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The Fracture Cut (FraC) approach to mesh three-dimensional (3D) Discrete Fracture Networks (DFN) is presented. The considered DFNs consist of a network of planar twodimensional (2D) fractures sharing intersections that can in turn intersect themselves, resulting in highly complex meshing issues. The key idea of FraC is to decompose each fracture into a set of connected closed contours, with the original intersection traces located at the boundaries of the contours. Thus, intersection segments can be more easily accounted for when building a conforming mesh. Three distinct strategies for intersection points management are also proposed to enhance the quality of resulting meshes. Steady-state singlephase flow simulations are performed to validate the conform meshes obtained using FraC.

The results from flow simulations as well as from a mesh quality analysis on a benchmark case show that a flexible AoM strategy (Adding or Moving intersection points) appears to be the best choice to generate ready-to-run meshes for complex DFN. This approach also allows accounting for tiny features within the fracture networks while keeping a good mesh quality and respecting DFN connectivity. Finally, a scalability of the mesh generator is conducted to assess the performance of the approach.

Introduction

Transfers in fractured porous media modeling is still a challenging issue having a broad variety of applications ranging from geothermal energy recovery [START_REF] Aquilina | A tracer test at the Soultz-Sous-Forets Hot Dry Rock geothermal site[END_REF], petroleum exploration and production [START_REF] Bourbiaux | Fractured reservoir simulation: A challenging and rewarding issue[END_REF], CO 2 geological storage to nuclear waste disposal [START_REF] Grenier | Assessment of Retention Processes for Transport in a Fractured System at Äspö (Sweden) Granitic Site: from Short-Time Experiments to Long-Time Predictive Models[END_REF]. Fracture networks may be studied using either continuous [START_REF] Svensson | A continuum representation of fracture networks. Part I: Method and basic test cases[END_REF][START_REF] Karimi-Fard | Generation of coarse-scale continuum flow models from detailed fracture characterizations[END_REF][START_REF] Fourno | Development and qualification of a smeared fracture modelling approach for transfers in fractured media[END_REF] or Discrete Fracture Networks (DFN) models [START_REF] Erhel | Flow simulation in three-dimensional discrete fracture networks[END_REF][START_REF] Hyman | Conforming Delaunay triangulation of stochastically generated three dimensional discrete fracture networks: a feature rejection algorithm for meshing strategy[END_REF][START_REF] Delorme | Unconventional production forecast needs integration of field hydraulic stimulation data through fracture model calibration and optimized numerical scheme[END_REF][START_REF] Ricois | Advantages of an unstructured unconventional fractured media model integrated within a multiphysics computational platform[END_REF][START_REF] Berrone | Non-stationary transport phenomena in networks of fractures: effective simulations and stochastic analysis[END_REF]. In practice, continuous models may be used when a representative elementary volume (REV) exists, that is small compared with other characteristic sizes of the problem [START_REF] Long | Porous media equivalents for networks of discontinuous fractures[END_REF][START_REF] Neuman | A proposed conceptual framework and methodology for investigating flow and transport in Swedish crystalline rocks[END_REF]. At this scale transfers in fractured media may be modeled using volumetric grids with equivalent properties that mimic the properties of the underlying DFN. Numerous works deal with the effective computation of equivalent properties [START_REF] Karimi-Fard | Generation of coarse-scale continuum flow models from detailed fracture characterizations[END_REF][START_REF] Matthai | Upscaling two-phase flow in naturally fractured reservoirs[END_REF][START_REF] Fourno | A continuum voxel approach to model flow in 3d fault networks: A new way to obtain up-scaled hydraulic conductivity tensors of grid cells[END_REF][START_REF] Jourdain | Upscaling permeability for fractured concrete: meso-macro numerical approach coupled to strong discontinuities[END_REF]. Another common approach may be followed, especially if no REV exists or in order to obtain high-resolution simulations. In this approach the DFN geometry is explicitly accounted for. With recent advances coming from continuously growing computing power and with widespread research efforts of the community to build detailed meshes as well as adapted numerical schemes, transfers can be modeled on more and more complex explicit DFN geometries.

To our knowledge, three distinct discrete approaches are used to obtain numerical flow and transport simulations on DFN meshes. The first approach, so-called pipe-network models (or capacitor/resistor models, [START_REF] Acuna | Numerical construction and flow simulation in networks of fractures using fractal geometry[END_REF]Yortsos, 1991, Bodin et al., 2007), assumes that the flow is channelized within the network and models fracture connections as one-dimensional channels. The final model is a linear system involving a set of porous volumes and conductivities coupling fracture intersections that share common fractures. Using this strong topological simplification, the overall connectivity between fractures is maintained and the computational cost is significantly reduced because internal degrees of freedom inside each fracture are neglected. These approaches have been used long ago for steady-state flow and transport [START_REF] Cacas | Modeling fracture flow with a stochastic discrete fracture network: calibration and validation: 1. The flow model[END_REF][START_REF] Dershowitz | Derivation of equivalent pipe network analogues for three-dimensional discrete fracture networks by the boundary element method[END_REF][START_REF] Gylling | The channel network model-a tool for transport simulations in fractured media[END_REF]. More recently, [START_REF] Noetinger | A quasi steady state method for solving transient Darcy flow in complex 3D fractured networks[END_REF] have proposed a systematic approach for mapping 3D DFN to pipe networks considering transient Darcy flow in complex 3D fractured networks only. This work was later extended to account for transfers arising from the matrix [START_REF] Noetinger | A quasi steady state method for solving transient Darcy flow in complex 3D fractured networks accounting for matrix to fracture flow[END_REF]. Local transport properties of pipe networks models can be determined analytically via simple estimations [START_REF] Cacas | Modeling fracture flow with a stochastic discrete fracture network: calibration and validation: 1. The flow model[END_REF] or numerically using direct local calculations that can involve fine meshing of each fracture [START_REF] Noetinger | A quasi steady state method for solving transient Darcy flow in complex 3D fractured networks[END_REF]. The fine meshing can be avoided using simplifying assumptions [START_REF] Khvoenkova | An optimal method to model transient flows in 3D discrete fracture network[END_REF] that are in between the approach of [START_REF] Cacas | Modeling fracture flow with a stochastic discrete fracture network: calibration and validation: 1. The flow model[END_REF] and [START_REF] Noetinger | A quasi steady state method for solving transient Darcy flow in complex 3D fractured networks[END_REF].

The two other alternative approaches keep the exact geometry of DFN considering that fractures are modeled as planar objects. The second approach proposes to use non-conforming meshes in order to alleviate meshing difficulties due to the occurrence of multi-intersections (Fig. 1a).
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Fig. 1. Non-conforming (a) and conforming mesh (b) for a two-fracture system.

However, in order to handle these non-conforming meshes, advanced numerical schemes are required, so specific codes have to be developed, and one cannot use existing platforms without deep modifications of the codes. We may refer to the PDE-constrained optimization approach [START_REF] Berrone | A PDE-constrained optimization formulation for discrete fracture network flows[END_REF][START_REF] Benedetto | The virtual element method for discrete fracture network simulations[END_REF][START_REF] Benedetto | A globally conforming method for solving flow in discrete fracture networks using the virtual element method[END_REF][START_REF] Berrone | Non-stationary transport phenomena in networks of fractures: effective simulations and stochastic analysis[END_REF] and the Mortar method [START_REF] Erhel | Flow simulation in three-dimensional discrete fracture networks[END_REF][START_REF] Pichot | A mixed hybrid mortar method for solving flow in discrete fracture networks[END_REF][START_REF] Pichot | A generalized mixed hybrid mortar method for solving flow in stochastic discrete fracture networks[END_REF].

The third approach is to develop tools allowing to build conform mesh. This is the approach developed in the present paper (Fig. 1b). The main idea is that major workload will be spent on generating DFN meshes rather than in the development of specific numerical approaches [START_REF] Adler | Fractured porous media[END_REF]. Recent studies dealt with conform mesh approaches [START_REF] Hyman | Conforming Delaunay triangulation of stochastically generated three dimensional discrete fracture networks: a feature rejection algorithm for meshing strategy[END_REF][START_REF] Hyman | dfnWorks: A discrete fracture network framework for modeling subsurface flow and transport[END_REF][START_REF] Huang | A numerical method for simulating fluid flow through 3-d fracture networks[END_REF][START_REF] Fourno | An original and useful approach to mesh a discrete fracture network using a Delaunay triangulation: Application on flow and transport upscaling from characterization scale to reservoir scale[END_REF][START_REF] Ngo | Modeling of transport processes through largescale discrete fracture networks using conforming meshes and open-source software[END_REF]. CPU time for DFN mesh generation may be considerably reduced in line with progress in computer sciences and information technology. In addition, beside the geometrical DFN meshing difficulties, a second issue relates to the "non-manifold" topology of the resulting meshes [START_REF] Sander | The Dune FoamGrid implementation for surface and network grids[END_REF]. This particular issue can be handled by several finite element codes such as Cast3M (2017). For instance, [START_REF] Fourno | An original and useful approach to mesh a discrete fracture network using a Delaunay triangulation: Application on flow and transport upscaling from characterization scale to reservoir scale[END_REF] provided numerical solutions for steady-state single-phase flow on non-manifold meshes by means of the Finite Element (FE) or Mixed Hybrid Finite Element (MHFE) methods implemented in Cast3M (2017). Few finite volume simulators for subsurface flow and transport, like PFLOTRAN [START_REF] Lichtner | PFLOTRAN User Manual[END_REF][START_REF] Hammond | Evaluating the performance of parallel subsurface simulators: An illustrative example with PFLOTRAN[END_REF][START_REF] Hyman | Conforming Delaunay triangulation of stochastically generated three dimensional discrete fracture networks: a feature rejection algorithm for meshing strategy[END_REF][START_REF] Makedonska | Particle tracking approach for transport in three-dimensional discrete fracture networks[END_REF][START_REF] Karra | Effect of advective flow in fractures and matrix diffusion on natural gas production[END_REF][START_REF] Hyman | dfnWorks: A discrete fracture network framework for modeling subsurface flow and transport[END_REF] and DuMux [START_REF] Huber | Node-centered finite volume discretizations for the numerical simulation of multiphase flow in heterogeneous porous media[END_REF][START_REF] Flemisch | Dumux: DUNE for multi-{phase, component, scale, physics,...} flow and transport in porous media[END_REF], are also able to deal with non-manifold topologies.

In all cases, the mesh generation remains a crucial bottleneck because the convergence and stability of the numerical scheme as well as the solution accuracy could be significantly affected by the mesh quality. In principle, degenerate cells that do not satisfy the quality constraints should be identified and removed from the final mesh. [START_REF] Botsch | Robust Procedure to Eliminate Degenerate Faces from Triangle Meshes[END_REF] classified degenerate triangles as caps, i.e. triangles with an angle close to 180°, and needles of which the longest edges is much longer than the shortest one. [START_REF] Frey | Mesh generation: application to finite elements[END_REF] present an overview of quality mesh measures, mainly based on the edge length or triangle angle criteria. As an example, [START_REF] Miller | A Delaunay Based Numerical Method for Three Dimensions: Generation, Formulation, and Partition[END_REF] and [START_REF] Shewchuk | Delaunay refinement mesh generation[END_REF] use the ratio of the circumscribed circle radius to the shortest edge of a triangle for judging the mesh quality. This ratio should be as small as possible for all triangles. More recently, [START_REF] Mustapha | Discretizing two-dimensional complex fractured fields for incompressible two-phase flow[END_REF] evaluate the triangle quality by comparing its area with that of equilateral triangles. This last measure is retained for reviewing the quality of our meshes.

The present study focuses on mesh generation for complex discrete fracture network only.

The matrix surrounding the fractures is disregarded. We first propose a new conforming mesh approach, so-called FraC (Fracture Cut mesh approach) and then provide validations via flow simulations done on DFN of increasingly complex geometries. The contribution is organized as follows. The methodology of the FraC approach used to obtain conforming meshes for DFN is described in Section 2, accompanied by a discussion on the quality of resulting meshes. Numerical results of steady-state flow on FraC meshes are shown in Section 3, both for model validation and demonstration purposes. In Section 4, scalability of the mesh generator is discussed and finally, Section 5 gives conclusions together with some comments on further works.

FraC meshing method

In fractured media, the input of mesh tools comes generally from the fractured site characterization. The site characterization provides the distribution of orientations, dimensions, and spatial locations of different fracture sets. Using these distributions DFNs are modeled. The obtained DFN are often complex and their fractures may be concave polygons or ellipses. To model transfers in the DFN, we choose to build a dedicated mesh of the DFN geometry. Unlike [START_REF] Hyman | Conforming Delaunay triangulation of stochastically generated three dimensional discrete fracture networks: a feature rejection algorithm for meshing strategy[END_REF] who developed a feature rejection algorithm for meshing (FRAM) before generating DFN conforming grids we propose to deal with all the DFN fractures ensuring the DFN connectivity conservation. Hereby we propose a simple and efficient meshing approach for DFNs, the so-called "Fracture Cut Method for Meshing" (FraC).

The main idea of the FraC approach is to decompose each fracture into a set of connected closed contours, between which common segments will be discretized in a conforming manner. Strategies for moving or adding intersecting points are applied in order to achieve an acceptable quality of the final mesh.

General theoretical background

The FraC method involves three primary stages. Considering two intersecting fractures (Fig. 2a.), the meshing procedure is as follows: (S 1 ) contour meshing (Fig. 2b, black points) and fracture intersection identification (Fig. 2b, orange points); (S 2 ) intersection point management (Fig. 2b, inside the red circles) to obtain the final contour meshing (Fig. 2c) and fracture cutting (Fig. 2d), and (S 3 ) triangulation (Fig. 2e) and merging triangulated surfaces (Fig. 2f). The main features in each stage are summarized below. Exploded view of fracture cutting results (d); and step S 3 -exploded view of the contour triangulation results (e) and merging triangulated surfaces (f).

Contour discretizing and fracture intersection identification

The fracture shapes in our DFN are planar ellipses or convex planar polygons. Elliptic fractures are defined by a center point, the minor and major axe lengths and a normal vector.

Polygon fractures are defined by points. Firstly a characteristic length h i is chosen for each fracture. This characteristic length is used to discretize the fracture contour and is respected wherever it is possible during the DFN meshing. It means that the edge lengths of the final mesh triangles will be of the same order of magnitude as h i . At this step, the fractures are thus modeled as convex polygons i F . The representative polygons i F of elliptic fractures are inscribed in the fracture shapes that underestimates the fracture surface and possibly the intersection between fractures. Therefore, the characteristic length h i has to be carefully chosen, too high values could lead to the loss of fracture connectivity, too small values results in a high mesh cell number. Moreover, h i should not be too different between fractures to avoid creating elongated low-quality mesh cells around the intersection location between these fractures. Obviously, the choice of h i has no impact on DFN geometry if only polygonal fractures belong to the DFN. The next step involves finding intersections between the polygons. At this stage, an octree-like approach [START_REF] Khvoenkova | An optimal method to model transient flows in 3D discrete fracture network[END_REF][START_REF] Hyman | Conforming Delaunay triangulation of stochastically generated three dimensional discrete fracture networks: a feature rejection algorithm for meshing strategy[END_REF] is used to improve the computational efficiency. This approach works well if the size of the fractures is almost of the same order of magnitude [START_REF] Ngo | Modeling of transport processes through largescale discrete fracture networks using conforming meshes and open-source software[END_REF] 
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Intersection point management and fracture cutting

Once the intersection determination stage is completed, the fracture cutting step will be performed. For this purpose, special focus should be put on the intersection points between intersecting fractures as well as the points locating in their neighboring areas. Without loss of generality, we consider two intersecting fractures i F and j F , each of which is modeled by a set of vertices  V with { , }

  i j . The case of multi-intersection could be treated similarly and will be briefly addressed.

Intersection point management

This paragraph describes the strategies for intersection point management to discretize each fracture contour i F . Let p be one of the four intersection point between i F and j F . Three strategies may be applied for the intersection point management:

a. Always Add (AA) intersection points Disregarding the position of neighboring points, intersection points are always added to the fracture contours to which it belongs. However using this strategy extremely small edges and consequently poor-quality elements with very high aspect ratio could appear in the final DFN mesh.

b. Always Move (AM) closest points

Two points (each point belongs to one of intersecting fractures, i i  p F and j j  p F ) which are closest to the intersection point p are identified. These points are then be merged with p.

The advantage of this strategy is that it avoids creating tiny edges within each sub-fractures and therefore enhance the quality of the final mesh. Nevertheless, by moving systematically contour points, the fracture geometries are deformed and may no longer be planar. An example is given in Fig. 4 considering a 3-fracture system. As fracture intersections are handled sequentially, the process of moving contour points leads to the deformation the vertical fracture 2 F . More harshly, in some cases it could lead to the loss of connectivity of the fractures if other intersection points locate within a deformation area. All of that could have important effects on flow simulations.

c. Add or Move (AoM) points

Based on a flexible moving and adding point strategies, an adaptive solution is proposed. A critical length L min is determined basing on the characteristic length of h i and h j . Concretely,

L min = max{ . h i h  , . h j h  } where h  is a user-defined ratio, 0 0.5 h    . When h  is too small
(close to 0) or too high (~ 0.5h), the resulting mesh is very similar to the one obtained using the AA and the AM approach, respectively. From our experiences, h  =0.2 seems to be a good choice. As in the AM approach, the two closest points to the intersection

 p ( { , }   i j ) are determined. Then, 
p is removed if the distance from  p to p is less than L min . In any case, p is added to the vertex set of each contour. Locally the characteristic length of the contour is thus modified but remains close to h α around the contour. This approach allows to remove tiny edges from the final mesh on the one hand and to limit the deformation of the fractures on the other hand. We may also notice that for all strategies intersection point positions are conserved. Thanks to that the following step will be easier to manage. The choice of the strategy for the intersection point management will be further discussed in Sections 2.2 and 3.1.

Fracture cutting

The fracture cutting step expresses the key idea of the FraC approach and is solely applied for intersecting fractures. Each of two intersecting fractures i F and j F is then cut along the extended intersection
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to obtain interconnected closed contours, subsequently referred to as "sub-fractures". To guarantee the homogeneity of the final mesh, the extended intersection segment

first end     p p
should also be discretized according to the mesh characteristic length of the two original fractures. For that, special focus is put on F and the sub-fractures of i F and j F . The drawback of this strategy is that it increases the number of intersection tests and, consequently, the computational time especially when working on densely-distributed large-scale DFNs. The influence of this feature of the method is addressed in Section 4.

Contour triangulation and triangulate surface merging

Surface triangulation is a common topic in mathematics and computational geometry [START_REF] Frey | Mesh generation: application to finite elements[END_REF]. Among many triangulation techniques, the Delaunay triangulation is one of the most popular and the most often used approach [START_REF] Delaunay | Sur la sphère vide. A la mémoire de Georges Voronoï[END_REF]Bourouchaki and George, 1998). In our framework, this classical approach is applied to each sub-fracture according to its own target edge length h i . To guarantee the conformity of the final mesh, no extra node is created on the boundaries of the sub-fracture. On the other hand, nodes are added inside the domain limited by sub-fracture boundaries, they are also constrainedly managed allowing to improve the quality of triangles. Finally, all resulting triangulated subfractures are merged into a single triangulation data structure, in which duplicate vertices along the intersection lines may exist. These duplicates are then detected and removed, resulting in a final fully connected mesh. The triangulation step and the triangulated fracture merging are done using either LaGrit open source libraries (Los Alamos Grid Toolbox, 2013) or Cast3M tools [START_REF] Murphy | A point-placement strategy for conforming Delaunay tetrahedralization[END_REF][START_REF] Hyman | Conforming Delaunay triangulation of stochastically generated three dimensional discrete fracture networks: a feature rejection algorithm for meshing strategy[END_REF], Cast3M, 2017).

Discussion on precision parameters

Numerical calculations are performed in 3D. A main precision parameter, ε merge , is used for geometric calculations including finding the distance between two points, vector calculations and intersection point identifications. This parameter is also used to remove duplicate points, i.e. points between which the distance is less than ε merge will be merged.

Another parameter, ε surf , is used to remove tiny contours whose surfaces are smaller than ε surf .

This parameter is very useful when considering the AA approach in which small contours may frequently be created, especially around multiple intersection locations. All removed contours are marked during the meshing step to be validated by user afterward. These two precision parameters are chosen accordingly to L min . In the following sections, ε merge = L min x 10 -4 and ε surf = L 2 min x10 -2 .

Discussion on mesh quality

In this section, we consider a synthetic DFN, which was also studied by a number of authors (e.g. [START_REF] Khvoenkova | An optimal method to model transient flows in 3D discrete fracture network[END_REF][START_REF] Delorme | Unconventional production forecast needs integration of field hydraulic stimulation data through fracture model calibration and optimized numerical scheme[END_REF][START_REF] Ngo | Modeling of transport processes through largescale discrete fracture networks using conforming meshes and open-source software[END_REF]. The network consists of 33 dish-shaped fractures inside a 3m  3m  3m cube. All three intersection strategies (i.e. AA, AM and AoM approach) are used for the mesh generation of this DFN. A common characteristic length h is set for all fractures. Several meshing realizations are performed with decreasing h to obtain a set of meshes with different levels of refinement. The characteristic length h is chosen from 1.0 m to 3.75  10 -3 m resulting in grids that contains from 2  10 2 to 8.0  10 6 elements. Fig. 5 (a1,b1,c1) showes the meshes generated using AA approach (Fig. 5a1), AM approach (Fig. 5b1) and AoM approach (Fig. 5c1) with the characteristic length h being about 0.12 m.

Fractures The mesh in Fig. 5a1 and Fig. 5a2 reveals several drawbacks of the AA approach. First, one can easily observe that this mesh is not homogeneous, there exists locally mesh cells of which the edge size is of different order of magnitude. It can also be observed in Fig. 5a3 that the AA mesh contains a large amount of tiny features (i.e. mesh area close to zero). The difference in size of mesh cells can amplify numerical diffusion as well as convergence difficulties, and therefore can affect significantly the result of flow and transport simulations.

Second, as mentioned above in Section 2.1, when using the AA approach, the triangulation of close contours can fail due to the appearance of extremely close points in the vertex set of sub-fractures.

Fig. 5b1 displays the mesh created by FraC using the AM approach for intersection point treatment. This mesh is much more homogeneous in terms of mesh size than the AA mesh (Fig. 5b3). However, the non-planarity of fractures is noticeable (Fig. 5b2). For instance, it

shows the contrast in color between some neighboring mesh cells inside the circle, implying that these cells do not lie on a same plane. Furthermore, the mesh generated using the AoM approach is less deformed compared to the AM mesh (uniform color are observed by fracture planes in Fig. 5c2), while keeping a good mesh homogeneity (Fig. 5c3).

A cell aspect ratio,
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, where A is the triangle area and s i is the length of the side i [START_REF] Mustapha | Discretizing two-dimensional complex fractured fields for incompressible two-phase flow[END_REF]) is now used to assess the mesh quality. Fig. 6a depicts the percentage of mesh cell having a good aspect ratio within the resulting meshes. It shows missing data on the AA curve because of meshing failure, especially for very low or very high h values (Fig. 6a). Moreover, the quality of the AM and AoM meshes are similar, in particular for moderate numbers of grid cells. Nevertheless the AoM approach gives better mesh quality than the AM one for the fine meshes containing more than 10 4 elements.

In a word, the AoM approach seems to be the best choice that is able to deliver ready-to-run meshes of good quality. As some mesh contour points may be moved, the characteristic length of the contour may be modified locally within the intersection area. Therefore, cells with lower quality may appear close to the intersection lines. Nevertheless, the cell quality stay above 60% even for coarse meshes (Fig. 6b). Additional studies are given in Appendix A to illustrate how the FraC approach deals with bounded fractures, multiple intersections as well as to assess the influence of L min parameter on resulting meshes. In the next section, the FraC meshes will be used as inputs of steady-state flow simulations and validated against available benchmark simulation results and analytical solutions.

Mesh validation by steady-state single-phase simulations

As mentioned above, FraC meshes may be used as input for Cast3M (2017) or Dumux (2017). In order to validate the meshing approach, three test-case simulations are conducted:

the two first validations are done using Cast3M (finite element numerical scheme) whereas the last one using Dumux (finite volume numerical scheme). The mesh validation using single-phase flow simulations are performed by considering the effective permeabilities along three main directions of the DFN block. A Dirichlet-condition for pressures is specified on two opposite facets Γ i and Γ' i of the domain, leading to a directional pressure gradient ∆P i .

No-flow conditions are prescribed on the other boundaries. The effective permeabilities may then be calculated using the inverted Darcy equation based on the pressure gradient and the normal fluxes computed on Γ i or Γ' I [START_REF] Zimmerman | Effective transmissivity of two-dimensional fracture networks[END_REF]. Although this classical upscaling approach is not consistent to determine upscaled properties of highly heterogeneous media, it is still useful for validation purposes.

Benchmark simulations

The benchmark simulations are performed on the previous 33-fracture network previously studied in Section 2.2. We consider the meshes created using the AoM approach to assess the effect of the strategy for intersection points management. The MP-Frac meshing approach is based on a discretization of the intersections using a 3D regular grid. This stair discretization are projected onto fracture planes and local adjustments are done to guarantee the geometrical properties (Erhel et al., 2009a;[START_REF] Pichot | A generalized mixed hybrid mortar method for solving flow in stochastic discrete fracture networks[END_REF][START_REF] Pichot | A mixed hybrid mortar method for solving flow in discrete fracture networks[END_REF]. In the FraC approach, no regular grid or projections are used.

Nevertheless, as already explained, the critical point is how to deal with the intersection points. The underestimated effective permeabilities are observed from very coarse simulations on AoM meshes. This is however an expected result. Indeed, for high h i values, the discretized contours of the fractures do not have enough points to be representative of elliptic fractures.

Therefore, some fracture intersections cannot be captured, resulting in the reduced connectivity of the DFN. The underestimation of effective permeabilities are thus the direct consequence of a decrease of DFN connectivity due to the poor contour discretization.

Contrariwise, simulations on fine meshes generated using the AoM approach are in excellent agreement with the MP-Frac results. This implies that the connectivity of the fracture network is well captured in these meshes. Furthermore, by limiting the displacement of points and consequently the deformation of fractures, the AoM approach is able to alleviate the discrepancy between the computed effective permeabilities and the reference solutions.

To summarize, in light of studies on the mesh quality and the accuracy of flow numerical simulations, the AoM approach appears to be the best solution for the intersection point treatment.

Comparison with analytical approaches

The fracture network studied in this section is a MWR-DFN (Modified Warren and Root DFN), which is inspired from the work of [START_REF] Warren | The behavior of naturally fractured reservoirs[END_REF]. This DFN, already studied by [START_REF] Fourno | A continuum voxel approach to model flow in 3d fault networks: A new way to obtain up-scaled hydraulic conductivity tensors of grid cells[END_REF], includes two superimposed sets of structured fractures in a 100m x 100m x 8m block. Each set involves two orthogonal fracture families (Fig. 8). 

Poor-connected DFNs

In order to assess the capacity of the mesh generator to treat poorly connected DFNs, we consider in this section a 7-fracture system located within a 10m  10m  2m block (Fig. 11). The DFN involves two separated sets of vertical fractures related by the horizontal one 4 F .

The intersections between 4

F with two parallel fractures 3 F and 5 F result in an extremely small sub-fracture of width ε. As discussed above in Section 0, the appearance of tiny subfractures created by the intersection between fractures could yield to poor quality mesh cell in the resulting mesh. A well-known solution for this issue is to reduce the discretization size to the size of the small sub-fracture or to use adaptive meshes. In this configuration, it means that h has to be less than ε leading to the increase of the total mesh cell number. Another solution to circumvent this issue is to remove 4 F from the network as proposed by several DFN mesh approaches, for instance the FRAM method [START_REF] Hyman | Conforming Delaunay triangulation of stochastically generated three dimensional discrete fracture networks: a feature rejection algorithm for meshing strategy[END_REF]. However, removing the fracture 4 F will obviously lead to the loss of global connectivity of the network along the horizontal directions. As an extreme example considering this fracture network without 4

F , the effective permeabilities along x-and y-axis of the DFN will be equal to zero.

Using FraC approach and its flexible strategy for intersection point treatment, the intersection between 4 F and 3 F , 5 F can be accounted for into coarse meshes without using a lower discretization for 4 F and without affecting the global mesh quality and DFN connectivity.

Fig. 12 illustrates an example of a coarse mesh (Fig. 12a) and a fine mesh (Fig. 12b) for the 7fracture DFN created using FraC. For both cases h is the same for all fractures. Obviously, as the tiny fracture width is smaller than h in the coarse mesh, the triangulation of this fracture leads to non-equilateral triangles. Moreover, we can easily notice from Fig. 12a the displacement of the intersection point between 4

F and 3 F to the location of the one between 4 F and 5 F . Table 1 shows the numerical effective permeabilities along three original directions: k from the coarse mesh.

It is noticeable that (i) the geometric similarity of the network along x and y directions leading to the equality between the effective permeabilities along these axis, x k = y k for both the fine and coarse simulations; and (ii) the effective permeabilities computed from the simulations on the coarse mesh are slightly higher than those obtained from those on the fine mesh but they are of the same order of magnitude.

This discrepancy is due to the change of intersection location between the related fracture and the others ones. In addition, the geometry has been slightly changed compared to the original structure. Furthermore, the effective permeability along z-axis of both the fine and coarse meshes matches correctly, about 13 3.2 10   m 2 . It is noteworthy that the fracture 4 F spreads horizontally and therefore its influence on the vertical effective conductivity is negligible.

Table 1 also emphasizes the speed-up in CPU time for flow simulations when using the coarse mesh instead of the fine mesh with a speed-up factor of 50.

Scalability of the mesh generator

The scalability of the meshing algorithms is now investigated, based on the result of mesh generations of the benchmark 33-fracture and the Bloemendaal's DFN [START_REF] Verscheure | Joint inversion of fracture model properties for CO 2 storage monitoring or oil recovery history matching[END_REF] Simulations using the DFN don't model the whole fracture network at the reservoir scale.

Classically, well-tests, flow-meters or interference tests, consider an influence zone of a few kilometers around the wells (FracaFlow 2017, [START_REF] Bourbiaux | An integrated workflow to account for multi-scale fractures in reservoir simulation models: implementation and benefits[END_REF]. Therefore, only fractures inside a bounding box of L 0 × L 0 × 1.4 km (red box, Fig. 13b) are taken into account.

The bounding box length L 0 initially equals to 1 km, the associated DFN contains around 5 × 10 2 fractures (Fig. 13c). The DFN under consideration is expanded by increasing L 0 up to ten kilometers. It can be noticed that the step S 3 is the most expensive. It's remarkable that T 3 is at least one order of magnitude higher than the two others ones for the meshes consisting of up to 10 5 elements. This discrepancy in wall-clock time between the meshing steps could increase to 2 or 3 orders of magnitude for the fine meshes. For N c higher than 10 5 , the total computational time T f , with a significant contribution from S 3 , scales as N c 1.3 . It is noteworthy that the step S 3 can be run on several processors using the multiprocessing approach. The finest mesh (about 6 8 10  elements) is used for the parallel computing exercise. The Fig. 14b illustrates the scaling up ratio n  which is the ratio between T 1 over T n , elapsed time of 1 and n (CPUs). It is expected that this ratio increases linearly with n, that is unfortunately not the case in our exercise: it shows that the speeding up is fairly good with n is up to 4 processors, then it degrades quickly for higher CPU numbers. This can be explained by the fact that the workload is distributed to the processors by dividing the number of closed outline by the n, the CPU number. This load balancing approach is simple to implement, however it leads to an load imbalance between different processors because of the difference between the fracture size. This could result in a nonlinear speeding up as observed in Fig. 14b. From these remarks, one can observe that the mesh generator is scalable for moderate numbers of fractures and moderate number of intersections between fractures. However, advance numerical approach to reduce execution time, e.g. local mesh refinement or parallel computing, should be applied when working on large-scale densely-distributed DFNs.

Conclusions

In this paper, we have introduced a new conforming mesh method, so-called FraC, for mesh generation of fracture networks. The cornerstone of the FraC approach is to decompose each fracture into a set of connected closed contours, between which extended intersection segments will be discretized in a conforming manner. Three strategies for intersecting points are applied to ensure an acceptable quality of the final mesh. In light of the mesh quality studies and mesh validations using steady-state flow simulations, the adaptive AoM strategy, standing for Adding or Moving intersection points, proved its superiority against the two others. The triangulation step of closed contours and the triangulated surfaces merging are done using the LaGrit toolbox (Los Alamos Grid Toolbox, 2013). FraC is able to create good quality meshes for complex DFNs, even in case of large variation in size between intersecting fractures as shown in Section 3.3. Another important advantage is that flow, transport or other numerical simulations can be carried out on FraC meshes using classical numerical methods and software without any additional computational effort. For example, the "non-manifold" topology of resulting meshes may be handled by finite element codes (Cast3M (2017)) or finite volume codes like PFLOTRAN [START_REF] Lichtner | PFLOTRAN User Manual[END_REF][START_REF] Hammond | Evaluating the performance of parallel subsurface simulators: An illustrative example with PFLOTRAN[END_REF][START_REF] Hyman | Conforming Delaunay triangulation of stochastically generated three dimensional discrete fracture networks: a feature rejection algorithm for meshing strategy[END_REF][START_REF] Makedonska | Particle tracking approach for transport in three-dimensional discrete fracture networks[END_REF][START_REF] Karra | Effect of advective flow in fractures and matrix diffusion on natural gas production[END_REF][START_REF] Hyman | dfnWorks: A discrete fracture network framework for modeling subsurface flow and transport[END_REF] and DuMux [START_REF] Flemisch | Dumux: DUNE for multi-{phase, component, scale, physics,...} flow and transport in porous media[END_REF][START_REF] Ngo | Modeling of transport processes through largescale discrete fracture networks using conforming meshes and open-source software[END_REF]. In this work, for demonstration and validation purposes, steady state flow simulations have been carried out using both Cast3M and DuMux codes. Another application for transport simulations through DFNs can be found in Ngo et al.

2017.

Ongoing works are about well test simulations and applications on the Bloemendaal reservoir where faults can act as barriers to fluid flow. In addition these faults are suspected to be longitudinal drains that can be modeled using related fractured fault. The analysis based on available data from two exploration wells emphasizes the flow barrier influences and have to be validated using numerical simulations.

In many cases, the matrix surrounding the fractures should be considered as sources that feed the fluid flow through the fractures and therefore should be accounted for. A possible solution is to mesh the matrix along with the fracture network [START_REF] Ahmed | Three-dimensional control-volume distributed multi-point flux approximation coupled with a lowerdimensional surface fracture model[END_REF][START_REF] Brenner | Vertex approximate gradient scheme for hybrid dimensional two-phase Darcy flows in fractured porous media[END_REF], however generating high-quality meshes for the fracture-matrix ensemble remains a great numerical challenge, especially for densely-distributed DFNs. It appears easier to perform simulations on fracture network meshes only and accounting for the matrix-fracture exchange via numerical or semi-analytical approximations. Such numerical techniques are the generalized dual-porosity (GDPM) method [START_REF] Zyvoloski | Generalized dual porosity: A numerical method for representing spatially variable sub-grid scale processes[END_REF] or the Multiple INteracting Continua (MINC) approach (De Dreuzy et al., 2013). The latter was initially developed in the late 1980s (e.g., [START_REF] Pruess | A practical method for modeling fluid and heat flow in fractured porous media[END_REF][START_REF] Pruess | On thermohydrologic conditions near highlevel nuclear wastes emplaced in partially saturated fractured tuff. 2-Effective continuum approximation[END_REF] and improved more recently (e.g., [START_REF] Karimi-Fard | Generation of coarse-scale continuum flow models from detailed fracture characterizations[END_REF][START_REF] Tatomir | Modeling two phase flow in large scale fractured porous media with an extended multiple interacting continua[END_REF]de Dreuzy et al., 2013). Semi-analytical approximations may also be used [START_REF] Grenier | Assessment of Retention Processes for Transport in a Fractured System at Äspö (Sweden) Granitic Site: from Short-Time Experiments to Long-Time Predictive Models[END_REF][START_REF] Painter | Time domain particle tracking methods for simulating transport with retention and first-order transformation[END_REF][START_REF] Noetinger | A quasi steady state method for solving transient Darcy flow in complex 3D fractured networks accounting for matrix to fracture flow[END_REF]. These approaches are useful because they allow to avoid challenging meshing issues. Nevertheless, it requires rigorous exercises for the validation of the matrixfracture transfer formulations. 

 Multiple intersections

We explore now the MWR-DFN considered in Section 3.3. Three meshes are generated with h=1.4m, h=3.5m and h=7m. Two L min values are chosen to assess the impact of this parameter on the behavior of the mesh generator at multiple intersection locations (Fig. A2). The mesh shown in Fig. A2a is generated with h=1.4m. It is noticeable that whatever the L min value the DFN geometry inside the triple intersection area is correctly modeled (Fig. A2a andA2b).

Since the selected discretization is fine enough, all the intersection points are added to the fracture contours.

The second discretization, h=3.5m, provides different results. For L min =0.01h the intersection area is explicitly modeled (Fig. A3b) without fracture deformation whereas with L min =0.2h two intersection points are merged (Fig. A3c). The intersection segments are partially merged because the selected discretization is fine enough to partially model the intersection. The L min criterion is fulfilled only for the red points in Fig. A3b, which are modeled by a single point in orange in Fig. A3c. The last discretization is obtained with h=7m (Fig. A4). For L min =0.01h, the geometry of the area under study is correctly modeled, however the mesh cell size spans a wide range from about 2m inside the intersection area to 7m elsewhere (Fig. A4a,b). Finally, for L min =0.2h, the three intersection points are merged and the three intersection lines are modeled by a single segment (Fig. A4c). 

Fig. 2 .

 2 Fig. 2. Illustration of a 2-fracture DFN (a). Meshing procedure: step S 1 -fracture contour discretization (black points) and intersection points (orange points) identification (b); step S 2 -intersection point managements (inside red circles) (b) and final contour discretization (c).

  The intersection points are then sorted to find out the endpoints, mentioned as first p and end p . An extended intersection segment built to connect the intersection endpoints belonging to the fractures i F and jF . Let [S int ]be the actual intersection segment between i

Fig. 3 .

 3 Fig. 3. Two intersecting fractures with used notations: the extended intersection segment

Fig. 4 .FF

 4 Fig. 4. 3D example showing how a fracture shape may be modified when moving contour

Fig. 5 .

 5 Fig. 5. Examples of meshes generated using AA (a1), AM (b1) and AoM (c1) approaches and associated histograms of the mesh cell area (Figes a3, b3, c3). Figures a2, b2, c2 present the final triangulation of the largest fracture. The red bold lines illustrate the extended intersection traces.

Fig. 6 .

 6 Fig. 6. Mesh quality of resulting meshes. a) Global mesh quality as a function of number of mesh cells. b) Quality histogram for three realizations using the AoM approach.

Fig. 7

 7 Fig.7shows the effective permeabilities along three main directions x, y, z computed from single-phase flow simulations on FraC meshes, which are then compared to the solution of the MP-Frac code(De Dreuzy et al., 2013).

Fig. 7 .

 7 Fig. 7. Effective permeabilities computed from flow simulations on our meshes and the solution obtained through the MP-Frac code (De Dreuzy et al., 2013).

Fig. 8 .Fig. 9 .

 89 Fig. 8. Illustration of the fracture network MWR-DFN including two superimposed sets of structured fractures (WR-DFNs). Each set involves two orthogonal fracture families: the red and green fractures belong to the first WR-DFN and the blue and orange fractures gather together in the second WR-DFN. We refer the readers to the online version of this paper for the color mentioned in this caption.

Fig. 10a reports

  Fig. 10a reports a comparison between the analytical and numerical effective permeabilities along principal directions, showing an excellent agreement between the analytical and numerical solutions. In addition, a diagram of the computational time of simulations on MWR-DFN meshes is displayed in Fig. 10b. The numerical simulations run very fast, for

  Fig. 10. MWR-DFN: (a) Computed effective permeabilities along three principal directions and (b) total elapsed time for mesh generation.

  Fig. 11. 7-fracture DFN including two sets of vertical fractures, the first set including the

Fig. 12 .

 12 Fig. 12. Meshes for the 7-fracture DFN built obtained through the FraC approach. The issue

  state flow simulations on the fine mesh and ,  c

  using the AoM approach and the open source software Dumux. The latter DFN is a semi-synthetic DFN where the network's properties are closely based on the geological data from the fictitious but realistic Bloemendaal reservoir. The semi-synthetic DFN consists of more than 50,000 rectangular-shaped fractures that lie on a domain of 12 km × 15 km × 1.4 km. The thickness of the flowing zone is about 200 m (Fig. 13a,b) while the mean reservoir thickness equals 10 m.

Fig. 13 .

 13 Fig. 13. Semi-synthetic Bloemendaal fracture network in lateral view (a) and in top-down view (b). Only the region inside the red box in (b) will be meshed. An example of resulting mesh for the case L 0 = 1 km where the DFN consists of around 5 × 10 2 fractures is shown in (c), and (d) reports variation of fracture number N in the bounding box (in red) w.r.t. the box size L 0 .

0 ÑFig. 14 .

 014 Fig. 14. Benchmark 33-fracture DFN: Log-log relationship of the total elapsed time T cpu and that required by each meshing step with respect to the grid cell number N c (a), and speed-up

Fig. 15a illustratesFig

  Fig.15aillustrates the variation of the number of fracture intersections N int , the number of closed contours N poly and the number of grid cells N c over N f , the fracture number within the Bloemendaal DFN. It shows a roughly linear relationship between N int , N poly and N c with respect to N f . The execution times for meshing realizations are plotted in Fig.15b, revealing

Finally, major issues

  Fig. A1. Degenerated configurations of a two-fracture DFN: the fractures are connected by only one contour point (a) and by only one side (b).

  Fig. A2. a) Global view of the MWR-DFN mesh with h=1.4m, L min =0.2h. Zoom on a triple intersection location for L min =0.01h (b) and L min =0.2h (c).

  

  

  

  

  which can also be sub-divided in a homogeneous or adaptive manner while keeping all intersection points unchanged. In the first case a target edge length h ij = min(h i , h j ) int ] and [S int ] are both discretized using h ij . In the second case, only [S int ] is discretized according to h ij , the extended segment

	 	first end p p	 				
	is defined, the segments	 	first end p p	 	\[S first end   p p	 	\[S int ]
	is discretized using h i or h j , depending if it belongs to i F or j F respectively.
	Finally, by a series of cutting steps, the original fractures are decomposed into a large number
	of connected closed contours. The main benefit of series of cutting steps is that multiple-
	intersection issues vanish. For example, a problem of triple intersections between three
	fractures i F , j F and k F is transformed to the standard problem of finding intersections
	between k				
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Appendix A

This appendix deals with meshing of fracture intersection configurations that may be encountered when using DFN modelling tools. A discussion given in the last point outlines the impact of the critical length for intersection point merging L min .

 Meshing of complex two fracture configurations

Degenerated configurations of a simple two-fracture DFN are first studied. A horizontal fracture ( h F ) and another vertical one ( v F ) are linked by only one point (Fig. A1a), and by