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Abstract: We present a new simple approach to extend the admissible region of a saturated
control law for discrete-time linear systems under state and input constraints. The approach is
based on the interpolation of a given, performance driven, control law and a low-gain controller.
The latter is designed such that its admissible set has maximum volume. The interpolation does
not require on-line numerical optimization, and an analytical formula for the controller is given.
Several numerical examples are presented to illustrate the control technique.
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1. INTRODUCTION

A great deal of literature exists on the control of discrete-
time constrained plants. Relevant approaches include
Model Predictive Control (MPC), described in e.g. Mayne
(2014), and Vertex Control, described in e.g. Gutman and
Cwikel (1986). In recent decades, MPC has become a
leading control method in industry, and has received large
academic interest; see e.g. Maciejowski (2002), Rossiter
(2004), and Borrelli et al. (2017). MPC offers a system-
atic approach to control multivariate constrained systems,
however it requires online optimization at each time step.
This limitation can be overcome by explicit MPC methods
where an optimal control law at each state-space region
is precomputed off-line (Bemporad et al., 2002), and by
specialized optimization tools (Wang and Boyd, 2010).
These algorithms, combined with tailored hardware (Jerez
et al., 2010), can decrease computation times and allow the
implementation of MPC in fast dynamical systems.

The above nominal MPC algorithms are unable to guaran-
tee robust stability and performance for uncertain systems.
There exist robust MPC methods, such as the the linear
matrix inequalities (LMIs) based MPC in Kothare et al.
(1996), the tube-based MPC in Langson et al. (2004), and
the min-max MPC approach in Bemporad et al. (2003).
These may demand the on-line solution of large optimiza-
tion problems, for the first two methods, or solving a
point location problem in a large polyhedral partition, for
the last mentioned method. Robust MPC methods thus
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require excessive computational load, and therefore are
impractical for implementation.

Interpolation based approaches allow the use of simpler
algorithms, applicable for the same type of problems as
MPC. Although no optimality of some cost function is
guaranteed, these algorithms provide a good compromise
between computational load, feasible region, and perfor-
mance. A variety of interpolation based methods, closely
related to MPC, are presented in Rossiter and Ding (2010).
An alternative is the recently developed Interpolating Con-
trol (IC) method by Nguyen et al. (2013); Nguyen (2014).

In IC, a high performance local controller is blended with
low-gain global controllers, which are used to enlarge the
domain of attraction. The interpolation makes use of the
constraint-admissible invariant sets given by the local and
global control laws. If polyhedral sets are used to describe
the invariant sets, IC requires the solution of a single
linear program (LP) at each time instant to derive a
robustly stabilizing solution. However, the computation of
such invariant sets for high-order systems and for systems
with polytopic uncertainty is sometimes impractical from a
computational perspective. The same issue goes with other
polyhedral invariant set based interpolating methods such
as the one in Pluymers et al. (2005). The complexity of
polyhedral invariant sets may motivate the use of the easily
computed and stored ellipsoidal sets of the interpolation
instead, as presented in Nguyen et al. (2011). However, in
that case the solution of a semidefinite program (SDP) at
each time instant is required.

This work presents a remarkably simple alternative for
interpolation between two saturated control laws: a high-



gain performance-driven control law and a low-gain control
law. The interpolation makes use of the properties of the
corresponding invariant sets for each law.

2. PRELIMINARIES

Consider the uncertain and/or time-varying linear discrete-
time system modeled by

x(k + 1) = A(k)x(k) +B(k)u(k) (1)

where x(k) ∈ Rn is the state and u(k) ∈ Rm is the
control input. These signals are constrained by polytopes,
assumed symmetrical w.r.t. the origin,

x(k) ∈ X ={x ∈ Rn : ‖Lx‖∞ ≤ 1}, (2a)

u(k) ∈ U ={u ∈ Rm : ‖u‖∞ ≤ umax}, (2b)

where L ∈ Rnc×n and umax ∈ Rm.

The matrices A(k) ∈ Rn×n and B(k) ∈ Rn×m are given
with polytopic uncertainty as follows

A(k) =

s∑
i=1

αi(k)Ai, (3a)

B(k) =

s∑
i=1

αi(k)Bi, (3b)

s∑
i=1

αi(k) = 1, αi(k) ≥ 0, ∀i = 1, . . . , s, (3c)

where αi(k) is unknown, and possibly time-varying. A
more general form of polytopic uncertainty with different
summations and indices in (3a) and (3b) can be brought
to the form (3) (Nguyen et al., 2013).

Before presenting the main results, notation and prelim-
inary results related to invariant theory are given. The
function sat(·) is used to denote the standard vector valued
saturation function, for u ∈ Rm, the i-th component of
sat(u) is sign(ui) min(umax, |ui|). An ellipsoid defined by
a positive definite matrix P is denoted as E(P ) = {x :
x>P−1x ≤ 1}.
Definition 1. An ellipsoid E(P ) is said to be robustly
invariant with respect to the constrained system (1) and
a given feedback control law u(k) = sat(Kx(k)) if

x(k + 1)>P−1x(k + 1)− x(k)>P−1x(k) ≤ 0 (4)

for all x(k) ∈ E(P ) and

E(P ) ⊂ X .
If inequality (4) is strict, and is satisfied for any x(k) ∈
E(P ) with x(k) 6= 0, the ellipsoid E(P ) is called a robustly
contractive ellipsoid.

Several methods for the computation of ellipsoidal invari-
ant sets for saturated control laws exist in the literature.
One example is the approach in Hu et al. (2002), where
the saturation non-linearity is modeled by linear difference
inclusions (LDIs), and computation is done by the solution
of an LMI problem. We note that these methods can be
adapted to synthesize the saturated control law such that
the associated ellipsoidal invariant sets is maximized (Hu
et al., 2002).

3. MAIN RESULTS

The method proposed in this work relies on two satu-
rating linear control laws, and two robustly contractive

ellipsoids associated to these control laws. We consider a
given robustly stabilizing controller, designed to satisfy
a given performance requirement, u(k) = sat(Kax(k)).
This control law is associated with a robustly contractive
ellipsoid E(Pa). To extend the feasible region of the control
law to be admissible outside E(Pa), a second controller
u(k) = sat(Kbx(k)) is synthesized such that the volume
of its associated robustly contractive ellipsoid, E(Pb), is
maximized. It is assumed that E(Pa) ⊂ E(Pb), as depicted
in Fig. 1. Note that this maximization depends on the
level of conservatism of the method used to estimate the
robustly contractive ellipsoids. These two controllers are
denoted as inner and outer, respectively.

The problem at hand is how to blend these two controllers
in a way that the resulting controller can be applied for any
state in E(Pb) \ E(Pa), with superior performance to the
outer controller alone, and the inner controller in E(Pa),
while avoiding chattering that often occurs when switching
between controllers in the presence of noisy measurements.
An Interpolating Controller that addresses all these issues,
including proof of recursively feasibility and asymptotic
stability, was presented in Nguyen et al. (2011); it however
requires the solution of an SDP at every time step. That
limits the applicability of the method and calls for a more
computationally efficient alternative.

The controller proposed here is equal to the inner when
the state belongs to E(Pa); otherwise, it is based on
interpolation between the inner and the outer controller.
Any state x(k) ∈ E(Pb) \ E(Pa) can be decomposed as

x(k) = c(k)xb(k) + (1− c(k))xa(k), (5)

where xa(k) ∈ E(Pa), xb(k) ∈ E(Pb) and 0 ≤ c(k) ≤ 1.
Applying the same decomposition on the control signal
yields

u(k) = c(k)ub(k) + (1− c(k))ua(k), (6)

with ua(k) = sat(Kaxa(k)) and ub(k) = sat(Kbxb(k)). In
terms of performance, it is desirable to have c(k) as small
as possible which makes the inner (high-performance)
controller dominant. Unfortunately, the problem of finding
the minimum interpolation coefficient c(k) as well as the
corresponding states xa(k) and xb(k) requires the solution
of an SDP at every time step (Nguyen et al., 2011). With
the aim of reducing the computational burden, we resort
to a sub-optimal approach to perform the interpolation.

Under the assumption that E(Pa) ⊂ E(Pb), it is possible
to select xa(k) and xb(k) on the same ray from the origin
to x(k), as illustrated in Fig. 1.Thus xa(k) = x(k)/a(k)
where a(k) > 1 is given by

a(k)2 = x(k)>P−1a x(k). (7)

Similarly, xb(k) = x(k)/b(k) where b(k) ≤ 1 is obtained as

b(k)2 = x(k)>P−1b x(k). (8)

Then, from (5) the interpolation coefficient is found as

c(k) =
b(k)(a(k)− 1)

a(k)− b(k)
. (9)

It is easily checkable that c(k) ∈ (0, 1] for any x(k) ∈
E(Pb) \ E(Pa). Note also that c(k) = 0 ∀x(k) ∈ E(Pa).

Theorem 2. The control law (6) – (9) is feasible for all
x(k) ∈ E(Pb), i.e., ‖u(k)‖∞ ≤ umax and x(k + 1) ∈ E(Pb).

Proof. The proposed control action satisfies
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Fig. 1. Illustration of the interpolation concept.

‖u(k)‖∞ = ‖c(k)sat(Kbxb(k))+(1−c(k))sat(Kaxa(k))‖∞
≤ c(k)‖sat(Kbxb(k))‖∞ + (1− c(k))‖sat(Kaxa(k))‖∞

= umax.

The state evolves under the proposed controller as

x(k + 1) = c(k) (A(k)xb(k) +B(k)ub(k))

+ (1− c(k)) (A(k)xa(k) +B(k)ua(k)) .

We also have that

A(k)xb(k) +B(k)ub(k) ∈ E(Pb),

A(k)xa(k) +B(k)ua(k) ∈ E(Pa),

E(Pa) ⊂ E(Pb).

Therefore, it follows easily that x(k + 1) ∈ E(Pb). 2

Unfortunately, the proposed controller is not guaranteed
to be asymptotically stabilizing. We present an example
where the closed-loop system exhibits a limit cycle, see
Example 1 below. The following result states that it is
possible to check the asymptotic stability of the resulting
closed-loop system by analyzing an uncertain discrete-time
systems with convex polytopic uncertainty,

x(k + 1) = Ac(k)x(k), (10)

where Ac(k) belongs to a polytopic set defined by the
2m+1s vertices

Ai +Bi

(
DjKa +D−j Ha

)
, (11a)

Ai +Bi

(
DjKb +D−j Hb

)
, (11b)

i = 1, 2, . . . , s, j = 1, 2, . . . , 2m. (11c)

Here, Dj denotes the j-th element of the set of diagonal
matrices of dimension m whose diagonal elements are
either 1 or 0, D−j = Im − Dj , ‖Hax(k)‖∞ ≤ umax for all

x(k) ∈ E(Pa) and ‖Hbx(k)‖∞ ≤ umax for all x(k) ∈ E(Pb).

Stability conditions for system with time-varying poly-
topic uncertainty have been presented in the literature, see
e.g. Daafouz and Bernussou (2001); Geromel and Colaneri

(2006). So, if (10), (11) is asymptomatically stable by
e.g. Daafouz and Bernussou (2001), then the closed loop
interpolating control system is asymptotically stable with
any c(k). Another sufficient stability result, based on Hu
and Lin (2001) is given in Theorem 3 below.

Remark: An alternative way to enhance the closed-loop
stability is to fix, e.g., an inner control law, then solve an
LMI optimization problem to obtain an outer one.

Theorem 3. The closed-loop system composed by the con-
strained system (1) and the controller (6) – (9) is asymp-
totically stable if the uncertain discrete-time systems with
convex polytopic uncertainty (10) – (11) is asymptotically
stable.

Proof. The proof is a straightforward extension to the
two-gain-case of (Hu and Lin, 2001, Proposition 7.5.1).
The controller (6) – (9) is given by

u(k) = c(k) sat

(
Kbx(k)

b(k)

)
+ (1− c(k)) sat

(
Kax(k)

a(k)

)
A saturated linear controller can be modeled using LDIs
(Hu et al., 2002), the inner controller is modeled as

sat(Kax(k)/a(k)) ∈ a(k)−1conv{DjKax(k) +D−j Hax(k)},
j = 1, 2, . . . , 2m,

‖Hax(k)‖∞ ≤ umax ∀x(k) ∈ E(Pa).

The outer controller is modeled as

sat(Kbx(k)/b(k)) ∈ b(k)−1conv{DjKbx(k) +D−j Hbx(k)}
j = 1, 2, . . . , 2m

‖Hbx(k)‖∞ ≤ umax ∀x(k) ∈ E(Pb).

Noting that c(k)/b(k) + (1− c(k))/a(k) = 1, it is possible
to write

u(k) = K(k)x(k)
where K(k) belongs to a polytopic set defined by the 2m+1

vertices:

DjKa +D−j Ha

DjKb +D−j Hb

j = 1, 2, . . . , 2m

Therefore, the resulting closed-loop system can be mod-
eled as the uncertain discrete-time system with convex
polytopic uncertainty given by (10) – (11). 2

4. NUMERICAL EXAMPLES

This section presents three examples that serves to show
the properties of the presented controller. A pathological
case is presented in Example 1. The usage and the benefits
of the presented algorithm is shown in the other examples.

4.1 Example 1

This example presents a case where the controller (6) –
(9) exhibits a limit cycle, i.e. the closed-loop system is not
asymptotically stable for all initial conditions in E(Pb). Let
us consider the constrained system{

x(k + 1) = Ax(k) +Bu(k),
−10 ≤ x1 ≤ 10, −10 ≤ x2 ≤ 10,
−1 ≤ u1 ≤ 1, −1 ≤ u2 ≤ 1,

with

A =

[
−0.2 0.2
−2.0 −0.2

]
, B =

[
1 0
0 1

]
.



The inner and outer controller are given as

Ka =

[
0.1 −2.2
2.2 0.1

]
, Kb =

[
0.1 0
0 0.1

]
,

and their associated ellipsoidal contractive sets are given
by

Pa =

[
20.6631 −0.1375
−0.1375 5.0901

]
, Pb =

[
24.6440 0.0052
0.0052 99.9995

]
.

For the sake of simplicity, these ellipsoidal contractive
sets have been obtained for the linear controllers, i.e.
ua(k) = Kaxa(k) and ub(k) = Kbxb(k).

We note that A + B(Ka + Kb)/2 has the eigenvalue −1
and that the evolution of the system is given by

x(k + 1) =

(
A+B

(
1− c(k)

a(k)
Ka +

c(k)

b(k)
Kb

))
x(k)

Therefore, an initial condition placed along the eigenvector
associated with the eigenvalue −1 in such a way that
1−c(0)
a(0) = c(0)

b(0) = 0.5 will exhibit a limit cycle. The initial

condition x(0) = [2.7685 2.7685]
>

satisfies the above con-
dition, and it exhibits a trajectory that alternates between

the states [2.7685 2.7685]
>

and [−2.7685 −2.7685]
>

.

4.2 Example 2

Consider the following constrained system from Nguyen
and Gutman (2016) to be regulated to the origin

x(k + 1) =

[
1 1
0 1

]
x(k) +

[
0.42 0.90
0.38 0.67

]
u(k),

−40 ≤ x1 ≤ 40, −10 ≤ x2 ≤ 10,
−0.1 ≤ u1 ≤ 0.1, −0.1 ≤ u2 ≤ 0.1.

(12)

The proposed control technique, defined by (6) – (9), is
applied by considering a saturated LQR controller with
weightings Q = I2 and R = 30I2 as the inner controller,
and a saturated linear controller that maximizes the vol-
ume of the robustly contractive ellipsoid for the given
constrained system (12) as outer controller. The outer
controller is defined by the gain

Kb =

[
−0.0430 −1.7220
−0.0271 −0.9796

]
.

For comparison purposes, a dual mode, infinite prediction
horizon MPC controller (Mayne et al., 2000) was also simu-
lated. The MPC was designed to achieve identical behavior
as the LQR above within its terminal set by using the
same weightings Q and R, and the corresponding terminal
weight. The prediction horizon was set to 75 for it to
have a feasible set equal to the maximum control invariant
set that includes E(Pb). Both controllers were simulated
for a set of 629 equiangular initial conditions along the
boundary of E(Pb). Performance was measured in terms
of the cost function J =

∑∞
k=1 x

>(k)Qx(k) + u(k)Ru(k).
The histogram for the ratio between the cost functions of
the MPC and the proposed controller is shown in Fig. 3.
Fig. 4 shows the states and control inputs corresponding

to the initial condition x(0) = [2.5429 2.5429]
>

for both
controllers, i.e. MPC and controller (6) – (9).

We note that the proposed controller is (slightly) penalized
in terms of feasible set (see Fig. 2) and performance (see
Fig. 3 and 4). On the other hand, the computational
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Fig. 2. Set of valid initial conditions for MPC (gray
polyhedron) and proposed controller (black ellipsoid
E(Pb)) in Example 2.

0.5 0.6 0.7 0.8 0.9
0

200

400

600

JMPC/J(6) – (9)

Fig. 3. Histogram ratio between cost function for MPC
and proposed controller in Example 2.

burden of the new controller is practically negligible,
since neither numerical optimization nor a point-location
algorithm in a polyhedral partition is needed.

Another benefit of the proposed controller is that the
feasible set, E(Pb), is obtained a priori, off-line, by solving
an LMI, while no efficient method is known to obtain
this for MPC or standard polytopic IC, at least for high-
dimensional and/or uncertain systems. In many practical
such cases, the already designed MPC would require a
check of convergence to the setpoint for any given initial
condition. However, practitioners usually skip this check
(“play and pray”).

4.3 Example 3

Consider the following constrained uncertain system from
Nguyen and Gutman (2015),{

x(k + 1) = A(k)x(k) +B(k)u(k),
−10 ≤ x1 ≤ 10, −10 ≤ x2 ≤ 10,
−1 ≤ u ≤ 1.

(13)

The matrices A and B are given as

A(k) = α(k)A1 + (1− α(k))A2,

B(k) = α(k)B1 + (1− α(k))B2,

with

A1 =

[
1 0.1
0 1

]
, B1 =

[
0
1

]
,

A2 =

[
1 0.2
0 1

]
, B2 =

[
0

1.5

]
.

It is assumed that α(k) ∈ [0, 1] is an unknown, time-
varying, uniformly distributed random number. The high-
gain control gain is chosen as
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Fig. 4. States and control inputs for MPC (gray) and
proposed controller (black) in Example 2.

Ka = [−1.1717 − 0.9542] .

The low-gain controller was computed such that E(Pb) has
maximal volume, and its gain is

Kb = [−0.1525 − 0.7780] .

The presented approach is compared with the LMI based
infinite-horizon robust MPC method in Kothare et al.
(1996) with the weights Q1 = I2 and R = 1.

Fig. 5 shows the states and control inputs obtained from
a numerical simulation for the initial condition x(0) =

[−3.95 9.80]
>

over 30 time samples. Fig. 6 shows the
trajectory for the same simulation, plotted together with
the ellipsoidal invariant sets E(Pa) and E(Pb), and the
feasible set for the MPC denoted by Ω. The presented
method is shown to give faster convergence times than
MPC and share very similar feasible sets. The major
difference is, obviously, the computational burden: The
MPC algorithm requires the solution of an SDP at each
computation time. Here the SPDs were computed using
the Yalmip modeling package (Löfberg, 2004) and Mosek
(Mosek ApS, 2017), and their worst-case computation
time took approximately 93 ms (15 ms on average). Our
approach requires no solvers, and was executed in under
0.16 ms (0.04 ms on average) on the same platform.

5. CONCLUSION

This paper presents a new control approach for discrete-
time uncertain linear systems subjected to state con-
straints and actuator saturation. The presented approach
is based on the interpolation of two saturated control
laws. It is remarkably easy and simple to implement and
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Fig. 5. States and control input results for Example 3. Pro-
posed approach (black) vs. the approach in Kothare
et al. (1996) (gray).
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Fig. 6. Invariant sets and states trajectories for Exam-
ple 3. Proposed approach (black) vs. the approach in
Kothare et al. (1996) (gray).

gives reasonable trade-off between performance, feasible
region size and computational load, in comparison to other
interpolation based approaches and MPC. These benefits
were demonstrated by two numerical examples.

In comparison with MPC, it should be noted that the
presented method will obviously not give better perfor-
mance in terms of the MPC criterion, but will always give
a solution when the state is in the precomputed feasible
ellipsoid. When using MPC, its feasible region is in general
not precomputed since it is a highly demanding or even
impossible task, see Rubin et al. (2018). Note that, in gen-
eral, our ellipsoidal feasible region may not be a subset of



the MPC feasible region. Therefore, with a given measured
state, the MPC is not guaranteed to give a solution even
if that state belongs to our ellipsoid. Moreover, the new
Simple Interpolating Control demands less computational
effort.

Future development of the proposed method will include
disturbance attenuation, output feedback, and reference
tracking. Currently under development is an extension
that has a built-in closed loop asymptotic stability guar-
antee; Theorem 3 will be thrown out to the garbage heap
of history.
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