

An emerging thermochronometer for carbonate-bearing rocks: $\Delta 47 / (U-Pb)$

Xavier Mangenot, Marta Gasparrini, Axel Gerdes, Magali Bonifacie, Virgile

Rouchon

▶ To cite this version:

Xavier Mangenot, Marta Gasparrini, Axel Gerdes, Magali Bonifacie, Virgile Rouchon. An emerging thermochronometer for carbonate-bearing rocks: $\Delta 47 / (\text{U-Pb})$. Geology, 2018, 46 (12), pp.1067-1070. 10.1130/G45196.1. hal-01976061

HAL Id: hal-01976061 https://ifp.hal.science/hal-01976061

Submitted on 5 Dec 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

1 An emerging thermochronometer for carbonate-bearing

- 2 rocks: $\Delta_{47}/(U-Pb)$
- 3 Xavier Mangenot^{1,2*}, Marta Gasparrini¹, Axel Gerdes³, Magali Bonifacie², and

4 Virgile Rouchon¹

- 5 ¹IFP Energies nouvelles, 92852 Rueil-Malmaison Cedex, France
- 6 ²Institut de Physique du Globe de Paris, Sorbonne Paris Cité, Université Paris Diderot,
- 7 UMR 7154 CNRS, F-75005 Paris, France
- 8 ³Institute of Geosciences, Goethe University, 60438 Frankfurt, Germany
- 9 *E-mail: xavier-mangenot@club.fr10

11 ABSTRACT

12 Assessing the thermal evolution of sedimentary basins is critical for 13 understanding the origin of natural resources (including ores, geothermal fluids, or 14 hydrocarbons) and for deciphering larger-scale tectonic and geodynamic evolutions. 15 Modern reconstructions of past subsurface temperatures mostly rely on 16 thermochronometers that are not applicable to carbonate rocks [e.g., fission-track and (U-Th)/He analyses]. Here, by coupling carbonate clumped isotope (Δ_{47}) thermometry and 17 18 laser ablation U-Pb geochronology on a complete paragenetic sequence, we demonstrate 19 the applicability of an emerging thermochronometer for carbonate bearing-rocks. Paired 20 Δ_{47} and U-Pb data were obtained for calcite and dolomite phases precipitated in a Middle 21 Jurassic carbonate hydrocarbon reservoir of the Paris Basin depocenter (France). The 22 absolute thermochronological data allow the precise reconstruction of the thermal history 23 of these rocks: from shallow burial temperatures (~40 °C), occurring in the Late Jurassic,

24	toward a progressive burial and heating stage (up to 87 °C) during the Cretaceous,
25	followed by a cooling stage (down to 69 $^{\circ}$ C) during the Tertiary uplift of the basin. The
26	inferred time-temperature path based on $\Delta_{47}/(U-Pb)$ data is mostly consistent with the
27	thermal scenario independently deduced from organic maturity indicators from the
28	underlying Lower Jurassic shales. The $\Delta_{47}/(U-Pb)$ thermochronological data also
29	highlight a thermal anomaly during Aptian-Albian time that requires revisiting the
30	accepted timing for hydrocarbon migration in the Middle Jurassic reservoir carbonates.

31 INTRODUCTION

32 Deciphering the thermal evolution of sedimentary basins over time traditionally 33 requires obtaining data for past thermal conditions by means of organic or mineral-based 34 maturity indicators, such as vitrinite reflectance, conodont alteration index, fluid 35 inclusions, or fission-track analyses (Harris and Peters, 2012). Decoding this record from 36 carbonate successions is commonly hampered by the lack of methods to reconstruct both 37 the timing and temperature of carbonate mineral crystallization. However, the toolkit of 38 thermochronology proxies for carbonates has recently grown to include clumped isotope 39 thermometry on carbonate powders (Δ_{47} ; see Huntington and Lechler [2015] for a review, 40 and Bonifacie et al. [2017] for universal Δ_{47} -temperature calibration) and "in situ" U-Pb 41 radioisotopic dating via laser ablation-inductively coupled plasma-mass spectrometry 42 (LA-ICP-MS; Li et al., 2014; Roberts and Walker, 2016; Nuriel et al., 2017). These 43 methods are suited to any carbonates formed in the full spectrum of geological settings, 44 and offer tremendous potential to capture a snapshot of the temperature conditions 45 prevailing at the specific time that a carbonate mineral precipitated or recrystallized. 46 Supported by careful petrographic investigations, Δ_{47} and U-Pb dating is opening a new

47	field of thermochronological applications. This combination of methods has been
48	recently applied to discover hyperthermal events in middle Eocene pedogenic carbonates
49	(Methner et al., 2016), to reconstruct paleoenvironments in spring carbonates of the
50	Andes (Quade et al., 2017), for diagenetic history reconstruction of a carbonate unit using
51	high-temperature kinetic behavior of Δ_{47} (Lawson et al., 2017), and for paleohydrological
52	reconstructions based on calcite veins and breccias of the eastern Paris Basin (France;
53	Pagel et al., 2018). Here, we apply for the first time the $\Delta_{47}/(U-Pb)$ thermochronometer
54	on a complete paragenetic sequence that includes multiple carbonate phases precipitated
55	throughout the depositional, burial, and uplift history of a subsurface Middle Jurassic
56	carbonate reservoir series of the Paris Basin.
57	The intracratonic Paris Basin is presently filled by 3000 m of sediments in its
58	depocenter (Fig. 1), which includes two main hydrocarbon reservoir units: Upper Triassic
59	fluvial sandstones and the Middle Jurassic marine carbonates. The latter have been
60	studied for both academic and exploration purposes, resulting in extensive petrographic,
61	thermometric, and geochemical data sets (see Mangenot et al. [2018] for a review). Three
62	features make the Middle Jurassic carbonates attractive for applying the carbonate
63	$\Delta_{47}/(U-Pb)$ thermochronometer. First, they experienced almost continuous burial and
64	heating up to 85 $^{\circ}$ C during the Mesozoic, followed by significant cooling during the
65	Tertiary uplift of the basin (Uriarte, 1997; Gonçalvès et al., 2010). Second, multiple
66	carbonate phases have been petrographically and geochemically characterized (Mangenot
67	et al., 2018, and references therein). Third, the possibility that the carbonate Δ_{47}
68	compositions were affected by thermal reordering of ¹³ C- ¹⁸ O bonds during burial (Passey
69	and Henkes, 2012) has been ruled out, notably based on the excellent agreement observed

70 with fluid inclusion homogenization temperatures of calcite and dolomite cements

71 collected in the studied area (Mangenot et al., 2017).

72 SAMPLE SELECTION AND ANALYTICAL METHODS

73 Carbonate samples were collected from the same stratigraphic interval (upper 74 Bathonian-lower Callovian; 1894–1564 m depth) of four well cores located in the Paris 75 Basin depocenter, each having experienced comparable burial and thermal histories (Figs. 76 1A and 1C; Table DR1 in the GSA Data Repository¹). A previous study based on 45 77 samples established mineral paragenesis, petrographical, and geochemical 78 characterizations (Mangenot et al., 2018) that guided the selection of ten carbonate 79 samples for U-Pb analyses (Fig. 2; Fig. DR1). The selected samples belong to six 80 different carbonate phases from which crystallization temperatures are clustered within 81 precise intervals: (1) biogenic calcite from a brachiopod shell at 31 ± 6 °C (n = 1); (2) the 82 surrounding micrite matrixes (n = 2) with temperatures of 49 ± 5 °C and 43 ± 6 °C; (3) 83 blocky calcite cements with temperatures of 59 ± 10 °C, 61 ± 8 °C, and 66 ± 5 °C 84 (designated Cal1; n = 3); (4) a saddle dolomite cement at 88 ± 7 °C (Dol1; n = 1), which 85 bears liquid hydrocarbon fluid inclusions; (5) blocky calcite cements (Cal2; n = 2) with 86 temperatures of 76 \pm 9 °C and 78 \pm 7 °C; and (6) a saddle dolomite cement at 70 \pm 7 °C 87 (Dol2; n = 1). Each carbonate phase displays a specific cathodoluminescence response (Fig. 2A) and stable isotope composition (δ^{13} C, δ^{18} O, Δ_{47} ; Table DR1), supporting 88 89 different crystallization conditions and parent fluid origins (Mangenot et al., 2018). 90 RESULTS

91 The already acquired Δ_{47} data (Mangenot et al., 2018) are complimented with new 92 radioisotopic U-Pb dates from LA-ICP-MS analyses (see Data Repository Item DR1 for

93	LA-ICP-MS analytical procedures). The measured U and Pb isotopic ratios display Tera-
94	Wasserburg linear regressions (isochrons) with a common initial 207 Pb/ 206 Pb composition
95	of 0.844 \pm 0.014 and MSWD (mean standard weighted deviation) values between 0.8 and
96	2.3 (Fig. 2B; Table DR1). The calculated U-Pb dates range between 154 \pm 5.1 and 37.2 \pm
97	5.3 Ma, and are systematically younger than the rock deposition age (even when 2σ
98	uncertainties are considered) estimated at 166 ± 2 Ma from biostratigraphy (upper
99	Bathonian-lower Callovian, Clydoniceras discus Zone; Gaumet
100	et al., 1996). When individual carbonate phases are considered separately, the U-Pb dates
101	cluster at: (1) 154.2 \pm 5.1 Ma for the brachiopod shell, (2) 150 \pm 16 and 151.5 \pm 6.2 Ma
102	for the two micrites, (3) 120.7 \pm 2.2, 117.5 \pm 5.0, and 118.5 \pm 3.6 Ma for the three Call
103	samples, (4) 107 \pm 13 Ma for the Dol1 sample, (5) 61.1 \pm 2.5 and 68.5 \pm 7.7 Ma for the
104	two Cal2 samples, and (6) 37.2 ± 5.3 Ma for the Dol2 sample. This succession of
105	absolute U-Pb dates agrees with the relative paragenesis previously established
106	(Mangenot et al., 2018, Fig. 2A). Noticeably,
107	petrographically equivalent carbonate phases analyzed from different cores display
108	overlapping U-Pb ages and Δ_{47} temperatures, supporting their common origin.
109	Interestingly, syn-sedimentary carbonates (brachiopod shell and micrite) exhibit U-Pb
110	ages, $\delta^{18}O$ composition, and Δ_{47} temperatures that are slightly offset with respect to those
111	of Middle Jurassic marine carbonates (Lécuyer et al., 2003), indicating recrystallization
112	under shallow burial conditions (see the Data Repository for further discussion). By
113	contrast, numerous petrographic evidences (Mangenot et al., 2018) indicate that all the
114	other carbonate phases (Cal1, Dol1, Cal2, Dol2) were precipitated as pore-filling
115	cements.

116	IMPLICATIONS FOR BASIN THERMAL AND FLUID-FLOW HISTORY
117	The distinct Δ_{47} temperatures (from 31 to 87 °C) and U-Pb ages (from 154.2 to
118	37.2 Ma) from six petrographically and geochemically distinct carbonate phases enable
119	the construction of a time-temperature path experienced by the host
120	rocks (Fig. 3). Each time-temperature pair reflects a snapshot of the temperature
121	conditions that prevailed at the time of each event of carbonate crystallization(fluid
122	based). In the Middle Jurassic reservoirs of the Paris Basin, the reconstructed time-
123	temperature path starts with temperatures of 31 $^{\circ}\text{C}$ (brachiopod shell) and 46 $^{\circ}\text{C}$
124	(micrites) during Middle and Late Jurassic times, continues with a progressive heating to
125	64 °C (Cal1 samples) in the Aptian–Albian and 87 °C (Dol1 sample) in the Albian–
126	Cenomanian, and ends with cooling recorded by temperatures of 77 $^\circ C$ (Cal2 samples) at the
127	Cretaceous-Tertiary boundary and 69 °C[
128	(Dol2 sample) in the Oligocene–Eocene. Except for the
129	temperature indicated by the Dol1 cement, this thermal scenario (solid black line in Fig.
130	3) agrees with the thermal evolution model previously established for the Paris Basin
131	depocenter (black dotted line in Fig. 3; Uriarte, 1997). This previous (rock-based)
132	thermal model used a burial history determined from stratigraphic thickness, lithology,
133	and depositional ages of the whole sedimentary column, calibrated in temperature with
134	organic thermal indicators such as vitrinite reflectance.
135	The good agreement observed between the $\Delta_{47}/(U-Pb)$ fluid-based thermal history
136	reconstructed in this study and the previous thermal model (Uriarte, 1997) indicates that

137 the new $\Delta_{47}/(U-Pb)$ thermochronology approach allows the capturing of the time-

138	temperature history of carbonate-bearing geological units during both the heating and
139	cooling stages of basin evolution. Most importantly, by contrast with more conventional
140	paleothermometers, the $\Delta_{47}/(U-Pb)$ thermochronometer works without prerequisite
141	hypotheses on the geodynamic, stratigraphic, or thermal evolution of the investigated
142	units. The excellent match between fluid- and rock-based thermal history also suggests
143	that most of the carbonate phases analyzed have precipitated from fluids in thermal
144	equilibrium with the ambient rocks. The Dol1 sample exhibits a temperature offset of
145	between 10 and 30 °C compared with the Uriarte (1997) model, depending on reported
146	uncertainties on temperature and age. This offset points toward a thermal anomaly during
147	the Early Cretaceous, which may be explained by one, or a combination, of three
148	geological scenarios. The first scenario would imply that Middle Jurassic strata were
149	buried more deeply than expected at the time of precipitation of the Dol1 phase (107 \pm 13
150	Ma). Burial by an additional 300–600 m of Upper Jurassic and Lower Cretaceous
151	sediments, coupled with a 35 °C/km geothermal gradient, could justify a precipitation
152	temperature of 85–90 °C for the Dol1 sample. The second scenario implies a brief
153	increase of basement heat flow during Cretaceous time that would justify higher
154	temperatures in the Middle Jurassic carbonates. Indeed, such a short-duration heat flow
155	increase would have remained undetectable by the vitrinite reflectance proxy used by
156	Uriarte (1997) to calibrate his thermal model (refer to Item DR2 and Fig. DR3 in the Data
157	Repository). The third scenario implies that the dolomitizing fluid was locally in thermal
158	disequilibrium with the ambient rocks, suggesting that precipitation of the Dol1 phase
159	occurred under a hydrothermal regime—a common scheme invoked for the origin of
160	saddle dolomites (e.g., Honlet et al., 2017).

161	The first scenario can be ruled out because an additional burial of 300–600 m of
162	Upper Jurassic and Lower Cretaceous sediments is very unlikely, given the present-day
163	thickness of the stratigraphic column overlying the investigated strata and the lack of
164	significant erosional unconformities in the depocenter area (Guillocheau et al., 2000). We
165	therefore favor the last two hypotheses because the age measured for the Dol1 sample
166	$(107 \pm 13 \text{ Ma})$ broadly overlaps with the age reported for hydrothermal fluorite from the
167	southeastern Paris Basin (130 \pm 15 Ma; Gigoux et al., 2015) and with the ages inferred
168	for carbonate cementation (Aptian-Albian; ca. 113 Ma) in the eastern Paris Basin
169	(Carpentier et al., 2014). This provides independent geological evidence for the
170	occurrence of hot temperature regimes and/or fluid-flow reactivations during Early
171	Cretaceous times, possibly associated with extensional tectonics and the consequent
172	opening of the Bay of Biscay (Guillocheau et al., 2000). This tectonic phase would have
173 174	reactivated deep fractures and facilitated hydrothermal activity or heat transfer increase in
175	the Paris Basin. The precise definition of the processes causing the 10–30 $^{\circ}$ C temperature
176	offset for precipitation of the Dol1 phase (Fig. 3) requires in-depth tectonothermal
177	modeling to be addressed, and is beyond the scope of this study.
178	Furthermore, U-Pb data of oil inclusion-bearing carbonate cements give
179	important insights into the timing of the Paris Basin petroleum system. Previous studies
180	indicate that oil generation started at 65 Ma and was almost complete at 35 Ma (Espitalié
181	et al., 1988; Monticone et al., 2012). Conversely, petrographic analysis revealed that
182	crystals in the Dol1 phase (117 \pm 13 Ma) bear primary oil inclusions, suggesting that oil
183	migration had already begun during the Early Cretaceous (Fig. 3). This finding suggests

- 184 that the timing for hydrocarbon migration in the Middle Jurassic reservoirs should be
- revisited, because this potentially occurred some 40 m.y. earlier than previously thought,
- 186 and perhaps in association with a hydrothermal event.
- 187 The data presented here demonstrate how the coupling of the Δ_{47} thermometer and
- 188 the laser ablation U-Pb chronometer can improve our ability to precisely reconstruct
- 189 sedimentary basin thermal and fluid-flow history by relying on the analysis of carbonate
- 190 minerals only. Combining conventional rock-based modeling with emerging fluid-based
- 191 $\Delta_{47}/(U-Pb)$ thermochronometry may offer additional powerful insight for basins having
- 192 experienced hydrothermalism. Given the widespread occurrence of carbonates in a
- variety of crustal and sedimentary settings, such an approach opens a new realm of
- 194 thermochronological applications and is likely to grow rapidly in the future.

195 ACKNOWLEDGMENTS

- 196 We thank R. Albert for support on U-Pb data processing at the Goethe University.
- 197 IFP Energies nouvelles provided financial support for the doctoral research of X.
- **198** Mangenot. This is Institut de Physique du Globe de Paris contribution 3978. paper greatly benefited from constructive comments by N.M.W. Roberts and three anonymous reviewers.

199 REFERENCES CITED

- 200 Bonifacie, M., et al., 2017, Experimental calibration of the dolomite clumped isotope
- 201 thermometer from 25 to 350 °C, and implications for the temperature estimates for
- all (Ca, Mg, Fe)CO₃ carbonates digested at high temperature: Geochimica et
- 204 Cosmochimica Acta, v. 200, p. 255–279, https://doi.org/10.1016/j.gca.2016.11.028.
- 205 Carpentier, C., et al., 2014, Impact of basin burial and exhumation on Jurassic carbonates
- 206 diagenesis on both sides of a thick clay barrier (Paris Basin, NE France): Marine and

- 207 Petroleum Geology, v. 53, p. 44–70,
- 208 https://doi.org/10.1016/j.marpetgeo.2014.01.011.
- 209 Espitalié, J., Maxwell, J.R., Chenet, Y., and Marquis, F., 1988, Aspects of hydrocarbon
- 210 migration in the Mesozoic in the Paris Basin as deduced from an organic
- 211 geochemical survey: Organic Geochemistry, v. 13, p. 467–481,
- 212 https://doi.org/10.1016/0146-6380(88)90068-X.
- 213 Gaumet, F., Garcia, J.-P., Dromart, G., and Sambet, G., 1996, Contrôle stratigraphique
- 214 des faciès, géométries et profils de dépôt de la plate-forme carbonatée
- 215 bourguignonne au Bathonien-Callovien: Bulletin de la Société Géologique de
- 216 France, v. 167, p. 409–421.
- 217 Gély, J.-P., and Hanot, F., 2014, Le Bassin parisien: Un nouveau regard sur la géologie:
- 218 Association des Géologues du Bassin de Paris Bulletin d'information des geologues
- du bassin de Paris 9, 229 p.
- 220 Gigoux, M., Delpech, G., Guerrot, C., Pagel, M., Augé, T., Négrel, P., and Brigaud, B.,
- 221 2015, Evidence for an Early Cretaceous mineralizing event above the
- basement/sediment unconformity in the intracratonic Paris Basin: Paragenetic
- 223 sequence and Sm-Nd dating of the world-class Pierre-Perthuis stratabound fluorite
- 224 deposit: Mineralium Deposita, v. 50, p. 455–463, https://doi.org/10.1007/s00126-
- 015-0592-1.
- 226 Gonçalvès, J., Pagel, M., Violette, S., Guillocheau, F., and Robin, C., 2010, Fluid
- 227 inclusions as constraints in a three-dimensional hydro-thermo-mechanical model of
- the Paris basin, France: Basin Research, v. 22, p. 699–716,
- 229 https://doi.org/10.1111/j.1365-2117.2009.00428.x.

- 230 Guillocheau, F., et al., 2000, Meso-Cenozoic geodynamic evolution of the Paris Basin:
- 3D stratigraphic constraints: Geodinamica Acta, v. 13, p. 189–245,
- 232 https://doi.org/10.1016/S0985-3111(00)00118-2.
- Harris, N.B., and Peters, K.E., 2012, Analyzing the Thermal History of Sedimentary
- Basins: Methods and Case Studies: Society for Sedimentary Geology (SEPM)
- 235 Special Publication 103, 218 p.
- 236 Honlet, R., Gasparrini, M., Jäger, H., Muchez, P., and Swennen, R., 2017, Precursor and
- ambient rock paleothermometry to assess the thermicity of burial dolomitization in
- 238 the southern Cantabrian Zone (northern Spain): International Journal of Earth
- 239 Sciences, v. 107, p. 1357–1377, https://doi.org/10.1007/s00531-017-1541-2.
- 240 Huntington, K.W., and Lechler, A.R., 2015, Carbonate clumped isotope thermometry in
- 241 continental tectonics: Tectonophysics, v. 647–648, p. 1–20,
- 242 https://doi.org/10.1016/j.tecto.2015.02.019.
- Lawson, M., et al., 2017, Deciphering the diagenetic history of the El Abra Formation of
- 244 eastern Mexico using reordered clumped isotope temperatures and U-Pb dating:
- 245 Geological Society of America Bulletin, v. 130, p. 617–629,
- 246 https://doi.org/10.1130/B31656.1.
- 247 Lécuyer, C., 2003, Thermal evolution of Tethyan surface waters during the
- 248 Middle-Late Jurassic: Evidence from δ^{18} O values of marine fish teeth:
- 251 Paleoceanography, v. 18, p. 1076, https://doi.org/10.1029/2002PA000863.

- Li, Q., Parrish, R.R., Horstwood, M.S., and McArthur, J.M., 2014, U-Pb dating of
- cements in Mesozoic ammonites: Chemical Geology, v. 376, p. 76–83,
- 254 https://doi.org/10.1016/j.chemgeo.2014.03.020.
- 255 Mangenot, X., Bonifacie, M., Gasparrini, M., Götz, A., Chaduteau, C., Ader, M., and
- 256 Rouchon, V., 2017, Coupling Δ_{47} and fluid inclusion thermometry on carbonate
- 257 cements to precisely reconstruct the temperature, salinity and δ^{18} O of paleo-
- groundwater in sedimentary basins: Chemical Geology, v. 472, p. 44–57,
- 259 https://doi.org/10.1016/j.chemgeo.2017.10.011.
- 260 Mangenot, X., Gasparrini, M., Rouchon, V., and Bonifacie, M., 2018, Basin-scale
- 261 thermal and fluid-flow histories revealed by carbonate clumped isotopes Δ_{47} —
- 262 Middle Jurassic of the Paris Basin: Sedimentology, v. 65, p. 123–150,
- 263 https://doi.org/10.1111/sed.12427.
- 264 Methner, K., Mulch, A., Fiebig, J., Wacker, U.,
- 265 Gerdes, A., Graham, S.A., and Chamberlain, C.P., 2016, Rapid Middle Eocene
- 266 temperature change in western North America: Earth and Planetary Science Letters,
- 267 v. 450, p. 132-139, 1357-1377 htt ps://doi.org/10.1016/j.epsl.2016.05.053.
- 268 Monticone, B., Duval, M., Knispel, R., Wojciak, P., and Dubille, M.H., 2012, Shale oil
- 269 potential of the Paris Basin, France: American Association of Petroleum Geologists
- 270 Search and Discovery Article 10384,
- 271 http://www.searchanddiscovery.com/pdfz/documents/2012/10384monticone/ndx_mo
- 272 nticone.pdf.html.

- 273 Nuriel, P., Weinberger, R., Kylander-Clark, A.R.C., Hacker, B.R., and Craddock, J.P.,
- 274 2017, The onset of the Dead Sea transform based on calcite age-strain analyses:
- 275 Geology, v. 45, p. 587–590, https://doi.org/10.1130/G38903.1.
- 276 Pagel, M., et al., 2018, Improving paleohydrological and diagenetic reconstructions in
- 277 calcite veins and breccia of a sedimentary basin by combining Δ_{47} temperature,
- 278 δ^{18} O_{water} and U-Pb age: Chemical Geology, v. 481, p. 1–17,
- 279 https://doi.org/10.1016/j.chemgeo.2017.12.026.
- 280 Passey, B.H., and Henkes, G.A., 2012, Carbonate clumped isotope bond reordering and
- 281 geospeedometry: Earth and Planetary Science Letters, v. 351–352, p. 223–236,
- 282 https://doi.org/10.1016/j.epsl.2012.07.021.
- 283 Quade, J., Rasbury, E.T., Huntington, K.W., Hudson, A.M., Vonhof, H., Anchukaitis, K.,
- Betancourt, J., Latorre, C., and Pepper, M., 2017, Isotopic characterization of late
- 285 Neogene travertine deposits at Barrancas Blancas in the eastern Atacama Desert,
- 286 Chile: Chemical Geology, v. 466, p. 41–56,
- 287 https://doi.org/10.1016/j.chemgeo.2017.05.004.
- 288 Roberts, N.M.W., and Walker, R.J., 2016, U-Pb geochronology of calcite-mineralized
- faults: Absolute timing of rift-related fault events on the northeast Atlantic margin:

290 Geology, v. 44, p. 531–534, https://doi.org/10.1130/G37868.1.

- 291 Uriarte, J., 1997, Maturité thermique des sédiments de la bordure sud-est du Bassin de
- 292 Paris [Ph.D. thesis]: Geneva, Switzerland, University of Geneva, 146 p.

293

294 FIGURE CAPTIONS

- 295 Figure 1. A: Stratigraphic column of Paris Basin depocenter (France) with location of
- **296** studied stratigraphic interval.

- B: Geological map of Paris Basin (scale 1:1,000,000) with
- location (black frame) of surveyed depocenter area. C: Map of iso- T_{max} (*T*—temperature)
- 299 from Rock Eval organic matter pyrolysis (http://www-
- 300 odp.tamu.edu/publications/tnotes/tn30/tn30_11.htm) for Toarcian source rocks. Locations
- 301 of the four studied well cores are shown with gray symbols; green square represents
- **302** borehole used by Uriarte (1997) for rock-based thermal modeling.
- 303 D: West-east geological cross section of Paris Basin (line of section shown in C).
- 304 Modified after Gély and Hanot (2014).

305

- 306 Figure 2. Carbonate mineral paragenesis and Tera-Wasserburg diagrams. A: Schematic
- 307 carbonate mineral paragenesis. Numbers 1–6 refer to different carbonate phases analyzed
- 308 (see text for description), whereas colors refer to their cathodoluminescence response. B:
- 309 Tera-Wasserburg plots displaying ²³⁸U/²⁰⁶Pb versus ²⁰⁷Pb/²⁰⁶Pb for four of the analyzed
- 310 Carbonates.

Publisher: GSA Journal: GEOL: Geology DOI:10.1130/G45196.1 Samples are ordered from top left to bottom right from oldest to youngest,

•	
311	regardless of uncertainty ranges. $T(\Delta_{47})$ —??; MSWD—mean squared
312	weighted deviates; <i>n</i> —number of ablation spots analyzed.
313	
314	
315	Figure 3. Thermal history of Middle Jurassic rocks in Paris Basin depocenter from
316	deposition to present day. Black dashed line represents thermal history modeled by
317	Uriarte (1997) using conventional rock-based approaches. Solid black line interpolates
318	temperature-time data deduced from Δ_{47} and U-Pb analyses (this study; fluid based) on
319 320	multiple carbonate phases.
335	
336	
337	¹ GSA Data Repository item 2018xxx, LA-ICP-MS analytical procedures, discussion on
338	"syn-sedimentary" carbonates, vitrinite reflectance kinetic modeling, Figure DR1 (sample
339	petrography), Figure DR2 (all isochrones), and Figure DR3 (computed evolution of Ro%

340 versus time),

Publisher: GSA Journal: GEOL: Geology DOI:10.1130/G45196.1 is available online at http://www.geosociety.org/datarepository/2018/ or on

- 341
- 342 request from editing@geosociety.org.