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Abstract

Given the importance of wave excitation force prediction in most advanced con-

trol schemes for wave energy converters, where every new wave force estimation

becomes available every fraction of second, the main objective of this paper

is to perform a short-term wave prediction that can meet a trade-off between

low computational complexity, limited memory usage and accuracy. To this

aim, two prediction algorithms are proposed using Kalman filtering theory. The

proposed prediction methods are evaluated by using real measurements.

Keywords: Wave Force Prediction, Extended Kalman Filter, Adaptive

Kalman Filter, Model Predictive Control, Wave Energy Converter

1. INTRODUCTION

Wave energy converters (WECs) are devices used to produce electrical energy

from wave movements. A schematic example of a WEC is given in Figure 1:

an oscillating body (the captor or primary converter) moves under the action

of waves and is connected to a Power-Take-Off (PTO) system; the PTO, by5

exercising an appropriate force on the captor, converts its mechanical energy into

electrical energy. The PTO can be a linear electric generator, or a multistage

device, such as a hydraulic motor connected to a rotary electric generator.
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Figure 1: Schematic diagram of a wave energy converter of the point-absorber type

The PTO can be used as an actuator to adjust the natural response of the

captor to waves, in order to maximize the extracted energy. The ideal conditions10

for optimal energy absorption have been studied in [1], showing that an energy

maximizing controller requires future knowledge of the wave excitation force Fex,

that is, the force exerted by the incoming wave on the captor. Among the many

different approaches to hydrodynamic control of WECs, see [2] for a thorough

review, latching control [3], [4], declutching control [5], and model predictive15

control (MPC) [6] are examples of strategies relying, directly or indirectly, on

this knowledge. In the MPC context, for instance, the complete control scheme

must include an online algorithm to compute future values of the wave excitation

force over the prediction horizon, as shown in Figure 2.

Notice that, while it is relatively straightforward to measure excitation force20

using a dedicated experiment and a well-positioned force sensor [7], only indi-

rect measurements or estimations are possible during normal WEC operation.

Two experimentally-validated methods for wave force estimation from available

measurements are described in [7]. Assuming that local wave elevation mea-

surements are possible during WEC operation, another, less direct, approach25

could consist of computing future values of the wave excitation force from wave

elevation predictions, though this would require an inconvenient increase of the

prediction horizon, to cope with the non-causal nature of the impulse function
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Figure 2: Wave excitation force prediction in the context of MPC

relating wave elevation to wave excitation force. Indeed, for its important role

in the optimization of WEC energy yield, short-term wave forecasting, with a30

particular focus on wave elevation, has drawn a lot of attention in the hydrody-

namic control community.

A first possible approach to perform short-term wave forecasting is spatial

prediction, using up-wave measurements from sensors installed around the loca-

tion of a WEC [8], [9], [10]. The method is reported to forecast quite long pre-35

diction horizons with a good performance [11]. However the forecasting model

can become very complex, since the wave propagation nonlinearities or/and the

possible multi-directionality of waves have to be taken into account [12].

A second approach, that has become popular in the last years because of

its simplicity, is to use past time series of local measurements or estimates, at40

the float position. In [13], using real wave elevation data, Fusco and Ringwood

show that a relatively simple linear auto-regressive (AR) model can perform

quite well, provided that the high-frequency content is filtered out from the time

series data. To avoid introducing a phase lag, the use of a non-causal zero-phase

filter is advocated. The solution is based on a batch-processing approach, which45

also includes a computationally-expensive nonlinear least squares problem to be

solved and a spectral analysis to be performed in order to compute an optimal

sampling period for all the computations. It is worth noticing that considering
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a more complex model structure in this context, namely an auto regressive

moving average (ARMA) model instead of an AR model, does not seem to50

bring any particular benefit [14]. In [15], an iterative, more easily implementable

approach is proposed, based on a bank of least squares estimators. However,

as it will be shown later, it is implicitly assumed that the sea state is constant.

Furthermore, as noticed in [15], the prediction performance degrades as quickly

as the prediction horizon increases.55

Two novel solutions for short-term wave forecasting are proposed in this

paper. They are also based on past time series of local WEC measurements

or estimates. Implementation aspects such as computational complexity and

accuracy are investigated. Their performance is assessed using wave excitation

force time series, obtained from data collected in the wave basin of Aalborg60

University, on a lab-scale wave energy converter prototype.

Three main features of the proposed solutions, built around AR-model esti-

mation, are:

• It is shown that, for the first method, the multi-step ahead error criterion

adopted in [13] is a particular case of our criterion.65

• The first method is based on the extended Kalman filter. Hence the

algorithm is recursive and easy to implement.

• To improve the performance, overcoming the error accumulation problem

that comes with the first method, an alternative approach is proposed. It

builds an independent model for each horizon, using an adaptive Kalman70

filter. It is also shown that the approach in [15] is a limiting case of ours,

when the sea state is assumed to be constant.

The paper is organized as follows. The problem is formulated in Section 2

together with a review from the literature. Then the multi-step error minimiza-

tion approach with extended Kalman filter is proposed in Section 3, while in75

Section 4, an adaptive Kalman filtering approach is considered. In Section 5,

the available data as well as the prediction results are presented. In Section 6
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the computation of a forecasting interval is considered. Some conclusions are

drawn in Section 7.

2. PROBLEM FORMULATION80

Given available estimates {F̂ex(l)} of the wave excitation force taken at

discrete time instants l = 0, 1, . . . , k, where k is the current time, our objective

is to predict the wave excitation force at time k + 1, k + 2, . . ., k + Np, where

Np is the prediction horizon. For this purpose, some prediction methods in

the literature are first reviewed. These methods will be compared to the new85

approaches developed in the paper. In the following, for simplicity denote y(k) =

F̂ex(k).

2.1. Decomposition based approach

This approach is based on the assumption that y(k) may be regarded as the

sum of several sinusoidal waves of different frequencies, amplitudes and phases,90

y(k) =

m∑
j=1

Ajsin(ωjk + φj) (1)

wherem is the total number of components, Aj , ωj and φj are the amplitude, the

angular wave frequency and the phase angle of the jth component, respectively

[16]. Note that in the model (1) the frequencies ωj are known and fixed, while

Aj and φj are unknown. The parameters Aj and φj can be estimated through

least squares or Kalman filter procedures and can be used to forecast the future95

wave excitation force [13].

The main advantage of the model (1) is its direct physical meaning. However

the constant frequencies assumption is rather restrictive and unrealistic, since

it is well known that the wave excitation force spectrum is time-varying [17].

Consequently, it is not reliable to use the model (1) to predict the future wave100

excitation force.
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2.2. Sinusoidal extrapolation based approach

The idea is to model y(k) as a single sinusoidal signal with a time-varying

frequency, amplitude and phase,

y(k) = A(k)sin (ω(k)k + φ(k)) (2)

where A(k), ω(k) and φ(k) are unknown.105

Evidently, the model (2) is nonlinear in A(k), ω(k) and φ(k). As a conse-

quence, a linear recursive estimator cannot be directly applied. It is possible,

however, to use a truncated Taylor expansion of (2), and then an extended

Kalman filter (EKF) to estimate the values of A(k), ω(k) and φ(k) [13].

A direct physical meaning is also an advantage of model (2). However, it is110

clear that using one sinusoid to describe a wave is only effective for very narrow-

banded wave systems. In addition, the extension to a model with multiple

time-varying frequencies is not as straightforward as it may seem.

2.3. Auto-regressive model based approach

The AR model is based on the assumption that y(k) at time k is a linear115

function of its past observations y(k − 1), y(k − 2), . . . , y(k − p), i.e.

y(k) = a1y(k − 1) + a2y(k − 2) + . . .+ apy(k − p) + w(k) (3)

where (a1, a2, . . . , ap) are the parameters, p is the order of the model, and w(k)

is a zero-mean white noise disturbance.

Assume that, at time k, the coefficients aj , ∀j = 1, 2, . . . , p are already

calculated. Note that aj , ∀j = 1, 2, . . . , p might be time-varying, i.e. aj = aj(k)120

might also be functions of time. It is well known [18] that the best prediction

of ŷ(k + h|k) at time k can be calculated as,

ŷ(k+h|k) = a1(k)ŷ(k+h−1|k)+a2(k)ŷ(k+h−2|k)+. . .+ap(k)ŷ(k+h−p|k) (4)

where ŷ(k + h− j|k) = y(k + h− j) if k + h− j ≤ k or equivalently, if h− j ≤

0. It is shown in [13] that the AR model (3) with only complex-conjugate
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poles is equivalent to model (1), where the angular frequencies are calculated125

automatically.

Rewrite (3) in a compact vector form as

y(k) = xar(k − 1)Ta + w(k) (5)

where  xar(k − 1) =
[
y(k − 1) y(k − 2) . . . y(k − p)

]T
,

a =
[
a1 a2 . . . ap

]T
The simplest way to estimate aj , j = 1, 2, . . . , p at time k, consists of minimizing

the one-step ahead prediction error which results in a least squares problem,130

min
a1,a2,...,ap

k∑
l=p+1

(y(l)− ŷ(l|l − 1))
2

(6)

It is well known [19] that the optimal solution a∗ to (6) can be obtained ana-

lytically.

Theoretically, if the model structure (3) exactly matches the structure of the

actual system, and the signal to noise ratio is high, then the model obtained

using (6) is the best linear unbiased estimator, which also provides optimal135

multi-step ahead predictions. However, Fourier analysis reveals that real wave

excitation force estimates are generally quite noisy. In addition, it is not pos-

sible to know the exact model structure of the real system to be identified.

Consequently, it is not reliable to use the cost function (6) to produce accurate

predictions over an entire forecasting horizon.140

One way to improve the accuracy given by model (3) in forecasting is to

consider the multi-step ahead error minimization, referred to as long-range pre-

dictive identification (LRPI) [20], [13],

min
a1,a2,...,ap

k∑
l=p+M+1

M∑
j=1

(y(l)− ŷ(l|l − j))2 (7)

where M is the forecasting horizon over which the AR model is to be optimized.

Parameters estimated from objective functions based on multi-step ahead pre-145

dictors, generally result in better models for wave forecasting. In addition to
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the time domain interpretation, Wahlberg and Ljung [21] showed that the use

of multi-step ahead error minimization method amounts to emphasizing the ac-

curacy of low-frequency dynamics more in distributing the bias, compared to

the one-step-ahead error minimization, which tends to put higher emphasis on150

the high frequency behavior.

Unfortunately, the optimization problem based on the multi-step ahead error

minimization criterion (7) is nonlinear. Hence, in general, no analytical solution

a∗j can be found. One may, however, use the Gauss-Newton algorithm to obtain

a local optimal solution as indicated in [13].155

3. EXTENDED KALMAN FILTERING APPROACH

The Gauss-Newton based solution in Section 2.3 is a batch - processing ap-

proach and in a non-recursive form, which might be difficult to realize in prac-

tice. The solution is ill-adapted for on-line identification because of its compu-

tational and storage costs. In addition, until a new optimal solution a∗j is found,160

it is implicitly assumed that the coefficients a∗j are constant. This assumption,

as it will be shown later, is rather restrictive.

The main contribution of this section is to propose a new algorithm for the

multi-step ahead error minimization method. The approach is based on the EKF

procedure, and hence is recursive. To the best of the authors’ knowledge, this is165

the first time that the EKF is applied to the multi-step ahead error minimization

method. The sea state time-varying nature is handled via a process noise in the

state equation, as it will be shown in the next section.

3.1. State space equation for the filter

Since the sea state varies with time, but the variation is slow, it can be170

assumed that, ∀j = 1, 2, . . . , p,

aj(k + 1) = aj(k) + ηj(k) (8)

where ηj(k) is used to describe the variation of aj(k).
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Remark 1: It is worth noticing that allowing aj(k) to be time-varying is also

a way to compensate the fact that the AR model (3) is only an approximation

of the real wave excitation force model.175

Equation (8) can be rewritten in a compact vector form as,

a(k + 1) = a(k) + η(k) (9)

where  a(k) = [a1(k) a2(k) . . . ap(k)]T ,

η(k) = [η1(k) η2(k) . . . ηp(k)]T

At time k, for the multi-step ahead error minimization method, one would

like to have:

• A small one-step ahead prediction error180

ε1(k) = y(k)− ŷ(k|k − 1) (10)

where

ŷ(k|k − 1) = xar(k − 1)Ta(k).

• A small two-step ahead prediction error

ε2(k) = y(k)− ŷ(k|k − 2) (11)

where ŷ(k|k−2) is the wave prediction at time k using y(k−2), y(k−3), . . ..

The value of ŷ(k|k − 2) can be calculated iteratively via ŷ(k − 1|k − 2) as

ŷ(k|k − 2) = a1(k)ŷ(k − 1|k − 2) + a2(k)y(k − 2) + . . .+ ap(k)y(k − p)

where185

ŷ(k − 1|k − 2) = a1(k)y(k − 2) + a2(k)y(k − 3) + . . .+ ap(k)y(k − p− 1)

Hence

ŷ(k|k − 2) =
(
a1(k)2 + a2(k)

)
y(k − 2) + (a1(k)a2(k) + a3(k)) y(k − 3)

+ . . .+ a1(k)ap(k)y(k − p− 1)

(12)

9



• A small l-step ahead prediction error, ∀l = 3, 4, . . . ,M

εl(k) = y(k)− ŷ(k|k − l) (13)

where ŷ(k|k− l) is the prediction at time k using y(k− l), y(k− l− 1), . . ..

The value of ŷ(k|k− l) can be calculated in a similar way as for ŷ(k|k−2).

Recall that M is the forecasting horizon over which the AR model is to190

be optimized.

Combining (10), (11), (13), one obtains,

y(k) = ŷ(k|k − 1) + ε1(k),

y(k) = ŷ(k|k − 2) + ε2(k),
...

y(k) = ŷ(k|k −M) + εM (k)

(14)

Equation (14) is considered as an output equation for the EKF. The residuals

εj(k), ∀j = 1, 2, . . . ,M are assumed to be a noise, which also represents the

measurement disturbance.195

Together with (8), one gets the following state space equation,

a(k + 1) = a(k) + η(k),
y(k)

y(k)
...

y(k)

 =


ŷ(k|k − 1)

ŷ(k|k − 2)
...

ŷ(k|k −M)

+ ε(k)
(15)

where ε(k) = [ε1(k) ε2(k) . . . εM (k)]T .

The state equation of (15) is linear with respect to (w.r.t) the state or the

parameters aj , j = 1, 2, . . . , p. However, using (12), it is clear that the output

equation of (15) is nonlinear w.r.t. aj . In this paper, to estimate a(k), the EKF200

method is applied due to its simplicity, optimality, tractability and robustness.
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3.2. Extended Kalman filter

In essence, for system (15), the EKF filter provides a solution to the following

minimization problem

min
a(k)

Ja(k) (16)

with a cost function defined as205

Ja(k) = (a(0)− a(0|0))TP−10 (a(0)− a(0|0))+

+
k∑
l=1

(
η(l − 1)TQ−1η(l − 1) + ε(l)TR−1ε(l)

) (17)

where a(0|0) is the mean value of a(0), P0, Q,R are weighting matrices. Recall

that η(k) = a(k + 1)− a(k), and

ε(k) =


y(k)

y(k)
...

y(k)

−


ŷ(k|k − 1)

ŷ(k|k − 2)
...

ŷ(k|k −M)


Consider the following limiting case, where

• No information about initial state a(0) is available. Then one should

choose a large P0. Therefore (a(0) − a(0|0))TP−10 (a(0) − a(0|0)) can be210

neglected in the objective function (17).

• The sea state is time-invariant. Hence, ∀k,

a(k + 1) = a(k)

and η(k) = 0.

In this case, the cost function (17) can be rewritten as,

Ja(k) = min
a

k∑
l=1

ε(l)TR−1ε(l)

If R is the identity matrix, and by re-indexing l, one obtains215

Ja(k) = min
a

k∑
l=p+M+1

M∑
j=1

(y(l)− ŷ(l|l − j))2
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Thus one obtains the cost function (7) of LRPI. Hence (7) is a particular case

of (17), when the sea state is time invariant and the initial parameter a(0) is

completely unknown.

Remark 2: Note that the multi-step ahead error minimization cost (7) can

be used to obtain information about a(0). However, a solution of a nonlinear220

least squares problems is required. In this work, the matrix P0 has been set

large. This implies no information about a(0) is available.

Remark 3: Recall that an estimator [7] is used to estimate the wave excita-

tion force y(k) in this work. Consequently, the measurement noise matrix R for

the EKF is known. There are several methods in the literature to estimate the225

process noise matrix Q such as maximum like-hood estimation [22], correlation

method [23], [24], etc. However due to the limited time available for the tests,

the trial and error method is used to tune Q. The basic idea is to first try to

find the main diagonal, and then the first and the second sub-diagonal elements

of Q. The other sub-diagonal elements of Q are set to be zero in this work.230

The following notations are adopted,

• â(k|k−1) is the estimate of a(k) given measurements from time k−1, i.e.

y(k − 1), y(k − 2), . . .,

• â(k|k) is the estimate of a(k) given measurements from time k, i.e. y(k), y(k−

1), . . .,235

• P (k|k − 1) is the covariance matrix of a(k) given y(k − 1), y(k − 2), . . .,

• P (k|k) is the covariance matrix of a(k) given y(k), y(k − 1), . . .,

Then the EKF procedure is summarized as follows,

• Time update,  â(k|k − 1) = â(k − 1|k − 1),

P (k|k − 1) = P (k − 1|k − 1) +Q
(18)
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• Measurement update,240 

K(k) = P (k|k − 1)H(k)
(
H(k)TP (k|k − 1)H(k) +R

)−1

â(k|k) = â(k|k − 1) +K(k)




y(k)

y(k)
...

y(k)

−


ŷ(k|k − 1)

ŷ(k|k − 2)
...

ŷ(k|k −M)



 ,

P (k|k) = (I −K(k)H(k))P (k|k − 1)

(19)

with

H(k) =
dh(k)

da

∣∣∣∣
a=â(k|k−1)

(20)

where I is the identity matrix of appropriate dimension, and

h(k) =


ŷ(k|k − 1)

ŷ(k|k − 2)
...

ŷ(k|k −M)


Once the optimal parameter â(k|k) is found, it can be used to forecast the wave

excitation force as follows,

Algorithm 1: Wave force forecasting based on parameters esti-245

mated by the EKF filter

1. Input: Wave estimates y(k), y(k − 1), . . ., Estimated parameters â(k|k),

Forecasting horizon Np

2. Output: ŷ(k + 1|k), ŷ(k + 2|k), . . ., ŷ(k +Np|k)

(i) Initialization s = 1 and250

x = [y(k) y(k − 1) . . . y(k − p+ 1)]T

13



(ii) Calculate the predictions ŷ(k + s|k) as,

yf = xT â(k|k),

ŷ(k + s|k) = yf ,

x = [yf x(1 : p− 1)T ]T ,

s = s+ 1

(iii) If s ≤ Np, then go to Step (ii), otherwise Stop.

Algorithm 1 is schematically presented in Figure 3. It is worth noticing

that ŷ(k + j|k) is used to predict ŷ(k + j + 1|k). Hence Algorithm 1 can be

classified as an iterative procedure. Since only one model is required, significant255

computational time can be saved, especially when the forecast horizon is large.

Learning process:
multi-step ahead 

error minimization +
extended Kalman filter

Forecasting process
(iterative procedure)

Measurements

Predictions

Time-varying 
AR model parameters

Figure 3: Synoptic of the wave excitation force prediction method using EKF filter.

4. ADAPTIVE KALMAN FILTERING APPROACH

As discussed in Section 3, low computational complexity is the main advan-

tage of algorithm 1. However, since the predicted values from the past are used260

to predict the future, it can be shown that the approach suffers from an error
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accumulation problem, i.e. errors committed in the past are propagated into

future predictions.

For the short-term wave excitation force forecasting, an alternative approach,

that does not suffer from the error accumulation problem, is proposed in this265

Section. The main idea is to use an optimal h−step ahead prediction model

for each h = 1, 2, . . . , Np, where Np is the prediction horizon. Then all the Np

models are simultaneously used for predictions.

The new method is based on the assumption that the wave excitation force

y(k + h) at time k + h is a linear function of its past estimates y(k), y(k −270

1), . . . , y(k − p+ 1), i.e.

y(k + h) =

p∑
j=1

aj,h(k)y(k − j + 1) + ε(k + h) (21)

where h = 1, 2, . . . , Np is the forecasting horizon, p is the order of the model.

Note that p can be different for different h. ε(k+h) is a zero mean white noise.

ah(k) = [a1,h(k) a2,h(k) . . . ap,h(k)]T are the parameters to be estimate.

At time k, it is well known [18] that the best prediction of the future wave275

excitation force ŷ(k + h|k) is

ŷ(k + h|k) =

p∑
j=1

aj,h(k)y(k − j + 1) (22)

Clearly, ah(k) need to be estimated in order to forecast ŷ(k + h|k). One of

the most common ways to do this is to assume that

ah(k + 1) = ah(k) (23)

and then to solve the following least squares optimization problem [15]

min
ah

k∑
l=p+h+1

(y(l)− ŷ(l|l − h))2 (24)

which one will refer to as multi-model long range prediction identification (MM-280

LRPI), or multi-model multi-step ahead error minimization. It is well known

[15], [25] that the solution to (24) can be found analytically using the least

squares method.
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It is worth noticing that equation (23) does not take into account the sea

state time-varying nature. A more realistic solution to find ah(k), is to use the285

weighted least squares method, resulting in the following cost function,

min
ah

k∑
l=p+h+1

λk−l(y(l)− ŷ(l|l − h))2 (25)

where λ ∈ (0 1] is the forgetting factor. However, it is well known [26] that,

when the measurements do not give any new information to the system, one

might have the blow-up phenomenon with the weighted least squares method.

Below a way to estimate ah(k) is provided, for which the time-varying nature290

of sea state is taken into account. For this purpose, rewrite (21) as,

y(k) =

p∑
j=1

aj,h(k − h)y(k − h− j + 1) + ε(k) (26)

Since the sea state is time-varying, but the variation is slow, it can be assumed

that, ∀j = 1, 2, . . . , p,

aj,h(k + 1) = aj,h(k) + ηj(k) (27)

where ηj(k), ∀j = 1, 2, . . . , p, are the noises. Denote

η(k) = [η1(k) η2(k) . . . ηp(k)]T

Using (27), one has,295

ah(k) = ah(k − 1) + η(k − 1)

= ah(k − 2) + η(k − 2) + η(k − 1)

= . . .

= ah(k − h) +
h∑
v=1

η(k − v)

Hence

ah(k − h) = ah(k)−
h∑
v=1

η(k − v) (28)

Equation (26) can be rewritten as

y(k) = xh(k)Tah(k) + µ(k) (29)
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where 
xh(k) = [y(k − h) y(k − h− 1) . . . y(k − h− p+ 1)]T ,

µ(k) = −xh(k)T
h∑
v=1

η(k − v) + ε(k)

Combining (27), (29), the following state space equation is obtained
ah(k + 1) = ah(k) + η(k),

y(k) =
p∑
j=1

aj,h(k)y(k − h− j + 1) + µ(k)
(30)

Evidently, ah(k) enters linearly in equation (30). One way to estimate optimally300

and recursively the unknown state vector ah(k) is to apply the linear Kalman

filter (LKF) algorithm [27]. In essence, the LKF provides the solution of the

optimization problem

min
ah(k)

Ja(k)

with

Ja(k) = (ah(0)− ah(0|0))TP−10 (ah(0)− ah(0|0))+

+
k∑
l=1

(
η(l − 1)TQ−1h η(l − 1) + µ(l)TR−1h µ(l)

) (31)

where P0, Qh, Rh are weighting matrices, ah(0|0) is the mean value of the initial305

state ah(0|0). Recall that
η(k) = ah(k + 1)− ah(k)

µ(k) = y(k)−
p∑
j=1

aj,h(k)y(k − h− j + 1)

Consider now the following limit case, where

• No information about initial state a(0) is available. Hence P0 should

be chosen very large. As a consequence (ah(0) − ah(0|0))TP−10 (ah(0) −

ah(0|0)) is a negligible term in the cost function (31).310

• The sea state is time-invariant. Hence, ∀k,

a(k + 1) = a(k)

and η(k) = 0.

17



In this case, the cost function (31) can be rewritten as,

Ja(k) = min
a

k∑
l=1

µ(l)TR−1h µ(l)

If Rh is the identity matrix, and by re-indexing l, one obtains

Ja(k) = min
ah

l∑
l=p+h+1

(y(l)− ŷ(l|l − h))2

Thus the cost function (24) of MM-LRPI is obtained. Hence (24) is a particular315

case of (27), when the sea state is time invariant and the initial parameter a(0)

is completely unknown.

Remark 4: With the appropriate choice of forgetting factor, the method

in [15] can also cope with a time-varying sea state. However, beside the fact

that the weighted least squares method might lead to the blow-up phenomenon,320

the Kalman filter based method has more tuning parameters, i.e., more degrees

of freedom than the weighted least squares method. Hence the Kalman filter

based method is a better choice than the weighted least squares based method.

Using the same notation as in Section 3 for âh(k|k−1), âh(k|k), Ph(k|k−1)

and Ph(k|k), the LKF algorithm is summarized as follows325

• Time update  âh(k|k − 1) = âh(k − 1|k − 1),

Ph(k|k − 1) = Ph(k − 1|k − 1) +Qh
(32)

• Measurement update
Kh(k) = Ph(k|k − 1)xh(k)

(
xh(k)TPh(k|k − 1)xh(k) +Rh

)−1
âh(k|k) = âh(k|k − 1) +K(k)

(
y(k)− xh(k)T âh(k|k − 1)

)
,

Ph(k|k) = (I −K(k)xh(k))Ph(k|k − 1)

(33)

where

xh(k) = [y(k − h) y(k − h− 1) . . . y(k − h− p+ 1)]T , (34)

Once the optimal parameter ah(k|k) is calculated, it can be used in producing

the forecasting horizon ŷ(k + h|k) as follows330
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Algorithm 2: Wave force forecasting based on parameters esti-

mated by the AKF filters

1. Input: Wave estimates y(k), y(k − 1), . . ., Prediction horizon Np, Co-

variance matrices Qh, Rh, Estimations âh(k − 1|k − 1), Ph(k − 1, k − 1),

∀h = 1, 2, . . . , Np335

2. Output: Prediction ŷ(k + h|k), ∀h = 1, 2, . . . , Np

(i) Initialization: h = 1

(ii) Calculate the vector,

xar(k) =
[
y(k) y(k − 1) . . . y(k − p+ 1)

]T
(iii) Apply the LKF (32), (33), (34) to obtain âh(k|k), Ph(k, k)

(iv) The prediction ŷ(k + h|k) is computed as,340

ŷ(k + h|k) = xar(k)T âh(k|k)

(v) Set h := h+ 1

(vi) If h ≤ Np, then go to Step (iii). Otherwise Stop.

Algorithm 2 is schematically presented in Figure 4. Note that Np linear

Kalman filters are used to obtain ŷ(k + 1|k), ŷ(k + 2|k), . . . , ŷ(k +Np|k). Con-

sequently, this approach involves a heavier computational burden than iterative345

forecasting.

5. EXPERIMENTAL RESULTS

5.1. Available data

The wave data utilized for this study were collected in a wave basin of

Aalborg University (15 m long, 8 m wide and 0.7 m deep), in the context of350

an experimental assessment of the performance of a nonlinear MPC strategy

applied to a WEC prototype [28].

The WEC under consideration (shown in Figure 5) is a 1 : 20 scale labora-

tory prototype of the well-known Wavestar machine installed near Hanstholm
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Estimation process:
Kalman filter

Measurements

Prediction

time-varying 
AR model 
parameters

Forecasting process:
 

Figure 4: Synoptic of the wave excitation force prediction method using AKF filter.

in Denmark from 2009 to 2013. It consists of a nearly hemispherical float, me-355

chanically hinged to a fixed reference point (only one of the five available floats

was used for the experiments).

Accelerometer

Force 
Sensor

Position
Sensor

Mounting Frame

Figure 5: Experimental set-up at the wave basin of Aalborg University

A linear motor is used to emulate the action of the PTO. An accelerometer

and a position sensor provide measurements of the float motion, while a load cell

provides a measurement of the force applied by the linear motor. A rapid control360

prototyping architecture, based on the Matlab xPCTarget toolbox, allows to run

controllers developped in Simulink in real-time (up to 1 kHz) on a target PC
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connected to the WEC I/O board. In Simulink, all the linear measurements are

transparently converted into the angular reference frame corresponding to the

single degree of freedom of the WEC (rotation around the hinge point). Float365

angular velocity is estimated from acceleration and position, using a Kalman

filter.

The MPC controller validated in the experimental campaign has the struc-

ture represented in Figure 2, except that position, velocity and acceleration are

angular, and moments replace forces.370

The data considered for the present analysis are time series of wave mo-

ment estimates (the output of the “Wave Force Estimation” block in Figure 2),

logged during closed-loop experiments where MPC is used to maximize WEC

electric energy production, under the action of different irregular waves. A set

of four different irregular waves, each generated from a different wave spectrum,375

is considered. The spectra are representative of the most common sea state

conditions in Hanstholm, adapted in scale to the WEC prototype in the basin,

via the Froude similarity laws (see Table 1). The waves are unidirectional,

two dimensional, long-crested waves, and are generated by a wave maker whose

paddles are driven by a total of 15 hydraulic pistons moving in the horizontal380

direction.

Peak period
Significant

wave height

Probability of

occurrence in Hanstholm

Sea state 1 0.7407 s 0.0620 m 30%

Sea state 2 0.9259 s 0.0920 m 45%

Sea state 3 1.1111 s 0.1220 m 10%

Sea state 4 1.4815 s 0.1800 m Extreme operation

Table 1: Sea state characteristics (with 1:20 scale ratio applied)

The wave moment estimation data are downsampled to 10 Hz, in order to

reduce the computation burden of the prediction algorithms. The resulting
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spectra are presented in Figure 6.
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Figure 6: Wave spectra of sample data sets

Remark 5: The prediction performance corresponding to four time-invariant385

sea states is reported in this paper. Algorithm 1 and 2 have also been run, in

real-time, with a time-varying sea state from sea state 2 to sea state 3, see [28]

for more details.

5.2. Prediction performance

For a given prediction horizon Np, the following performance index is used390

to determine the prediction accuracy, at time k,

Me(Np) =

Np∑
h=1

((y(k + h)− ŷ(k + h|k)))
2

My
(35)

where My is the maximum of y(k), ∀k. It is clear that the smaller Me(Np), the

better the forecasting model. A zero value for Me(Np) implies that the wave

time series is perfectly predicted over Np steps into the future. Note that other

indices such as mean square error, mean absolute error or mean absolute per-395

centage error, etc, can also be used to measure the prediction accuracy [13], [19].

However they treat each horizon h separately, whereas the index 35 considers

all the prediction horizons together.
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5.3. Prediction results of the EKF approach

To obtain good results for the prediction, the order of the AR model (3)400

is an important factor. There is a trade-off between model complexity, which

increases the computational burden to apply the EKF, and prediction perfor-

mance. To guarantee a satisfactory performance, our experience shows that the

order of the AR model should be greater or at least equal to
Tp

Ts
, where Tp is

the maximum peak period of the considered sea states, and Ts is the sampling405

time. For example, for the 4 considered sea states, wave 4 has the largest peak

period 1.4815(s). Since the sampling time is 0.1(s), the order of the AR model

should be at least 15.

Table 2 shows, for wave 1, the trade-off between computation complexity

and performance that led to the choice of Np = 32. The computation time for410

Np = 20, is taken as baseline.

Order Increase in computation time Prediction error E

20 - 47.1166

26 12% 16.8177

32 28% 12.6587

40 54% 12.4838

Table 2: Trade-off between computational complexity and performance

The prediction error E is computed as

E =

√√√√ Nd∑
k=1

(y(k +Np)− ŷ(k +Np|k))2

My

where Nd is the number of data, and My is the maximum of y(k), ∀k.

Using Table 2, it can be observed that Np = 32 is a good compromise

between the performance and the computational complexity. Hence the order415

is set to be 32 for Algorithm 1.

Figure 7 presents the first four parameters a1, a2, a3, a4 for the four waves.

It can be observed that the optimal parameters a(k) are time-varying. This
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shows that the assumption that a(k) are constant is indeed restrictive. It is

underlined that allowing a(k) to be time-varying is the way to cope with the420

fact that the sea state changes continuously, and that the AR model (3) is only

an approximation of the real wave excitation force model.
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Figure 7: Optimal AR parameters. The time-varying nature of a(k) even for a time-invariant

sea state is due to the fact that the AR model (3) is only an approximation of the exact model

of the real system

Figure 8 shows the wave prediction performance of Algorithm 1. It can be

observed that the predicted wave is in phase with the real wave. This feature

is indeed very important for any WEC control algorithm.425

Using the performance index (35), the prediction accuracies with Np = 10

and Np = 20 for algorithm 1 and the AR based approach via the minimization

of a multi-step ahead cost function [13] are compared and shown in Figure 9. It

can be observed that Algorithm 1 outperforms the mentioned solution.
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Figure 8: Wave prediction performance using Algorithm 1
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5.4. Prediction results of the adaptive Kalman filter approach430

Since multiple models are used for algorithm 2, practice shows that it is

enough to set the order of all the AR models to be 16. Figure 10 presents the

wave prediction accuracy of Algorithm 2. It is clear that the algorithm yields

good results.

Finally, using the normalized error index (35), the prediction accuracy with435

Np = 10 for algorithm 1, and algorithm 2 are depicted in Fig. 11. Using the

TIC/TOC function of Matlab 2015b, Table 3 shows the on-line computation
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Figure 10: Wave prediction performance by using algorithm 2.

times for one discretization interval for algorithm 1 and algorithm 2. Looking

at Fig. 11 and at Table 3, it is clear that there is a trade off between perfor-

mance and computational complexity. It can be observed that algorithm 2 has440

the highest complexity. However it yields a better performance compared to

algorithm 1, which has a more modest computational complexity.

Online computation time (s)

Algorithm 1 0.0228

Algorithm 2 0.0312

Table 3: Duration (s) of online computations over one discretization interval for algorithm 1

and algorithm 2.

6. COMPUTATION OF INTERVAL FORECASTS

Until now, wave predictions have been expressed as scalars, which one will

refer to as point forecasts, which do not give any idea about their likely accuracy.445

As a wave future value can be regarded as a random variable at the time the
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Figure 11: Prediction accuracy of algorithms 1 and 2.

forecast is made, it is more reasonable to express a wave forecast as a range

of numbers, called an interval forecast. Providing point forecasts together with

interval forecasts enables us to

• Assess future wave uncertainty.450

• Design different control strategies for the range of possible outcomes indi-

cated by the interval forecasts.

• Compare wave forecasts for different methods more precisely.

• Investigate different scenarios using different assumptions in more detail.

Before proceeding further, one needs to define more rigorously what does455

mean by an interval forecast. An interval forecast consists of an upper and a

lower limit between which a future value is expected to lie with a prescribed

probability. The limits are called prediction bounds or forecast limits, while the

interval is sometimes called a prediction interval [29], [30], [31].

Let us assume that the h−step ahead prediction error460

ê(k + h|k) = y(k + h)− ŷ(k + h|k) (36)
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is zero-mean Gaussian with variance σ2
h. In the other words, the probability

density function of ê(k + h|k) is

p(ê(k + h|k)) =
1√

2πσh
exp

(
− ê(k + h|k)2

2σ2
h

)
(37)

In general, as the prediction horizon h is increased, the variance of the

forecast error increases. In other words, the longer the lead time, the less

accurate the forecast.465

The probability that the error ê(k + h|k) is contained within an interval

[−δ, δ] is calculated as follows,

P{−δ ≤ ê(k + h|k) ≤ δ} =

∫ δ

−δ
p(µ)dµ (38)

Using (37), one obtains

P{−δ ≤ ê(k + h|k) ≤ δ} =
1√

2πσh

∫ δ

−δ
exp

(
− µ2

2σ2
h

)
dµ (39)

The probability that the prediction error ê(k+h|k) lies in the range −δ and

δ with δ = nσh, n = 1, 2, 3, 4 is given in Table 4.470

n P{−nσh ≤ ê(k + h|k) ≤ nσh}

1 68.3%

2 95.5%

3 99.7%

4 99.9%

Table 4: Confidence intervals

Using Table 4, it is clear that the variance σh is all one needs to define

the probability function of ê(k + h|k) to lie in the interval −nσh and nσh with

n = 1, 2, 3, . . .. Unfortunately, the exact value of σh is not directly available,

since the wave is not known in the figure. One way to estimate σh, at time k,

is to use the past history of the prediction errors as,475

σ̂2
h(k) =

1

k − 1

k∑
j=h+1

ê(j|j − h)2 (40)
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Equation (40) uses batch-processing approach, which might be difficult to im-

plement. An alternative way to estimate σh is to use the following recursive

equation [32]

σ̂2
h(k) =

k − 2

k − 1
σ̂2
h(k − 1) +

1

k − 1
(y(k)− ê(k|k − h))2 (41)

Fig. 12, Fig. 13 present, respectively, the forecasting intervals (dash-dot

green), the wave excitation moment prediction (solid blue), the real wave ex-480

citation moment (dashed red) for wave 1, wave 2, wave 3 and wave 4. These

figures are obtained along with the 68.3% confidence interval. It is worth notic-

ing that the forecasting intervals of algorithm 2 are generally smaller than the

forecasting intervals of algorithm 1.
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Figure 12: Forecasting intervals (dash-dot green), Wave excitation moment prediction (solid

blue), Real wave excitation moment (dashed red) for algorithm 1.

7. CONCLUSION485

The problem of short-term wave force forecasting was considered in the pa-

per. Two new algorithms were proposed. For the set of data in this work, to

improve the performance with respect to the one step ahead error minimization
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Figure 13: Forecasting intervals (dash-dot green), Wave excitation moment prediction (solid

blue), Real wave excitation moment (dashed red) for algorithm 2.

cost function, a nonlinear multi-step ahead error minimization cost function is

used for the first algorithm. It is shown that the criterion adopted in [13] is490

a limiting case when the sea state is assumed to be constant. An extended

Kalman filter (EKF) is used to obtain a solution to the nonlinear optimization

problem. The main advantage of the EKF is that it is recursive and hence is

easy to implement.

The second algorithm illustrates how to avoid the error accumulation prob-495

lem by adopting Np separated models to forecast Np steps ahead of the wave

force. The solution is also in a recursive form, since a linear Kalman filter is

used for each model. It is shown that the approach in [15] is a particular case,

when the sea state is constant.

Together with the wave force estimation block and the control block, the two500

prediction algorithms were successfully implemented on a real WEC system [28].

30



References

[1] J. Falnes, Optimum control of oscillation of wave-energy converters, Inter-

national Journal of Offshore and Polar Engineering 12 (02).

[2] U. A. Korde, J. Ringwood, Hydrodynamic Control Of Wave Energy De-505

vices, Cambridge University Press, 2016.

[3] A. Babarit, A. Clément, Optimal latching control of a wave energy device in

regular and irregular waves, Applied Ocean Research 28 (2) (2006) 77–91.

[4] F. Saupe, J. Gilloteaux, P. Bozonnet, Y. Creff, P. Tona, Latching control

strategies for a heaving buoy wave energy generator in a random sea, in:510

World Congress, Vol. 19, 2014, pp. 7710–7716.

[5] A. Babarit, M. Guglielmi, A. H. Clément, Declutching control of a wave

energy converter, Ocean Engineering 36 (12) (2009) 1015–1024.

[6] G. Li, M. R. Belmont, Model predictive control of sea wave energy

converters–part I: A convex approach for the case of a single device, Re-515

newable Energy 69 (2014) 453–463.

[7] H.-N. Nguyen, P. Tona, Wave excitation force estimation for wave energy

converters of the point absorber type, IEEE, 2017.

[8] J. Tedd, P. Frigaard, Short term wave forecasting, using digital filters, for

improved control of wave energy converters, in: Proc. of Int. Offshore and520

Polar Eng. Conf, Vol. 388, 2007, p. 394.

[9] F. Serafino, C. Lugni, F. Soldovieri, A novel strategy for the surface cur-

rent determination from marine x-band radar data, IEEE Geoscience and

Remote Sensing Letters 7 (2) (2010) 231–235.

[10] F. Paparella, K. Monk, V. Winands, M. Lopes, D. Conley, J. V. Ringwood,525

Up-wave and autoregressive methods for short-term wave forecasting for an

oscillating water column, IEEE Transactions on Sustainable Energy 6 (1)

(2015) 171–178.

31



[11] M. Belmont, J. Horwood, R. Thurley, J. Baker, Filters for linear sea-wave

prediction, Ocean Engineering 33 (17) (2006) 2332–2351.530

[12] P. Frigaard, M. Brorsen, A time-domain method for separating incident

and reflected irregular waves, Coastal Engineering 24 (3) (1995) 205–215.

[13] F. Fusco, J. V. Ringwood, Short-term wave forecasting for real-time control

of wave energy converters, Sustainable Energy, IEEE Transactions on 1 (2)

(2010) 99–106.535

[14] P.-S. Yerai, V. R. John, A critical comparison of AR and ARMA models for

short-term wave forecasting, in: Proceedings of the 12th European Wave

and Tidal Energy Conference, EWTEC, 2017.

[15] B. Fischer, P. Kracht, S. Perez-Becker, Online-algorithm using adaptive

filters for short-term wave prediction and its implementation, in: Proceed-540

ings of the 4th International Conference on Ocean Energy (ICOE), Dublin,

Ireland, 2012, pp. 17–19.

[16] J. Hals, J. Falnes, T. Moan, Constrained optimal control of a heaving buoy

wave-energy converter, Journal of Offshore Mechanics and Arctic Engineer-

ing 133 (1) (2011) 011401.545

[17] J. M. Jonkman, Dynamics Modeling And Loads Analysis Of An Offshore

Floating Wind Turbine, ProQuest, 2007.

[18] B. George, J. G. M., R. G. C., Time Series Analysis: Forecasting And

Control, Pearson Education India, 1994.

[19] L. Ljung, System Identification: Theory For The User, Springer, 1998.550

[20] D. Shook, C. Mohtadi, S. Shah, Identification for long-range predictive

control, in: IEE Proceedings D (Control Theory and Applications), Vol.

138, IET, 1991, pp. 75–84.

32



[21] B. Wahlberg, L. Ljung, Design variables for bias distribution in trans-

fer function estimation, Automatic Control, IEEE Transactions on 31 (2)555

(1986) 134–144.

[22] R. Kashyap, Maximum likelihood identification of stochastic linear systems,

IEEE Transactions on Automatic Control 15 (1) (1970) 25–34.

[23] H.-N. Nguyen, F. Guillemin, On process noise covariance estimation, in:

Control and Automation (MED), 2017 25th Mediterranean Conference on,560

IEEE, 2017, pp. 1345–1348.

[24] P. R. Bélanger, Estimation of noise covariance matrices for a linear time-

varying stochastic process, Automatica 10 (3) (1974) 267–275.

[25] B. D. Anderson, J. B. Moore, Optimal Filtering, Courier Corporation, 2005.

[26] K. J. Astrom, B. Wittenmark, Adaptive Control, Addison-Wesley Longman565

Publishing Co., Inc., 1994.

[27] R. E. Kalman, A new approach to linear filtering and prediction problems,

Journal of Fluids Engineering 82 (1) (1960) 35–45.

[28] H.-N. Nguyen, G. Sabiron, P. Tona, M. M. Kramer, E. V. Sanchez, Experi-

mental validation of a nonlinear MPC strategy for a wave energy converter570

prototype, in: ASME 2016 35th International Conference on Ocean, Off-

shore and Arctic Engineering, American Society of Mechanical Engineers,

2016.

[29] P. J. Brockwell, R. A. Davis, Introduction To Time Series And Forecasting,

Vol. 1, Taylor & Francis, 2002.575

[30] W. William, S. Wei, Time Series Analysis: Univariate And Multivariate

Methods, Addison Wesley, 1990.

[31] B. Abraham, J. Ledolter, Statistical Methods For Forecasting, Vol. 234,

John Wiley & Sons, 2009.

33



[32] R. Isermann, Fault-Diagnosis Systems: An Introduction From Fault De-580

tection To Fault Tolerance, Springer Science & Business Media, 2006.

34


	INTRODUCTION
	PROBLEM FORMULATION
	Decomposition based approach
	Sinusoidal extrapolation based approach
	Auto-regressive model based approach

	EXTENDED KALMAN FILTERING APPROACH
	State space equation for the filter
	Extended Kalman filter

	ADAPTIVE KALMAN FILTERING APPROACH
	EXPERIMENTAL RESULTS
	Available data
	Prediction performance
	Prediction results of the EKF approach
	Prediction results of the adaptive Kalman filter approach

	COMPUTATION OF INTERVAL FORECASTS
	CONCLUSION

