THERMAL STABILITY ANALYSIS

2.1 Stationary Analysis

The stability of operation of chemical reactors at stationary
conditions is based on the van Heerden criterion [2]. The
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principle is also described by Froment and Bischoff [27].
This criterion imposes that the slope of heat generated by the
reactions must be lower than the slope of the heat transferred
through the wall. This can be expressed as:

(6)

The comparison between both slopes is generally repre-
sented as a stationary stability diagram. Two representations
are commonly used. One representation consists in plotting
the reactor temperature (T) as a function of the operating para-
meter allowing to control T (for instance a wall cooling tem-
perature or feed inlet temperature). To satisfy the steady state
stability, for a given cooling or inlet temperature, only one
reactor temperature must be obtained. For unstable reactors, a
curve having an S shape will be obtained. Consequently, three
reactor temperatures will be possible for a given cooling or
inlet temperature. A hysteresis behavior is then observed. The
stationary analysis is useful to identify a preliminary stable/
unstable region. However, as stated before, this condition is
necessary but not sufficient to ensure stability.

2.2 Dynamic Analysis

The dynamic stability analysis carried out in this work consists
in the following main steps. The system once discretized
with respect to the spatial variable z, the resulting large alge-
braic-differential system is advanced in time and a regulator
is applied and (possibly unstable) steady states are computed.
Once an equilibrium state retrieved, the nonlinear system is
linearized leading to the linear dynamical system for small
perturbations involving the Jacobian matrix. The eigenvalues
of the Jacobian are computed, the real parts of which deter-
mining whether the equilibrium state is stable or unstable.

The disturbance solution vector x, containing the pertur-
bation at the discrete points zk along the reactor axis, is
sought as an expansion in terms of the eigenvectors Uj of the
Jacobian at the stationary point, that is:

(7)
x = ⋅

=

⋅∑U j
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From Equation (7), it is clear that if there are eigenvalues
with positive real parts, any perturbations will grow when
time increases. Conversely, the condition of asymptotic
stability implies that all the eigenvalues must have a negative
real part. Nonzero imaginary part of the eigenvalues will give
rise to oscillatory behavior, the perturbation amplitude being
attenuated or amplified, depending on the sign of the real part
of the eigenvalues.

The question that remains is how to formalize the eigen-
value problem depending on the model. The HDT reactor
model is a system of PDE-algebraic equations. The perturbed
model can be solved as a standard or as a generalized eigen-
value problem and both approaches are exposed in Section 3.

3 DYNAMIC ANALYSIS: FORMULATION 
AS A MATRIX EIGENVALUE PROBLEM

For differential-algebraic systems, there are two ways to
evaluate the stability of a steady-state. One is based on the
standard eigenvalue problem and the second is referring to a
generalized eigenvalue problem. These two methods were
applied to the dynamic model for LCO hydrotreating.
A comparison of results obtained with both approaches is
presented. The whole eigenvalues spectra presented in this
work are computed using the EISPACK Fortran library.

3.1 Matrix-Eigenvalue Problem

The spatial differential operators in the variable z once
discretized, one recovers an algebraic-differential system
which may be written formally as:

Ay⋅ = f(y) (8)

y being the solution vector containing the 17 liquid and gaseous
phase concentration of lumps as well as the temperature and
the gas velocity at the nz points of discretization. A steady
state solution is therefore:

f(y) = 0 (9)

and superimposing a perturbation x, the general linearized
perturbation model can be written as Ax⋅ = Jx where A has the
following structure (see Scheme 1).

The Jacobian matrix J, that is the partial derivatives of the
nonlinear function f(y) evaluated at the steady state, is
defined as:

(10)

According to the expansion indicated in Equation (7), the
eigenvalues λj and eigenvectors Uj are solution of Equation
(11):

λjAUj = JUj (11)
This formalism corresponds to the generalized eigenvalue

problem and this system can be solved as a standard
eigenvalue problem only if the matrix A is invertible, which
is not the case for the present HDT model. However, it is
possible to formulate the stability of the system as a standard
eigenvalue problem, by introducing the algebraic Equations
(4) and (5) into the PDE Equations (2) and (3). This
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operation transforms the problem into a purely PDE system
given by Equations (12) and (13) (see. Eq. 12, 13).

We obtain a new linearized model of perturbation: 
A’ ⋅x⋅ = J’ ⋅x where A’ is now an invertible matrix and J’
is the Jacobian matrix of the new system. Then, this
system is solved as a standard eigenvalue problem since
x⋅ = A’–1 ⋅J’ ⋅x = M⋅x. Due to the reformulation of the system,
the size of the Jacobian J’ is reduced to the dimension
[18 × nz] × [18 × nz]. Of course, here a standard eigenvalue
problem is recovered:

λjUj = MUj (14)

3.2 Stationary Stability Results

In order to evaluate the impact on the dynamic stability
results, the perturbed model is solved as a standard or as a
generalized eigenvalue problem and some reference cases
were considered. For this purpose, a stationary stability curve
was traced by model simulation. The following conditions
were kept constant: feed composition Z = 100% LCO; liquid
hourly spatial velocity LHSV = 2 h-1; inlet feed temperature
Tinlet = 200°C; heat transfer coefficient Uwall = 3 W/m2/K;
hydrogen/hydrocarbon feed ratio H2/HC = 1000 Nm3/m3 and
total pressure Pt = 150 barg. To represent the stability curve,
the average temperature (Tmean) along the reactor was
obtained by imposing a constant cooling temperature (Tc)
along the reactor (z axis). For each cooling temperature it is
possible to calculate an average temperature (Tmean). In the
case of multiplicity of steady states, the intermediate points
cannot be determined since they are unstable. For these
cases, it is necessary to apply a regulation that consists to
artificially stabilize this point in order to determine the
solution of this steady state. The regulation system is
explained in Reference [25].

Figure 2 illustrates the curve of average temperature along
the reactor (Tmean) as a function of the reactor wall cooling
temperature Tc. The gray zone inside the dotted lines
corresponds to the unstable zone according to stationary van
Heerden criterion. Some steady states are marked as case 1 to
case 7. These seven steady states were used for the dynamic
analysis, considering the formulations of the stability
problem as both a standard and generalized matrix
eigenvalue problem. Table 2 details the coordinates of the
seven cases in the Tmean – Tc plane. The van-Heerden
stationary criterion (Eq. 6) was verified for all cases. Only
case 1 and case 7 proved to be stable according to this
criterion.

3.3 Comparative Results between Standard
and Generalized Eigenvalue Problem

Both the standard and generalized eigenvalues were
computed for the seven cases illustrated in Figure 2 and
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TABLE 2

Reference cases studied by dynamical analysis

Case number Tc (°C) Tmean (°C)
Stationary stability

van Heerden criterion

1 231.3 245.4 stable

2 231.6 249.4 unstable (limit point)

3 230.7 254.4 unstable

4 224.7 261.9 unstable

5 135.3 270.2 uns

6 59.1 280.6 unstable

7 59.6 288.0 stable
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detailed in Table 2. For all cases the highest real parts of
eigenvalues calculated by both approaches are compared.
Figure 3 illustrates the results for all cases. The abscissa cuts
at a zero value, hence positive real parts and negative real
parts can be clearly distinguished. The standard eigenvalue
approach indicates that cases 4 and 5 are unstable while the
generalized eigenvalue approach results indicate instability

for cases 2, 3, 4, 5 and 6. For case 2, instability is obtained
with a very low real part (7 × 10-7) of the eigenvalue which
indicates almost marginal instability. Indeed, as shown in
Figure 2, cases 2 and 3 are very close to the limit point
corresponding to the lower branch of the stability curve. This
limit point is the boundary between the stable and unstable
part of the curve and this behavior is retrieved by the stability
analysis.

Hence, the stability results obtained with both formulations
slightly differ, the generalized eigenvalue problem seeming
to be more reliable with regard to the van Heerden criterion.
The differences between both approaches may however be
within the numerical uncertainty, the eigenvalues having a
real part very close to zero in case 3. Figure 4 shows the forty
eigenvalues with the highest real parts obtained for case 3 by
the standard and generalized problem. Although the unstable
(or least stable) eigenvalue is slightly different, both spectra
are very similar. This confirms that it is difficult to conclude
between both approaches for cases having eigenvalues very
close to zero.

Differences between both approaches may be explained
by the reformulation of the algebraic-differential system to a
pure differential one. This step requires the introduction of
the algebraic equations into the differential ones. In
particular, in Equation (12) the temporal derivative of the
Henry constant divided by the temperature has to be
linearized. This operation may affect the accuracy of the
results.

Hence, for algebraic-differential systems it is preferable to
keep the generalized eigenvalue approach instead of the
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standard one. Moreover, one has to keep in mind that trans-
forming the generalized eigenvalue problem into a standard
one necessitates some manipulations and this operation may
not be easily achieved for more complex models.

4 JACOBIAN ACCURACY

4.1 Numerical Jacobian

The impact of the Jacobian matrix calculation on the
accuracy of the stability results is also evaluated in this work.
The calculation of the elements of the Jacobian matrix
requires the values of the derivatives of the model function as
a function of each variable, at the stationary points. In our
case both the numerical and analytical Jacobians are
computed and stability results obtained with both Jacobians
are compared. The numerical Jacobian is computed column
wise, approximating the partial derivatives by finite
differences with the value ε = 10-6.

(15)

4.2 Analytical Jacobian

The analytical expressions of the reactor model to compute
the Jacobian are derivated. This task, apparently simple, is in
fact rather intricate. In the reactor model (Eq. 1-5) the complex
dependency between material balances, thermal balances and
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algebraic equations is not immediately apparent. In addition,
derivatives have to be expressed as a function of the dis-
cretized scheme at the discrete points zk, k = 1, …, nz,
along the reactor’s axis. Due to the boundary conditions, one
has to distinguish the reactor inlet coordinate z1 and outlet
coordinate znz from the interior positions zk, k = 2, …, nz–1.
Only a brief description of the most relevant analytical deriv-
atives of the discretized scheme is carried out in this section,
by considering only the interior points.

For reading ease purposes, the material balance given in
Equation (2) will be referred as F1. The thermal balance in
Equation (3) will be noted as F2. Gas-liquid equilibrium
(G-L-E) in Equation (4) will be referred as F3 and pressure
balance (PB) given in Equation (5) as F4. The reaction rates
expressions Equation (1) are noted as F5.

4.2.1 Analytical Derivatives for Material Balance

The quantities at the positions zk are simply denoted by
Ci

g(k), Ci
l(k), ug(k), T(k). The derivative of gas concentration

with respect to the material balance in Equation (2) at the k
and k–1 axial positions along the reactor (for k ∈[2 to nz–1])
is calculated as follows:

(16)

(17)

with zk+1 – zk = Δz the discretization width along the axis.
Note that, as mentioned before, first and second derivatives
with respect to z for any quantity y are approximated
respectively by first order and second order finite differences
with:

(18)

(19)

For the liquid concentration in the material balance, the
derivative of liquid concentration with respect to the material
balance for the k–1, k and k+1 ∈[2 to nz–1] positions can be
written as:

(20)

(21)
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(22)

Reactions are considered to be carried out only in the liquid
phase in contact with the catalyst. Hence, from Equation (1),
for each j reaction, the general expression of the derivative
for the reaction rates (F5) with respect to liquid concentration
of hydrocarbon lumps can be written as:

(23)

In the same way, for each j reaction, the derivative of the
reaction rates (F5) with respect to hydrogen liquid concentra-
tion becomes:

(24)

The dependency of material balance as a function of tem-
perature is taken into account through the source derivative:

(25)

The source derivative as a function of temperature is
expressed in Equation (26). As for liquid concentration
dependency in the source term, the contribution from all
reactions (R1 to R12) has to be accounted for in Equation
(25) (not detailed here):
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material balance also depends on this variable:

(27)

(28)

4.2.2 Analytical Derivatives for Thermal Balance

The analytical derivatives for thermal balance are more
involved than the expressions obtained for material balance.
For example, heat capacities, thermal conductivity and the
source term are all function of the liquid concentration. The
derivative of liquid concentration with respect to the thermal
balance for the k and k–1 ∈[2 to nz–1] positions can be
written as:

(29)

where:

(30)

(31)

The derivative of temperature with respect to the thermal
balance for the k–1, k and k+1 ∈[2 to nz–1] positions can be
resumed as: (see Eq. 32-33).
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At positions k–1 and k+1 one gets:

(35)

(36)

The derivative of gas concentration with respect to the
thermal balance for the k ∈[2 to nz–1] positions can be
resumed as: (see Eq. 34).

The derivative of gas velocity with respect to the thermal
balance for the k ∈[2 to nz–1] positions is:

(37)

4.2.3 Analytical Derivatives for Gas-liquid Equilibrium

Gas-liquid equilibrium (G-L-E) is an algebraic expression
Equation (4). The analytical derivatives for gas-liquid
equilibrium are illustrated in this section. It should be noted
that Henry “constants” (Hi) are function of total liquid con-
centration, temperature and total pressure. The derivative of
G-L-E with respect to liquid and gas concentrations for the
k ∈[2 to nz–1] positions are respectively:

(38)

(39)

The derivative of G-L-E with respect to temperature for
the k ∈[2 to nz–1] positions is:

(40)

4.2.4 Analytical Derivatives for Pressure Balance

Pressure balance is also an algebraic expression (eq. 5).
Pressure balance depends only on gas concentration of lumps
and temperature. Hence, both analytical derivatives for
pressure balance are given by Equations (40) and (42):
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4.3 Results: Comparison between Numerical
and Analytical Jacobian

The seven cases already discussed in Sections 3.2 and 3.3 are
evaluated. The generalized eigenvalue problem is applied in
this section. Jacobians of the seven stationary points corre-
sponding to each case are computed with numerical and ana-
lytical approach. Figure 5 illustrates the highest eigenvalue
real part for each case. Again the abscissa cuts at a zero and
positive real parts can be clearly distinguished from negative
real parts. As illustrated, cases 1 and 7 are stable whether the
eigenvalues are calculated by numerical or analytical
Jacobian. Stability conclusions are also in agreement for the
unstable cases 3, 4, 5 and 6. Different conclusions are
obtained for case 2: the computation with the numerical
Jacobian predicts instability while the calculation with the
analytical Jacobian indicates that this operating point is sta-
ble. However, since eigenvalues are very close to zero the
results for case 2 are at the stability threshold.

A comparison between non zero elements of both
Jacobians (numerical and analytical approach) correspond-
ing to case 2 is also carried out. The relative error of each no
zero element is calculated, taking as reference the analytical
Jacobian. Two numerical Jacobians are computed with two
different absolute derivative steps ε = 10-6 and ε = 10-7.
Results are shown in Figure 6. For a step of 10-6, relative
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Highest eigenvalue real parts for the seven cases studied.
Comparison between numerical and analytical Jacobians.
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errors are comprised within ±0.06%. Calculations with a
lower step of 10-7 lead to a higher relative error range
(±1.3%). In that case ε is too small and cancellation occurs
in the numerator of the difference quotient (15) due to
machine precision. The whole eigenvalues spectrum obtained
for case 2 with analytical and numerical Jacobians is illus-
trated in Figure 7. It can be noticed that both spectra perfectly
superimpose.

As concluding remark, results indicate that the two
approaches are very close. It may be noticed that the
numerical Jacobian approach has larger implementation
advantages over the exact analytical approach, which indeed
may not be feasible any more for more complex systems.

CONCLUSIONS

The reliable and safe operation of chemical reactors is an
essential goal for industry. A safety concern for highly
exothermic processes is thermal runaway. This risk must be
assessed and reduced with safe designs and with identifica-
tion of safe/unreliable/dangerous operating regions. Hence, it
is essential to carry out a thermal stability analysis to identify
a priori stable and unstable regions. Hydrotreating is a refin-
ing process that mainly consists on hydrogenation reactions
which are highly exothermic. A thermal stability study of gas
oils hydrotreating is therefore tackled in this work. A dynamic
model that accurately represents a hydrotreating pilot plant
was employed for this study. It takes into account three
phases, the complex chemical gas oil composition and the
most representative reactions contributing to heat generation.

The dynamic stability theory, capable of predicting the
stability properties of the system close to stationary points, is
applied in this work. The tangent system close to the
stationary point is linearized and the stability condition states
that all eigenvalues of the linearized system must have a
negative real part. However, some questions arise concerning
the calculation of eigenvalues. Indeed, the problem can be
formulated as a standard or generalized eigenvalue problem.
Also, the accuracy of the Jacobian, whether calculated by a
numerical approach or obtained through analytical
expressions, may have some impact on the reliability of the
results. Both issues are addressed in this work by means of
seven test cases, that is seven steady state points for which
stationary stability were also determined.

Concerning the standard and generalized eigenvalue
problem, spectra obtained are relatively similar. However, in
the neighborhood of limit points, the generalized eigenvalue
approach is in agreement with van Heerden criterion,
whereas there are some differences when using the standard
eigenvalues. The reformulation of the algebraic-differential
system to a pure differential system diminishes the size of the
system but at the same time this approach introduces new
terms, which apparently slightly deteriorate accuracy. Hence,
for algebraic-differential systems it should be preferred to use
the corresponding generalized eigenvalue approach for
stability. Also, for the present model it was indeed possible to
eliminate the algebraic part of the system to recover a pure
dynamical formulation. This rewriting of the system could
however be much more involved or even impossible for
more complex reactor models.
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The results may also depend on the way the Jacobian is
computed. As discussed above, the partial derivatives with
respect to the components of the state vector may be written
explicitly, or alternatively they can be evaluated by divided
differences. For the seven cases considered here, stability
conclusions are equivalent for six cases. For the case where
conclusion differs, it must be pointed out that the stationary
point is located in the limit point neighborhood. Since results
are very similar between both approaches, it is preferable
(and much easier in general) to implement the numerical
calculation of the Jacobian. In this case, attention must be
paid to the absolute derivative step (ε in Eq. 15) which has to
be chosen appropriately for a given machine precision.
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