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Abstract
Diagenesis is rarely accounted for in the standard modeling workflows for carbonate reservoirs, although it has a huge impact 
on both porosity and permeability. This can be explained by at least two reasons: first, it is difficult to quantify the influence 
of diagenetic overprints on porosity and permeability; second, the integration of the diagenetic effects in carbonate reservoir 
models makes history matching much more difficult. Herein, a modeling methodology is proposed, in which the diagenetic 
imprints are included in the reservoir model and calibrated with dynamic data. The key point consists in defining a parametri-
zation technique able to capture these diagenetic imprints. We assume that distinct regions of occurrence of a given diage-
netic phase can be identified within the reservoir. Therefore, restricting our attention to a facies, we may distinguish regions 
characterized by low, medium or high proportions of the targeted diagenetic phase. The advantage of this parametrization 
technique is that the proportions of these regions can be easily driven by a reduced number of proportionality coefficients. 
Then, the overall modeling approach is integrated in an optimization workflow making it possible to vary the proportions 
of the region with a given occurrence for a given diagenetic phase, the variograms characterizing the spatial distribution of 
the regions, or even the way they are spatially distributed. The optimization process is run to adjust these various unknown 
parameters in order to match production history. The potential of the proposed methodology is finally investigated through 
the study of a two-dimensional numerical example.

Keywords Carbonates · Diagenesis · History-matching · Optimization

Introduction

Carbonate reservoirs exhibit complex pore systems, which 
depend on their biological origin and great chemical reac-
tivity (Flugel 2010; Moore 2001). The geometry and con-
nectivity of these pores strongly control the dynamic flow of 
hydrocarbons in carbonate reservoirs. As more than 60% of 

the world’s oil and 40% of the world’s gas reserves are esti-
mated to be held in such reservoirs, the oil and gas industry 
looks constantly to improve the representation of carbon-
ate reservoirs through geological and simulation models 
that better capture and illustrate their heterogeneities. The 
standard reservoir modeling workflow consists in integrating 
seismic, geological and well data to create a static geological 
model. This one is usually populated by facies or lithofacies 
and their associated petrophysical properties like porosity, 
permeability and fluid saturations (Deutsch 2002). The static 
model is then inputted into a fluid flow simulator in order to 
understand fluid displacements and forecast production over 
reservoir lifetime.

In the current industry practice, diagenesis is generally 
integrated through the definition of lithofacies referring 
to textures and pore systems or rock types. However, this 
approach cannot be easily applied through history match-
ing and field development optimization, because diagenesis 
imprint has not been modeled and thus cannot be modified 
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according to production data. Moreover, even when taken 
into account, it is most of the time through a deterministic 
approach with a limited number of models. Due to the uncer-
tainty in the description of the occurring diagenesis phases 
and their effects in the facies deposition model, a stochastic 
framework may be preferred. Several authors (Barbier et al. 
2012; Doligez et al. 2011; Hamon et al. 2015; Labourdette 
et al. 2007) investigated and applied geostatistical methods 
to integrate depositional facies and diagenetic overprint 
models. The leading idea consists first in identifying the 
major diagenetic phases, which modify the petrophysical 
properties and second in qualitatively or semiquantitatively 
establishing the relationship linking the diagenetic phases to 
the depositional facies. The first identification step is usually 
performed from the analysis of thin sections and laboratory 
measurements of core samples. It is based upon the defi-
nition of the paragenetic sequence, which is a conceptual 
representation of the diagenetic events through time. The 
paragenetic sequence permits to schematically display the 
relationships between these diagenetic phases and the result-
ing porosity and permeability modifications (Moore 2001). 
The second step yields the relationships between the diage-
netic phases and the depositional facies from petrographic 
observations. When this information is available, it can 
be integrated into reservoir models, provided that suitable 
stochastic simulation techniques are applied. For instance, 
Renard et al. (2008) extended the well-known pluriGauss-
ian simulation (PGS) technique (Le Loc’h et al. 1994) to get 
the bivariate pluriGaussian simulation (Bi-PGS) one. Such a 
method makes it possible to populate reservoir models with 
spatially varying facies and to account for diagenetic phases 
with spatially varying influences on facies. Even though data 
are provided through the analysis of thin section or labora-
tory measurements, they represent a very tiny part of the 
actual reservoir under consideration. Upscaling of diagen-
esis characteristics, but also of petrophysical properties like 
porosity and permeability, is still a major issue. Even when 
properties and relationships between facies and diagenesis 
have been clearly identified at the plug scale, the question 
remains about the corresponding properties to be provided 
to the grid cells of the reservoir model, which is associated 
with a much larger scale with macro-porosity occurrences, 
locally baffling heterogeneities, fractures, etc. (Farooq et al. 
2014; Nader et al. 2013). This is all the more true for diage-
netized carbonate reservoir (Benyamin 2016).

The resulting static reservoir model is therefore very 
uncertain. The integration of other sources of information 
is required to better constrain the reservoir models used to 
represent the real one. This is why production data are also 
considered. They consist of all the data measured at wells 
during production: pressures, flow rates, gas/oil ratios, water 
cuts. The integration of production data into a static res-
ervoir model is known as history matching (Jacquard and 

Jain 1965). This usually involves the definition of an objec-
tive function, which measures the least-square differences 
between the actual production data and the corresponding 
numerical responses simulated for the considered static 
model using a flow simulator. Then, an optimization process 
is run aiming at minimizing the objective function by suc-
cessively adjusting some uncertain parameters of the static 
reservoir model or the associated flow model. The interested 
reader may refer, for instance, to Le Ravalec et al. (2014) for 
more details. This calibration process contributes to improve 
the reservoir model, i.e., to make it more reliable for predic-
tions and to better describe fluid flows within the reservoir. 
The most valuable result is the capacity to predict reservoir 
production lifetime with a certain level of confidence and 
to evaluate its economic potential. One of the fundamental 
aspects of history matching is parameterization. A reser-
voir model and its associated flow features include a huge 
number of unknown or uncertain parameters. For instance, 
the flow characteristics depend on the definition of fault 
transmissivities, relative permeability and capillary pressure 
curves, coefficients describing the strength of the aquifers. 
On the other hand, the reservoir model itself consists of a 
grid that has to be populated by facies, porosity values, per-
meability values and initial saturations. The large number of 
uncertain parameters and the need for preserving geological 
consistency all along the history-matching process steered 
the development of specific parameterization techniques. 
The gradual deformation method (Hu 2000) and the prob-
ability perturbation method (Caers and Hoffman 2006) were 
then proposed to adjust the spatial distributions of facies and 
petrophysical properties from a reduced number of auxiliary 
parameters. In addition, they permit to preserve the spatial 
variability model inferred from the static data whatever the 
variations in the auxiliary deformation parameters. Other 
parameterization techniques were designed for handling 
facies proportions; Ponsot-Jacquin et al. (2009) introduced 
a very simple and intuitive method that involves proportion-
ality coefficients to drive the variations in the different facies 
proportions. A drawback of the method was the discontinui-
ties occurring on the boundaries of the regions submitted 
to modifications. An improved kriging-based approach was 
then suggested by Tillier et al. (2010) to remove these unde-
sired boundary effects. A preliminary tentative for integrat-
ing diagenesis effects into history matching was described 
by Pontiggia et al. (2010), but the approach was based upon 
screening, not on the iterative minimization of an objective 
function. There was no dedicated parameterization technique 
for diagenesis.

In this paper, we focus on the development of a simu-
lation workflow making it possible to integrate diagenesis 
information in the generation of the static model and to 
consistently modify this model to also account for produc-
tion data. In our case, “consistently” means that we want to 
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be able to calibrate the model to the production data while 
preserving its geological characteristics derived from the 
analysis of static data, of which diagenesis. All of this actu-
ally calls for the definition of a new parameterization tech-
nique for driving diagenesis description. The one proposed 
hereafter is rooted in the approach developed by Ponsot-
Jacquin et al. (2009) for varying facies proportions. Sec-
tion 2 describes the overall simulation workflow including 
the step especially added for diagenesis. In this section, the 
potential of the methodology is investigated on the basis of 
a synthetic case with three depositional facies. Finally, the 
third section focuses on sensitivity analysis and shows how 
the diagenetic modeling parameters influence the reservoir 
dynamic response.

Geological and reservoir simulation 
approach

The usual simulation workflow includes two main steps 
(Fig. 1). The first one is the stochastic simulation of the static 
reservoir model with the generation of facies and then the dis-
tribution of petrophysical properties. The second step entails 
fluid flow simulation. When this workflow is built, an optimi-
zation process can be run that successively varies any of the 
uncertain parameters involved in the simulation workflow. The 
methodology proposed in this paper considers diagenesis as an 
additional block at the level of the static geological model prior 
to reservoir modeling. Thus, the parameters defined within this 
block can be also updated to fit the production data following 
the calculations performed by the optimizer.

To get the static reservoir model, we start generating 
facies, and then, we simulate the diagenesis phases given the 
facies before going through the distribution of the petrophysi-
cal properties. This process is described in the first part of 
this section. The key point consists in defining a simple and 
easy to use parametrization technique able to capture these 
diagenetic overprints. We assume that distinct regions can be 
identified within the reservoir depending on the occurrence 
of given diagenetic phases. For instance, we may distinguish 
regions within a facies, which are characterized by low, 
medium or high proportions of a targeted diagenetic phase.

Once the facies and the associated diagenesis imprint 
models are built, the facies is populated with porosity and 
permeability properties. Then, it is inputted into a fluid flow 
simulator to calculate dynamic flow responses that can be 
compared to the actual production data. The least-square 
differences between data and synthetic responses yield the 
objective function. The purpose of history matching consists 
in adjusting the unknown parameters everywhere to mini-
mize the objective function: when generating facies (spatial 
distributions, variograms and proportions), when distribut-
ing the diagenetic phases (spatial distributions, variograms 
and proportions), when generating the petrophysical proper-
ties (spatial distributions, variograms and means) and when 
simulating fluid flow (aquifer strength, fault transmissivities, 
PVT, etc.). The optimization process applied in this paper is 
presented in the second part of this section. For simplicity, 
we focus on the parameters related to the simulation of the 
diagenetic phases. However, the generalization to any block 
of the simulation workflow is straightforward.

Diagenesis model definition

As explained above, the generation of a static model calls 
first for the simulation of facies, second of diagenesis phases, 
and last of petrophysical properties. However, a preliminary 
mandatory step is the definition of the relationships between 
the facies and diagenetic phases. The diagenetic phases are 
produced under specific conditions by physical, chemical and 
biological processes: they locally modify the petrophysical 
properties of facies. The most common diagenetic processes 
in carbonate reservoirs are micritization, dissolution, cemen-
tation, dolomitization and replacement of carbonate grains 
(Moore 2001). A preliminary step before going through mod-
eling is characterization, which means description and clas-
sification of lithofacies. A wide range of analytical techniques 
can be used to study carbonate diagenesis (Gasparrini et al. 
2006; Nader et al. 2004): conventional petrographic studies 
combined with cathodoluminescence, fluorescence, scanning 
electron microscopy, micro-CT, but also geochemical studies 
and fluid inclusion analyses. Description of diagenesis is usu-
ally qualitative. However, we can also perform a semiquan-
titative analysis by visual observation or point counting on 

Fig. 1  Overall simulation 
workflow. Optimization can be 
applied to calibrate the param-
eters involved in any of the dif-
ferent blocks of the simulation 
workflow
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thin sections. This makes it possible to determine how much 
a diagenetic P phase affects a given A facies. For instance, 
it can be observed that the occurrence of phase P in facies 
A is moderate. In addition, non-stationarity has also to be 
accounted for. The occurrence of phase P may spatially vary. 
It can be moderate in some regions, low or high in others. 
Clearly, a facies may be affected by several diagenetic phases. 
The information resulting from the characterization study is 
recapped in a table such as Table 1. In this example, there are 
three facies: A, B and C. Focusing on facies A, the overprints 
of three diagenetic phases are evidenced. The first one, named 
Phase 1, occurs with high level in 80% of facies A and moder-
ate level in the 20% remaining. Such a representation permits 
to approximate the complexity of the diagenesis overprints in 
a carbonate reservoir.

Sedimentary facies modeling

Various geostatistical algorithms can be applied to randomly 
produce facies models. They can be split into three main 
groups with two-point statistics pixel-based methods, mul-
tiple-point statistics pixel-based ones and object-based ones. 
In this paper, we focus on the truncated Gaussian simulation 
(TGS) technique, which belongs to the first group. It is used to 
generate a spatial categorical variable (Matheron et al. 1987) 
by simulating and truncating a Gaussian random function 
(GRF). This widely used approach exhibits a special feature 
that may be undesired in some cases: the generated facies 
respect a sequential ordering. However, this limitation is eas-
ily overcome with pluriGaussian simulation, which involves 
the truncation of at least two Gaussian random functions (Le 
Loc’h et al. 1994). For simplicity, the description below is 
restricted to TGS.

Let us consider a standard GRF, named Yi(x), with i ∈ [1, 
n] and n the number of facies. It is truncated by one or more 
thresholds in order to generate a series of indicators Ii(x) rep-
resenting the Fi(x) facies:

(1)Fi =
{

x ∈ R; if yi−1 < Y(x) ≤ yi
}

Ii(x) =

{

1, if yi−1 < Y(x) ≤ yi
0, otherwise

, −∞,= y0 < y1 < ⋯ ,< yi−1 < yi < ⋯ < yn+1 = +∞

The Ii(x) indicators equal 1 when the values of Yi(x) belong 
to the interval defined by thresholds yi-1 and yi. This interval 
is associated with facies Fi(x).

The (yi) thresholds are estimated to match the indicator 
proportions (pi) from the following equation:

where G is the normal standard cumulative density function. 
Thus, we first simulate a realization of Y and turn it into a 
facies realization by applying the (yi) thresholds. A two-
dimensional example is shown in Fig. 2. This realization 
includes three facies with identical proportions.

Diagenesis modeling

Once the facies model has been generated, the second 
stage of the proposed methodology is the modeling of the 
diagenetic phases inside facies, which is achieved again 
using a stochastic approach. The diagenetic phases are 
also represented by categorical variables. In addition, as 
explained above, the regions where a given diagenetic 
phase is observed may be split into subregions depending 
on the levels of occurrence, for instance, low (L), medium 
(M) and high (H). These distinct levels are also consid-
ered as categorical variables. To model the spatial distri-
bution of these various levels of occurrence, we refer to 
the Bi-pluriGaussian simulation (Bi-PGS) as introduced 
by Renard et al. (2008). On the one hand, the facies model 
is generated from a PGS model, or for simplicity from 
a TGS model. On the other hand, the diagenetic phase 
model is derived from another PGS model, or for sim-
plicity from another TGS model. The link between the 
two PGS or TGS models is driven by a proportion table 
similar to Table 1. An example, inspired by Renard et al. 
(2008), is displayed in Fig. 3. A carbonate formation is 
assumed to include three sedimentary facies (A, B and C) 

(2)yi = G−1

(

i
∑

j=1

pj

)

, i = 1,… , n − 1

Table 1  Quantitative 
relationships between facies A, 
B, C and diagenetic phases P1, 
P2, P3

Diagenesis Facies

A B C

H (%) M (%) L (%) H (%) M (%) L (%) H (%) M (%) L (%)

Phase 1 80 20 – – 25 75 55 15 30
Phase 2 10 50 40 50 25 25 35 25 40
Phase 3 10 30 60 50 50 – 10 60 30
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that were differently submitted to the same diagenetic pro-
cess. This resulted in a single diagenetic phase occurring 
following three levels in facies A (levels low, medium and 
high), two levels in facies B (levels low and medium) and 1 
level (low) in facies C. The proportions for each occurring 
bivariate associations (A-L; A-M; A-H; B-L; B-M; C-L) are 
all equal to 1/6. The proportion for any other association is 
0. We first refer to TGS to simulate the facies realization. 
This explains why the threshold mask for facies is made 
of parallel rectangles. Then we use another TGS model to 
populate facies A and B with the required diagenetic levels. 
As facies C contains a single level of the diagenetic phase 
under consideration, there is no need to apply truncation 
in this facies. Again, the threshold mask for the diagenetic 
levels is formed of parallel rectangles because of the use 
of the TGS method.

Petrophysical property modeling

As mentioned previously, the facies and diagenetic over-
prints are categorical variables that represent specific 
petrophysical rock characteristics. The last step of the static 
modeling workflow deals with the simulation of porosity, 
permeability and fluid saturation properties to populate the 
diagenetic levels. Distinct simulations algorithms can be 
applied to do so of which Sequential Gaussian Simulation 
(Goovaerts 1997) or Fast Fourier Transform Moving Aver-
age (Le Ravalec et al. 2000).

Reservoir modeling and history matching

When the static model is built, it can be inputted into a fluid 
flow simulator to get numerical production responses, such 
as pressures or fluid rates at wells. This last block of the 
overall simulation workflow is said dynamic since the pro-
duction responses vary with time.

Fig. 2  Truncated Gaussian simulation with a the realization of a Gaussian random function; b the resulting facies realization after applying trun-
cation; c the threshold mask

Fig. 3  Bi-TGS Application: a Realization with facies A, B and C; b Realization with diagenetic levels L, M and H. The color lines indicate facies 
boundaries. c Threshold mask for facies and for diagenetic levels inside facies A and B 
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The purpose of history matching is to adjust any uncer-
tain parameters involved in the simulation workflow to force 
the numerical production responses to reproduce as well as 
possible the production data collected at wells. The data 
mismatch is quantified from an objective function defined as:

J is the objective function. It depends on vector param that 
includes all the parameters defining the static and dynamic 
models. Vectors fobs and f are the measured production data 
and the corresponding production responses simulated for 
the parameters included in param, respectively. The ωm 
coefficients are weights assigned to the measured produc-
tion data fm

obs with m = 1,…,M, where M is the number of 
available production data. The determination of param 
given the production data is an ill-posed inverse problem, 
meaning that there may be several solutions or no solutions 
at all and that the solution may be very sensitive to slight 
fluctuations in the production data. It is usually solved on the 
basis of an optimization process run to minimize the objec-
tive function. In a nutshell, the parameters are sequentially 
adjusted until the objective function is small enough. Any 
time a parameter is changed; a fluid flow simulation is run 
to compute the updated production responses. This process 
can be time-consuming as it may call for a large number of 
iterations. The uncertain parameters can belong to any of the 
blocks of the simulation workflow. There can be of different 
types. There are scalar parameters like the proportions of 
a facies provided it is stationary, but also stochastic spatial 
parameters like porosity values. The perturbation in these 
stochastic parameters cannot be performed anyhow, and 
specific parameterization techniques have been developed 
to handle this issue. One of them is the gradual deformation 
method (Hu, 2000). The basic principle consists in combin-
ing two independent Gaussian random functions, Yo and U, 
with identical mean m and covariance function C:

In such conditions, it can be shown that Y is also a Gauss-
ian random function of mean m and covariance C whatever 
the value of the t deformation parameter. This property holds 
because the two Gaussian random functions are independ-
ent and because the sum of the squares of the coefficients 
applied to the two Gaussian random functions equals 1. Let 
us consider a realization yo of Yo and a realization u of U. yo 
can be considered as the initial guess for the static model and 
u as a random complementary realization. For simplicity, the 
mean of the two Gaussian random functions is assumed to be 
0. When the t deformation parameter is 0, the equation above 
yields a y realization identical to yo. When t is 0.5, it leads 

(3)J(�����) =
1

2

M
∑

m=1

�m(fm(�����) − f obs
m

)2

(4)Y(t) − m =
(

Yo−m
)

cos(�t) + (U−m) sin(�t)

to u. When t gradually varies from 0 to 0.5, the y realization 
is smoothly modified to evolve from yo to u. This is why 
the deformation process is said gradual: it makes it possible 
to slightly and continuously change the y realization. The 
whole process is periodic with t varying in [− 1, 1]. When 
this parametrization technique is included into the minimi-
zation process, the purpose is to catch the y realization or 
equivalently the t deformation parameter that provides the 
smallest value for the objective function. Clearly, the chain 
of realizations built by varying t represents a very tiny part 
of the entire search space. Therefore, the complete grad-
ual process consists in successively investigating different 
chains of realizations. The first one is produced from initial 
guess yo and realization u. A first minimization process is 
run to explore this first chain and to determine the realization 
associated with the smallest objective function. This realiza-
tion is said to be the first optimal one. Then, we replace yo 
with the first optimal realization and randomly draw a new u 
realization. This provides a second chain of realizations. We 
can restart the minimization process to investigate this new 
chain and identify a new optimal realization, which permits 
to decrease further the objective function. The minimization 
loops are repeated until the data misfit is small enough.

A few authors (Roggero and Hu 1998; Thomas et al. 
2005; Tillier et al. 2010) showed that the gradual deforma-
tion process can be also used to perturb the realizations of 
categorical variables and match well production.

Reference case

The methodology described above is applied to a synthetic 
case to evaluate its potential. First, we built a reference case 
populated with facies, diagenetic phases, and petrophysical 
property distributions.

The reference case is associated with a two-dimen-
sional grid including 200 × 200 × 1 blocks whose size is 
5 × 5 × 5 m3 for each. The reservoir was assumed to con-
sist of three sedimentary facies named facies A, facies B 
and facies C (Fig. 3, a). Their proportions were set to 0.5, 
0.33 and 0.17, respectively. Their spatial variabilities were 

Table 2  Characteristics of diagenesis per facies: proportions, porosi-
ties and permeabilities

Facies Diagenesis and levels Proportion 
(fraction)

Porosity 
(fraction)

Perme-
ability 
(mD)

A Silicification Low 0.15 0.30 500
Medium 0.21 0.15 100
High 0.64 0.05 1

B Calcite cementa-
tion

Low 0.5 0.20 200
Medium 0.5 0.10 50

C Silicification High 1 0.05 2
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characterized by an anisotropic Gaussian variogram with a 
range of 600 m along the main axis, this one being defined 
by an azimuth of 45°. The range along the perpendicular axis 
was 120 m. The truncated Gaussian method was then used 
to generate the facies model.

The principal diagenetic process that altered facies A was 
silicification. This phase was characterized by three levels 
with occurrences defined as low, medium and high. The cor-
responding proportions were 0.15 for the low level, 0.21 
for the medium one and 0.64 for the high one. Silicification 
contributed to reduce porosity and permeability in different 
degrees as listed in Table 2. On the other hand, facies B was 
mainly affected by calcite cementation according to two lev-
els of occurrence defined as low and medium. The two levels 
occurred with identical proportions. This diagenetic phase 

occluded the pore space and reduced connectivity when its 
proportion was high. Finally, facies C was fully silicified 
(high level of occurrence only) so that its porosity and per-
meability properties were very low.

The diagenetic phases were then distributed inside each 
facies still referring to the truncated Gaussian method. In 
this case, the variogram describing the spatial variability 
of diagenesis was an isotropic Gaussian one with a range 
of 600 m. The resulting diagenesis model is displayed in 
Fig. 4a. Constant porosity and permeability values were 
then assigned to each of the diagenesis levels (Table 2). This 
hypothesis was considered so that we can focus on the cali-
bration of the diagenesis parameters. The ultimate reference 
porosity and permeability models are shown in Fig. 5. We 

Fig. 4  a Reference diagenetic model (DM1). b Starting diagenetic model. c Final diagenetic model. The lines overimposed on the figure indicate 
the boundaries of the facies

Fig. 5  Reference case—porosity 
and permeability
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check that, for this case, the more significant the diagenesis, 
the lower the permeability and the porosity.

This reference porosity and permeability model was 
then inputted into a flow simulator to calculate production 
responses that will be assimilated to reference production 
data in a subsequent step. A vertical injecting well was set 
up in the lower left corner of the two-dimensional grid, and 
a vertical producing well was also set up in the opposite 
corner. Water was then injected at 200 m3/day. A constant 
flow rate of 200 m3/day was considered at the producer. The 
relative permeability curves were given by Corey’s model 
with an exponent of 2. The water and oil viscosities were 
fixed to 1. The water cut obtained at the producer is given in 
Fig. 6b. It is characterized by a breakthrough time of about 
1500 days. For illustration purposes, the water saturations at 
breakthrough time are shown in Fig. 6a. They clearly show 
the influence of diagenesis heterogeneities.

Diagenesis modeling

Parameterization of diagenetic proportions

As mentioned above, we aim at adjusting diagenesis from pro-
duction data by varying the variograms considered for simulat-
ing the diagenetic phases, their spatial distributions, but also 
their proportions. The variograms involve scalar parameters 
such as the range that can be perturbed using any usual mini-
mization algorithm. The variations in the spatial distributions 
can be driven by the gradual deformation method as explained 
in Sect. 2.5. The issue that still has to be solved is about the 
proportions of the various diagenetic phases, but also the 
proportions of the distinct levels of occurrence for a given 

diagenetic phase. All of these proportion values that have to 
be calibrated finally lead to a significant number of parameters. 
In this section, we introduce a new parameterization technique 
to vary all diagenetic proportions from a reduced number of 
proportionality coefficients. This will contribute to ease the 
ultimate optimization process.

For illustrative purposes, we restrict our attention to a case 
with one diagenetic phase characterized by three levels of 
occurrence: high (H), medium (M) and low (L). A single a 
parameter is then defined to vary the proportions of any of the 
occurrence levels. The idea consists in splitting the diagenetic 
levels into two groups whose proportions evolve following 
the same trend inside each group. For the example studied, 
we separate level L from levels M and H. Thus, parameter a 
becomes the proportions of level L. If a increases, the propor-
tion of L increases, while those of M and H proportionally 
decrease (Fig. 7). This holds because the sum of the three 
proportions is 100%.

The proportions of the three diagenetic levels are modified 
depending on parameter a. The new proportions for levels L, 
M and H are given by:

pLnew = a

(5)pMnew =

(

1 +
(

pL0 − a
)

pMo + pH0

)

× pM0

pHnew =

(

1 +
(

pL0 − a
)

pMo + pH0

)

× pH0

Fig. 6  a Water saturation map at breakthrough time. b Reference water cut
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pL, pM and pH stand for the proportions of the L, M and H 
diagenetic levels. Subscripts 0 and new are used to discrimi-
nate the initial and modified proportions, respectively.

This parameterization technique can be included into 
the optimization process described in Sect. 2.2. Then, a is 
viewed as an additional parameter to be determined from 
the minimization of the objective function. It is handled as 
any other scalar parameters. The methodology can become 
as complex as the diagenetic depositional conceptual model 
is. Several diagenetic phases affecting in different extents the 
carbonate reservoir can be considered. The interest of this 
new approach is the decrease in the number of parameters: 
the whole set of diagenetic proportions can be driven from 
one or a few proportionality a parameters.

Influence of variograms

The starting reservoir model, denoted DM1, is the one 
shown in Fig. 4a. It was built using the TGS version of the 
Bi-PGS method. The two-dimensional grid that serves as a 

basis for the model consists of 200 × 200 × 1 grid blocks. 
The dimensions of each grid block are 1 × 1 × 1 m3. The 
variogram of the Gaussian random function used to simulate 
the diagenetic levels is Gaussian, anisotropic with a range of 
20 grid blocks along the main axis that is the diagonal one. 
This model contains three facies, each differently modified 
by the same diagenetic phase. The regions defined by a given 
level of occurrence of the diagenetic phase in a given facies 
are attributed constant and identical petrophysical proper-
ties. This means that levels L in facies A and facies B have 
distinct porosity and permeability values. In a given facies, 
the rule followed is that the stronger the diagenesis impact or 
the occurrence of the diagenetic phase, the lower the poros-
ity and permeability values. In a second step, we keep all 
parameters identical except the range along the main axis. It 
is now reduced to 10 grid blocks. The two diagenesis models 
are compared in Fig. 8.

The extension of diagenesis over facies can be evaluated. 
Increasing the variogram range contributes to create large 
connected areas of fair reservoir quality like the areas in blue. 

Fig. 7  Example illustrating the 
impact of parameter a. Param-
eter a controls the proportions 
of the level of low occurrence 
of the targeted diagenetic phase 
in facies A 

Fig. 8  a Diagenetic model DM1 
with a variogram range of 20 m. 
b Diagenetic model DM2 with 
a variogram range of 10 m. The 
lines overimposed on the figures 
indicate the boundaries of the 
facies
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On the other hand, the decrease in the variogram range pro-
duces less connected regions and consequently creates more 
tortuous flow path. To evidence the impact on fluid displace-
ment, we assume that the reservoir is produced by injecting 
water at the bottom left corner. This makes it possible to 
push oil toward the producer that is in the top right corner. 
Saturation maps at breakthrough for DM1 and DM2 models 
are shown in Fig. 9a and b. The water cuts obtained for these 
two models are displayed in Fig. 9c. In this case, we note that 
varying the range has almost no impact on water cuts.

Influence of the spatial distribution

The purpose of this subsection is to stress the influence of 
the spatial distribution of the diagenetic levels on fluid flow. 
We actually refer to the gradual deformation method to 
vary this spatial distribution. This implies a variation in the 

gradual deformation parameter (Eq. 4), all other parameters 
being fixed. Three diagenetic models, DR1, DR2 and DR2, 
were generated by setting a gradual deformation parameter 
of 0, 0.5 and 1, respectively. The resulting changes in the 
diagenesis models are shown in Fig. 10. Their impacts on 
fluid flow are evidenced by the water cuts in Fig. 11. This 
time, the variations in the spatial distributions of the diage-
netic heterogeneities lead to different water cut curves. The 
breakthrough times evolve from 1200 to 1500 days.

Influence of level proportions

Finally, we investigate the effect of the proportions of the dia-
genetic levels. We generate two diagenetic models applying the 
TGS method with identical variograms. The only differences 
result from the proportions of high, medium and low levels in 
facies A. For the other facies, the proportions are kept. For the 

Fig. 9  a Saturation map for DM1 model at breakthrough. b Saturation map for DM2 model at breakthrough. c Water cuts simulated for DM1 
(red) and DM2 (blue)

Fig. 10  a DR1 with gradual parameter of 0. b DR2 with gradual parameter of 0.5. c DR3 with gradual parameter of 1. The lines overimposed on 
the figures indicate the boundaries of facies
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first model, DP1, the level proportions in facies A are defined 
as 0.1 for low, 0.4 for medium and 0.5 for high. For the second 
model, DP2, these proportions are set to 0.8 for the low level, 
0.1 for the medium one and 0.1 for the high one (Fig. 12). The 
corresponding simulated water cuts are reported in Fig. 13. 
We observe that the proportions of the levels of occurrence of 
the diagenetic phase significantly affect the fluid flow. The two 
water cut curves are very different with breakthrough times 
varying from about 1300–2300 days.

History matching: calibrating diagenesis 
from dynamic data

At this stage, the purpose is to see whether the proposed 
history-matching procedure makes it possible to calibrate 
diagenesis from the available dynamic or production data. 

For the numerical experiment under consideration, we now 
assume that everything about the static reference model is 
known except the parameters characterizing silicification in 
facies A. In other words, the spatial distribution of silicifica-
tion heterogeneities as well as the proportions of the regions 
associated with the low, medium and high levels of occur-
rence is unknown. The issue to be investigated is about the 
possibility to calibrate this diagenetic phase from the refer-
ence water cut data provided in Fig. 6b. The matching pro-
cess described in Fig. 1 is then run with unknown parameters 
in the diagenesis modeling block only. Two parameteriza-
tion techniques are applied to drive the diagenesis model. 
The diagenesis proportion perturbation method proposed 
in this paper is considered to vary the proportions, while 
the gradual deformation method permits to change the spa-
tial distribution of the diagenesis heterogeneities. This thus 

Fig. 11  a DR1 (t = 0) saturation map at breakthrough. b DR2 (t = 0.5) saturation map at breakthrough. c DR3 (t = 1) saturation map at break-
through. d Water cuts simulated for DR1 (red), DR2 (blue) and DR3 (black)
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calls for the definition of two parameters: parameter a for the 
diagenesis level proportions and parameter t for the spatial 
distribution of diagenesis heterogeneities.

A given starting point, that is a given initial diagenesis 
model, is randomly generated (Fig. 4b). It is characterized 
by a seed that yields the heterogeneity distribution and a 
diagenesis proportion parameter a of 0.5. As in the example 
presented in Fig. 7, this a parameter gives at once the pro-
portion of the region with a low occurrence level of silicifi-
cation. This starting point is clearly different from the refer-
ence diagenesis model shown in Fig. 4, a: the value for the 
initial a parameter (0.5) is much larger than the one for the 
reference model (0.15).

The resulting porosity and permeability models are pro-
vided to the flow simulator to compute the water cut at the 
producer (Fig. 15). The resulting curve (black) is clearly 
different from the reference water cut (red curve) with a 
breakthrough time of 1750 days instead of 1500. The misfit 
is quantified by the objective function: its initial value is 

0.34. Then, an optimized process is run to minimize this 
objective function by varying parameters a and t. A sketch 
of the approach followed is given in Fig. 14:

• Step 1 generate the facies model, define parameter a and 
generate Y0, an initial Gaussian white noise (see Eq. 4),

• Step 2 generate U, a complementary Gaussian white 
noise,

• Step 3 enter the gradual deformation loop that drives the 
t deformation parameter,

a. Combine Yo and U to obtain Y.
b. Generate the diagenesis model.
c. Populate the resulting model with petrophysical 

properties.
d. Run the flow simulation.
e. Calculate the objective function.
f. Adjust parameters t and a.
g. Go back to 3(a) until convergence.

Fig. 12  a Diagenetic model 
DP1. b Diagenetic model DP2. 
The lines overimposed on the 
figures indicate the boundaries 
of the facies

Fig. 13  a Saturation map for DP1 model at breakthrough. b Saturation map for DP2 model at breakthrough. c Water cuts simulated for DP1 
(red) and DP2 (blue)
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• Step 4 update Y0 using the previous optimal Y and go 
back to step 2 until convergence.

Following this scheme, there are actually two loop levels. 
There is an inner loop that includes steps 3(a) to 3(g). At this 
level, U is fixed, while t and a vary. The purpose of this loop 
is to identify parameters t and a so as to minimize the objec-
tive function. As U is fixed, a tiny part only of the search 
space is investigated. This is why there is a second-level 
loop that groups steps 2, 3 and 4. This makes it possible to 
consider other U realizations, to build other chains of reali-
zations and to explore further the search space.

The stopping criterion is defined as 10% of the initial 
objective function: when the objective function gets smaller 
than this value or when it is a value almost constant, the 
optimization process is stopped. The algorithm used for 
minimizing the objective function in step 3 is Simulated 
Annealing (Kirkpatrick et al. 1983). Its name comes from 
the annealing process in metallurgy, a technique with first 
heating and then cooling under a controlled temperature. The 
idea behind is to reach an equilibrium state corresponding 
to a global optimum. Given a starting point, the algorithm 
considers a random parameter perturbation and calculates 
the resulting change in the system energy (i.e., objective 
function). If this system energy decreases, the perturba-
tion proposed is accepted. If it increases, the perturbation 
is accepted following a given probability. This prevents the 
algorithm from getting stuck in local minima. Perturbations 
are repeated until the system energy reaches a steady state 
or complies with the stopping criterion.

The first attempt performed required three second-level 
loops before satisfying the stopping criterion. The water cut 
curve simulated for the final model can be compared to the 
reference data in Fig. 15. Slight differences can be observed, 
but the general behavior is captured. The final objective 
function value was 2% of its initial value. It was reached for 
a parameter a of 0.22 that evolves the right way as it gets 

Fig. 14  Flowchart with the steps followed to minimize the objective 
function

Fig. 15  Water cuts for the reference case (red), the initial model 
(black) and the final one (blue)

Table 3  Optimization results for 10 different initial points: initial and 
final objective function, optimal a parameter

Cases Initial fobj Final fobj Opt a

1 0.3403 0.0060 0.2216
2 0.3409 0.0126 0.1693
3 0.4006 0.0137 0.3321
4 0.2289 0.0095 0.2224
5 0.0835 0.0065 0.2142
6 0.1082 0.0099 0.2919
7 0.4256 0.0400 0.1824
8 0.2650 0.0133 0.2194
9 0.42,449 0.0384 0.3584
10 0.26,879 0.0207 0.2045
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close to its reference value (0.15). In addition, we checked 
that the t value strongly varies all along the minimization 
process, which means that the spatial distribution of diagen-
esis heterogeneities has a significant effect on the history 
matching. It is also worth comparing the final diagenesis 
model (Fig. 4c) with the reference one (Fig. 4a): the main 
diagenesis heterogeneities are captured by the matching 
process.

The overall process was actually repeated 10 times to 
study the potential of this matching method. In other words, 
10 different starting points were considered and the match-
ing process was then run 10 times providing 10 matched 
models. The results obtained are recapped in Table 3 and 
Fig. 16. Table 3 points out that the a parameter decreases 
every time and tends toward the reference a value. The mean 
a matched value is 0.24, while the variance is 0.06. Another 
important feature is that the t deformation parameter changes 
a lot, which evidences the influence of the spatial distribu-
tion of diagenesis heterogeneities on production data and the 
potential of these data to better constrain diagenesis.

Conclusions

We developed a methodology to calibrate diagenesis from 
production data. A diagenesis modeling step was added to 
classical modeling workflows, and a new, simple and intui-
tive parameterization technique was proposed to drive the 
proportions of the various levels for a given diagenetic 
phase. This made it possible to design a matching workflow 
aiming at calibrating the proportions, the spatial distribution 

and variability of the diagenetic phases on top of usual 
parameters.

A sensitivity study was then performed. It evidenced that 
the diagenesis modeling parameters such as the variogram 
range, the proportions and the spatial variability influence 
the simulated production responses to various extents. The 
proportions of the diagenesis level have the most prominent 
impact and then followed but the spatial distribution. This is 
related to the fact that these parameters control connectivity 
and hence fluid flow.

Last, a numerical experiment was developed to evalu-
ate the ability of the proposed inversion methodology to 
constrain diagenesis parameters from production data. The 
proposed methodology was applied to a two-dimensional 
synthetic case. We showed that the matching of the water cut 
profiles made it possible to properly capture the reference 
diagenetic model. The optimal a parameter was pretty close 
to its reference value, while the spatial distribution of the 
heterogeneities looks like the reference one.

A next step will consist in applying the methodology 
described in this paper to a real carbonate field with histori-
cal production. The challenge will be to consider more data, 
a complex configuration of diagenetic phases and the use of 
the pluriGaussian algorithm.

Open Access This article is distributed under the terms of the Crea-
tive Commons Attribution 4.0 International License (http://creat iveco 
mmons .org/licen ses/by/4.0/), which permits unrestricted use, distribu-
tion, and reproduction in any medium, provided you give appropriate 
credit to the original author(s) and the source, provide a link to the 
Creative Commons license, and indicate if changes were made.

Fig. 16  a Initial water cut profiles for 10 cases (dotted lines). b Water cut profiles for 10 matched cases (dotted lines). The reference water cut is 
the solid red line
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