
HAL Id: hal-01983436
https://ifp.hal.science/hal-01983436

Submitted on 16 Jan 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

FraC: A new conforming mesh method for discrete
fracture networks

André Fourno, Tri-Dat Ngo, Benoit Noetinger, Christian La Borderie

To cite this version:
André Fourno, Tri-Dat Ngo, Benoit Noetinger, Christian La Borderie. FraC: A new conforming mesh
method for discrete fracture networks. Journal of Computational Physics, 2019, 376, pp.713-732.
�10.1016/j.jcp.2018.10.005�. �hal-01983436�

https://ifp.hal.science/hal-01983436
https://hal.archives-ouvertes.fr


3 now at Socotec Power Services, 5, place des Frères Montgolfier, 78182 Saint-Quentin-en-Yvelines, France 
1 

 

FraC: A new conforming mesh method for discrete 1 

fracture networks 2 

André Fourno1*, Tri-Dat Ngo1, 3, Benoit Noetinger1, Christian La Borderie2 3 

 4 

1 IFP Energies Nouvelles, 1&4 Avenue du Bois Préau 92500 Rueil-Malmaison, France. 5 

2 University of Pau & Pays Adour, Laboratoire des sciences de l'ingénieur appliquées à la 6 

mécanique et au génie électrique, SIAME EA 4581, Fédération IPRA, Allée du Parc 7 

Montaury, Anglet, France 8 

 9 

*Corresponding author, Tel.:+33 1 47 52 72 57. Fax: +33 1 47 52 60 31. 10 

andre.fourno@ifpen.fr 11 

 12 

Abstract 13 

The Fracture Cut (FraC) approach to mesh three-dimensional (3D) Discrete Fracture 14 

Networks (DFN) is presented. The considered DFNs consist of a network of planar two-15 

dimensional (2D) fractures sharing intersections that can in turn intersect themselves, 16 

resulting in highly complex meshing issues. The key idea of FraC is to decompose each 17 

fracture into a set of connected closed contours, with the original intersection traces located at 18 

the boundaries of the contours. Thus, intersection segments can be more easily accounted for 19 

when building a conforming mesh. Three distinct strategies for intersection points 20 

management are also proposed to enhance the quality of resulting meshes. Steady-state single-21 

phase flow simulations are performed to validate the conform meshes obtained using FraC. 22 

The results from flow simulations as well as from a mesh quality analysis on a benchmark 23 

case show that a flexible AoM strategy (Adding or Moving intersection points) appears to be 24 
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the best choice to generate ready-to-run meshes for complex DFN. This approach also allows 25 

accounting for tiny features within the fracture networks while keeping a good mesh quality 26 

and respecting DFN connectivity. Finally, a scalability of the mesh generator is conducted to 27 

assess the performance of the approach. 28 

 29 

Keywords 30 

3D discrete fracture network; Mesh generation; Conforming mesh; Mesh quality; Steady-state 31 

single phase flow. 32 

33 
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 34 

1. Introduction 35 

Transfers in fractured porous media modeling is still a challenging issue having a broad 36 

variety of applications ranging from geothermal energy recovery (Aquilina et al., 1998), 37 

petroleum exploration and production (Bourbiaux, 2010), CO2 geological storage to nuclear 38 

waste disposal (Grenier et al., 2005). Fracture networks may be studied using either 39 

continuous (Svensson, 2001; Karimi-Fard et al., 2006; Fourno et al., 2007) or Discrete 40 

Fracture Networks (DFN) models (Erhel et al., 2009; Hyman et al., 2014; Delorme et al., 41 

2016; Ricois et al., 2016; Berrone et al., 2017). In practice, continuous models may be used 42 

when a representative elementary volume (REV) exists, that is small compared with other 43 

characteristic sizes of the problem (Long et al., 1982; Neuman, 1988). At this scale transfers 44 

in fractured media may be modeled using volumetric grids with equivalent properties that 45 

mimic the properties of the underlying DFN. Numerous works deal with the effective 46 

computation of equivalent properties (Karimi-Fard et al., 2006; Matthai and Nick, 2009; 47 

Fourno et al., 2013, Jourdain et al., 2014). Another common approach may be followed, 48 

especially if no REV exists or in order to obtain high-resolution simulations. In this approach 49 

the DFN geometry is explicitly accounted for. With recent advances coming from 50 

continuously growing computing power and with widespread research efforts of the 51 

community to build detailed meshes as well as adapted numerical schemes, transfers can be 52 

modeled on more and more complex explicit DFN geometries.  53 

To our knowledge, three distinct discrete approaches are used to obtain numerical flow and 54 

transport simulations on DFN meshes. The first approach, so-called pipe-network models (or 55 

capacitor/resistor models, Acuna and Yortsos, 1991, Bodin et al., 2007), assumes that the flow 56 

is channelized within the network and models fracture connections as one-dimensional 57 

channels. The final model is a linear system involving a set of porous volumes and 58 
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conductivities coupling fracture intersections that share common fractures. Using this strong 59 

topological simplification, the overall connectivity between fractures is maintained and the 60 

computational cost is significantly reduced because internal degrees of freedom inside each 61 

fracture are neglected. These approaches have been used long ago for steady-state flow and 62 

transport (Cacas et al., 1990; Dershowitz and Fidelibus, 1999; Gylling et al., 1999). More 63 

recently, Noetinger and Jarrige (2012) have proposed a systematic approach for mapping 3D 64 

DFN to pipe networks considering transient Darcy flow in complex 3D fractured networks 65 

only. This work was later extended to account for transfers arising from the matrix 66 

(Noetinger, 2015). Local transport properties of pipe networks models can be determined 67 

analytically via simple estimations (Cacas et al., 1990) or numerically using direct local 68 

calculations that can involve fine meshing of each fracture (Noetinger and Jarrige 2012). The 69 

fine meshing can be avoided using simplifying assumptions (Khvoenkova and Delorme, 70 

2011) that are in between the approach of Cacas et al (1990) and Noetinger and Jarrige 71 

(2012). 72 

The two other alternative approaches keep the exact geometry of DFN considering that 73 

fractures are modeled as planar objects. The second approach proposes to use non-conforming 74 

meshes in order to alleviate meshing difficulties due to the occurrence of multi-intersections 75 

(Fig. 1a).  76 
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(a) (b) 

Fig. 1. Non-conforming (a) and conforming mesh (b) for a two-fracture system. 77 

However, in order to handle these non-conforming meshes, advanced numerical schemes are 78 

required, so specific codes have to be developed, and one cannot use existing platforms 79 

without deep modifications of the codes. We may refer to the PDE-constrained optimization 80 

approach (Berrone et al., 2013; Benedetto et al., 2014, 2016; Berrone et al., 2017) and the 81 

Mortar method (Erhel et al., 2009; Pichot et al., 2010, 2012).  82 

The third approach is to develop tools allowing to build conform mesh. This is the approach 83 

developed in the present paper (Fig. 1b). The main idea is that major workload will be spent 84 

on generating DFN meshes rather than in the development of specific numerical approaches 85 

(Adler et al. 2012). Recent studies dealt with conform mesh approaches (Hyman et al., 2014, 86 

2015; Huang et al., 2016; Fourno et al., 2016; Ngo et al. 2017). CPU time for DFN mesh 87 

generation may be considerably reduced in line with progress in computer sciences and 88 

information technology. In addition, beside the geometrical DFN meshing difficulties, a 89 

second issue relates to the “non-manifold” topology of the resulting meshes (Sander et al., 90 

2015). This particular issue can be handled by several finite element codes such as Cast3M 91 

(2017). For instance, Fourno et al. (2016) provided numerical solutions for steady-state 92 

single-phase flow on non-manifold meshes by means of the Finite Element (FE) or Mixed 93 

Hybrid Finite Element (MHFE) methods implemented in Cast3M (2017). Few finite volume 94 
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simulators for subsurface flow and transport, like PFLOTRAN (Lichtner et al., 2013; 95 

Hammond et al., 2014; Hyman et al., 2014; Makedonska et al., 2015; Karra et al., 2015; 96 

Hyman et al., 2015) and DuMux (Huber et al., 2000, Flemisch et al., 2011), are also able to 97 

deal with non-manifold topologies.  98 

In all cases, the mesh generation remains a crucial bottleneck because the convergence and 99 

stability of the numerical scheme as well as the solution accuracy could be significantly 100 

affected by the mesh quality. In principle, degenerate cells that do not satisfy the quality 101 

constraints should be identified and removed from the final mesh. Botsch and Kobbelt (2001) 102 

classified degenerate triangles as caps, i.e. triangles with an angle close to 180°, and needles 103 

of which the longest edges is much longer than the shortest one. Frey and George (2000) 104 

present an overview of quality mesh measures, mainly based on the edge length or triangle 105 

angle criteria. As an example, Miller et al. (1995) and Shewchuk (1997) use the ratio of the 106 

circumscribed circle radius to the shortest edge of a triangle for judging the mesh quality. This 107 

ratio should be as small as possible for all triangles. More recently, Mustapha and 108 

Dimitrakopoulos (2011) evaluate the triangle quality by comparing its area with that of 109 

equilateral triangles. This last measure is retained for reviewing the quality of our meshes. 110 

 111 

The present study focuses on mesh generation for complex discrete fracture network only. 112 

The matrix surrounding the fractures is disregarded. We first propose a new conforming mesh 113 

approach, so-called FraC (Fracture Cut mesh approach) and then provide validations via flow 114 

simulations done on DFN of increasingly complex geometries. The contribution is organized 115 

as follows. The methodology of the FraC approach used to obtain conforming meshes for 116 

DFN is described in Section 2, accompanied by a discussion on the quality of resulting 117 

meshes. Numerical results of steady-state flow on FraC meshes are shown in Section 3, both 118 

for model validation and demonstration purposes. In Section 4, scalability of the mesh 119 
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generator is discussed and finally, Section 5 gives conclusions together with some comments 120 

on further works. 121 

122 
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2. FraC meshing method 123 

In fractured media, the input of mesh tools comes generally from the fractured site 124 

characterization. The site characterization provides the distribution of orientations, 125 

dimensions, and spatial locations of different fracture sets. Using these distributions DFNs are 126 

modeled. The obtained DFN are often complex and their fractures may be concave polygons 127 

or ellipses. To model transfers in the DFN, we choose to build a dedicated mesh of the DFN 128 

geometry. Unlike Hyman et al. (2014) who developed a feature rejection algorithm for 129 

meshing (FRAM) before generating DFN conforming grids we propose to deal with all the 130 

DFN fractures ensuring the DFN connectivity conservation. Hereby we propose a simple and 131 

efficient meshing approach for DFNs, the so-called “Fracture Cut Method for Meshing” 132 

(FraC).  133 

The main idea of the FraC approach is to decompose each fracture into a set of connected 134 

closed contours, between which common segments will be discretized in a conforming 135 

manner. Strategies for moving or adding intersecting points are applied in order to achieve an 136 

acceptable quality of the final mesh. 137 

2.1. General theoretical background  138 

The FraC method involves three primary stages. Considering two intersecting fractures 139 

(Fig. 2a.), the meshing procedure is as follows: (S1) contour meshing (Fig. 2b, black points) 140 

and fracture intersection identification (Fig. 2b, orange points); (S2) intersection point 141 

management (Fig. 2b, inside the red circles) to obtain the final contour meshing (Fig. 2c) and 142 

fracture cutting (Fig. 2d), and (S3) triangulation (Fig. 2e) and merging triangulated surfaces 143 

(Fig. 2f). The main features in each stage are summarized below. 144 
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(a)  (b)   

(c)  (d)  

(e)  (f)  

 145 

Fig. 2. Illustration of a 2-fracture DFN (a). Meshing procedure: step S1 – fracture contour 146 

discretization (black points) and intersection points (orange points) identification (b); step S2 147 

– intersection point managements (inside red circles) (b) and final contour discretization (c). 148 

Exploded view of fracture cutting results (d); and step S3 – exploded view of the contour 149 

triangulation results (e) and merging triangulated surfaces (f). 150 
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2.1.1.  Contour discretizing and fracture intersection identification 151 

The fracture shapes in our DFN are planar ellipses or convex planar polygons. Elliptic 152 

fractures are defined by a center point, the minor and major axe lengths and a normal vector. 153 

Polygon fractures are defined by points. Firstly a characteristic length hi is chosen for each 154 

fracture. This characteristic length is used to discretize the fracture contour and is respected 155 

wherever it is possible during the DFN meshing. It means that the edge lengths of the final 156 

mesh triangles will be of the same order of magnitude as hi. At this step, the fractures are thus 157 

modeled as convex polygons iF . The representative polygons iF  of elliptic fractures are 158 

inscribed in the fracture shapes that underestimates the fracture surface and possibly the 159 

intersection between fractures. Therefore, the characteristic length hi has to be carefully 160 

chosen, too high values could lead to the loss of fracture connectivity, too small values results 161 

in a high mesh cell number. Moreover, hi should not be too different between fractures to 162 

avoid creating elongated low-quality mesh cells around the intersection location between 163 

these fractures. Obviously, the choice of hi has no impact on DFN geometry if only polygonal 164 

fractures belong to the DFN. The next step involves finding intersections between the 165 

polygons. At this stage, an octree-like approach (Khvoenkova and Delorme, 2011; Hyman et 166 

al., 2014) is used to improve the computational efficiency. This approach works well if the 167 

size of the fractures is almost of the same order of magnitude (Ngo et al., 2017). First, an axis-168 

aligned minimum bounding box BBi is created around iF  where BBi is defined by the 169 

minimal and maximal value of the corresponding coordinate of the polygon vertices. Then a 170 

preliminary test is performed to check the intersection between the bounding boxes BBi and 171 

BBj of two fractures iF  and jF  respectively. Obviously, the intersection between iF  and 172 

jF occurs only if BBi and BBj do intersect. In this case, an intersection line ijL    between the 173 

iF  and jF  planes is first determined. Let iF  be the boundary of iF , then finding 174 
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intersections between the fractures becomes finding intersections between iF , jF  with 175 

ijL   . We denote 
( )
ijn 

 the number of intersection points between iF and jF with ijL   . 176 

Considering the most general cases, four intersection points 
(1) (2) (1) (2) ( ) ( ), , , ( 2)i j
i i j j ij ijn n p p p p  177 

may therefore be found, where (1,2)
ip  lie on iF  and 

(1,2)
jp  lie on jF  . We can notice that these 178 

points may coincide and that each one belongs at least to a fracture contour. Finally, the 179 

fractures intersect only if 1 2 1 2[ ] [ ] .i i j j p p p p  The intersection points are then sorted to find 180 

out the endpoints, mentioned as firstp  and endp . An extended intersection segment first end  p p  181 

is built to connect the intersection endpoints belonging to the fractures iF  and jF . Let [Sint] 182 

be the actual intersection segment between iF  and jF . Obviously, we have 183 

 int first endS    p p  (Fig. 3). 184 

 185 

Fig. 3. Two intersecting fractures with used notations: the extended intersection segment 186 

first end  p p  (green dashed line) and the original intersection trace [Sint] (orange plain line). 187 
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2.1.2.  Intersection point management and fracture cutting 188 

Once the intersection determination stage is completed, the fracture cutting step will be 189 

performed. For this purpose, special focus should be put on the intersection points between 190 

intersecting fractures as well as the points locating in their neighboring areas. Without loss of 191 

generality, we consider two intersecting fractures iF  and jF , each of which is modeled by a 192 

set of vertices V  with { , }  i j . The case of multi-intersection could be treated similarly 193 

and will be briefly addressed. 194 

2.1.2.1. Intersection point management 195 

This paragraph describes the strategies for intersection point management to 196 

discretize each fracture contour iF . Let p be one of the four intersection point between iF  197 

and jF . Three strategies may be applied for the intersection point management:  198 

a. Always Add (AA) intersection points 199 

Disregarding the position of neighboring points, intersection points are always added to the 200 

fracture contours to which it belongs. However using this strategy extremely small edges and 201 

consequently poor-quality elements with very high aspect ratio could appear in the final DFN 202 

mesh. 203 

b. Always Move (AM) closest points 204 

Two points (each point belongs to one of intersecting fractures, i ip F  and jj p F ) which 205 

are closest to the intersection point p are identified. These points are then be merged with p. 206 

The advantage of this strategy is that it avoids creating tiny edges within each sub-fractures 207 

and therefore enhance the quality of the final mesh. Nevertheless, by moving systematically 208 

contour points, the fracture geometries are deformed and may no longer be planar. An 209 

example is given in Fig. 4 considering a 3-fracture system. As fracture intersections are 210 
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handled sequentially, the process of moving contour points leads to the deformation the 211 

vertical fracture 2F . 212 

 213 

Fig. 4. 3D example showing how a fracture shape may be modified when moving contour 214 

points to intersection points. a) 3-fracture system consisting of two vertical fractures, 2F (in 215 

red) and 3F  (in blue), intersected by a horizontal one 1F ; b) Discretization of the 1F  contour 216 

(black points) and the intersection between 1F  and 1F  (I12), the two intersection points are in 217 

green; c) 3F  is now accounted for in the DFN, intersection line (I13) and points (in orange) 218 

are determined; d) the green points on I12 are moved to the orange ones, resulting in 219 

deformation of I12 and consequently 2F  is no longer planar.  220 

 221 

More harshly, in some cases it could lead to the loss of connectivity of the fractures if other 222 

intersection points locate within a deformation area. All of that could have important effects 223 

on flow simulations. 224 
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c. Add or Move (AoM) points 225 

Based on a flexible moving and adding point strategies, an adaptive solution is proposed. A 226 

critical length Lmin is determined basing on the characteristic length of hi and hj. Concretely, 227 

Lmin = max{ .h ih , .h jh } where h  is a user-defined ratio, 0 0.5h  . When h  is too small 228 

(close to 0) or too high (~ 0.5h), the resulting mesh is very similar to the one obtained using 229 

the AA and the AM approach, respectively. From our experiences, h =0.2 seems to be a good 230 

choice. As in the AM approach, the two closest points to the intersection p  ( { , }  i j ) are 231 

determined. Then, p  is removed if the distance from p  to p is less than Lmin. In any case, 232 

p is added to the vertex set of each contour. Locally the characteristic length of the contour is 233 

thus modified but remains close to hα around the contour. This approach allows to remove 234 

tiny edges from the final mesh on the one hand and to limit the deformation of the fractures 235 

on the other hand. We may also notice that for all strategies intersection point positions are 236 

conserved. Thanks to that the following step will be easier to manage. The choice of the 237 

strategy for the intersection point management will be further discussed in Sections 2.2 and 238 

3.1. 239 

2.1.2.2. Fracture cutting 240 

The fracture cutting step expresses the key idea of the FraC approach and is solely 241 

applied for intersecting fractures. Each of two intersecting fractures iF and jF  is then cut 242 

along the extended intersection first end  p p  to obtain interconnected closed contours, 243 

subsequently referred to as “sub-fractures”. To guarantee the homogeneity of the final mesh, 244 

the extended intersection segment first end  p p  should also be discretized according to the 245 

mesh characteristic length of the two original fractures. For that, special focus is put on 246 
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first end  p p  which can also be sub-divided in a homogeneous or adaptive manner while 247 

keeping all intersection points unchanged. In the first case a target edge length hij = min(hi, hj) 248 

is defined, the segments first end  p p \[Sint] and [Sint] are both discretized using hij. In the 249 

second case, only [Sint] is discretized according to hij, the extended segment first end  p p \[Sint] 250 

is discretized using hi or hj, depending if it belongs to iF  or jF  respectively.  251 

Finally, by a series of cutting steps, the original fractures are decomposed into a large number 252 

of connected closed contours. The main benefit of series of cutting steps is that multiple-253 

intersection issues vanish. For example, a problem of triple intersections between three 254 

fractures iF , jF  and kF  is transformed to the standard problem of finding intersections 255 

between kF  and the sub-fractures of iF  and jF . The drawback of this strategy is that it 256 

increases the number of intersection tests and, consequently, the computational time 257 

especially when working on densely-distributed large-scale DFNs. The influence of this 258 

feature of the method is addressed in Section 4. 259 

2.1.3.  Contour triangulation and triangulate surface merging 260 

Surface triangulation is a common topic in mathematics and computational geometry 261 

(Frey and George, 2000). Among many triangulation techniques, the Delaunay triangulation 262 

is one of the most popular and the most often used approach (Delaunay, 1934; Bourouchaki 263 

and George, 1998). In our framework, this classical approach is applied to each sub-fracture 264 

according to its own target edge length hi. To guarantee the conformity of the final mesh, no 265 

extra node is created on the boundaries of the sub-fracture. On the other hand, nodes are 266 

added inside the domain limited by sub-fracture boundaries, they are also constrainedly 267 

managed allowing to improve the quality of triangles. Finally, all resulting triangulated sub-268 

fractures are merged into a single triangulation data structure, in which duplicate vertices 269 
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along the intersection lines may exist. These duplicates are then detected and removed, 270 

resulting in a final fully connected mesh. The triangulation step and the triangulated fracture 271 

merging are done using either LaGrit open source libraries (Los Alamos Grid Toolbox, 2013) 272 

or Cast3M tools (Murphy et al., 2001, Hyman et al., 2014, Cast3M, 2017).  273 

2.1.4.  Discussion on precision parameters 274 

Numerical calculations are performed in 3D. A main precision parameter, εmerge, is used 275 

for geometric calculations including finding the distance between two points, vector 276 

calculations and intersection point identifications. This parameter is also used to remove 277 

duplicate points, i.e. points between which the distance is less than εmerge will be merged. 278 

Another parameter, εsurf, is used to remove tiny contours whose surfaces are smaller than εsurf. 279 

This parameter is very useful when considering the AA approach in which small contours 280 

may frequently be created, especially around multiple intersection locations. All removed 281 

contours are marked during the meshing step to be validated by user afterward. These two 282 

precision parameters are chosen accordingly to Lmin. In the following sections, εmerge = Lmin x 283 

10-4 and εsurf = L2
min x10-2. 284 

2.2. Discussion on mesh quality 285 

In this section, we consider a synthetic DFN, which was also studied by a number of 286 

authors (e.g. Khvoenkova and Delorme, 2011; Delorme et al., 2016; Ngo et al., 2017). The 287 

network consists of 33 dish-shaped fractures inside a 3m 3m 3m cube. All three 288 

intersection strategies (i.e. AA, AM and AoM approach) are used for the mesh generation of 289 

this DFN. A common characteristic length h is set for all fractures. Several meshing 290 

realizations are performed with decreasing h to obtain a set of meshes with different levels of 291 

refinement. The characteristic length h is chosen from 1.0 m to 3.75 10-3 m resulting in grids 292 

that contains from 2   102 to 8.0  106 elements. 293 
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Fig. 5 (a1,b1,c1) showes the meshes generated using AA approach (Fig. 5a1), AM approach 294 

(Fig. 5b1) and AoM approach (Fig. 5c1) with the characteristic length h being about 0.12 m. 295 

Fractures within this synthetic DFN are divided into 157 closed contours. The resulting 296 

meshes contain about 2 103 mesh cells. The final triangulation of the largest fracture within 297 

the DFN are plotted in Fig. 5 (a2, b2, c2) . Fig. 5 (a3, b3, c3) display the histograms of the 298 

mesh cell area of the resulting meshes.  299 

 300 

 301 

(a1)  

(a2)  

(a3)  
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(b1)  

(b2)  

(b3)  

(c1)  

(c2)  

(c3)  

Fig. 5. Examples of meshes generated using AA (a1), AM (b1) and AoM (c1) approaches and 302 

associated histograms of the mesh cell area (Figes a3, b3, c3). Figures a2, b2, c2 present the 303 

final triangulation of the largest fracture. The red bold lines illustrate the extended 304 

intersection traces. 305 

 306 
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The mesh in Fig. 5a1 and Fig. 5a2 reveals several drawbacks of the AA approach. First, one 307 

can easily observe that this mesh is not homogeneous, there exists locally mesh cells of which 308 

the edge size is of different order of magnitude. It can also be observed in Fig. 5a3 that the 309 

AA mesh contains a large amount of tiny features (i.e. mesh area close to zero). The 310 

difference in size of mesh cells can amplify numerical diffusion as well as convergence 311 

difficulties, and therefore can affect significantly the result of flow and transport simulations. 312 

Second, as mentioned above in Section 2.1, when using the AA approach, the triangulation of 313 

close contours can fail due to the appearance of extremely close points in the vertex set of 314 

sub-fractures. 315 

Fig. 5b1 displays the mesh created by FraC using the AM approach for intersection point 316 

treatment. This mesh is much more homogeneous in terms of mesh size than the AA mesh 317 

(Fig. 5b3). However, the non-planarity of fractures is noticeable (Fig. 5b2). For instance, it 318 

shows the contrast in color between some neighboring mesh cells inside the circle, implying 319 

that these cells do not lie on a same plane. Furthermore, the mesh generated using the AoM 320 

approach is less deformed compared to the AM mesh (uniform color are observed by fracture 321 

planes in Fig. 5c2), while keeping a good mesh homogeneity (Fig. 5c3). 322 

A cell aspect ratio, 3

1

4 3

i
i

A
q

s





 , where A is the triangle area and si is the length of the side 323 

i (Mustapha and Dimitrakopoulos, 2011) is now used to assess the mesh quality. Fig. 6a 324 

depicts the percentage of mesh cell having a good aspect ratio within the resulting meshes.  325 

 326 
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(a)  (b)  

Fig. 6. Mesh quality of resulting meshes. a) Global mesh quality as a function of number of 327 

mesh cells. b) Quality histogram for three realizations using the AoM approach. 328 

 329 

It shows missing data on the AA curve because of meshing failure, especially for very low or 330 

very high h values (Fig. 6a). Moreover, the quality of the AM and AoM meshes are similar, in 331 

particular for moderate numbers of grid cells. Nevertheless the AoM approach gives better 332 

mesh quality than the AM one for the fine meshes containing more than 104 elements. 333 

In a word, the AoM approach seems to be the best choice that is able to deliver ready-to-run 334 

meshes of good quality. As some mesh contour points may be moved, the characteristic 335 

length of the contour may be modified locally within the intersection area. Therefore, cells 336 

with lower quality may appear close to the intersection lines. Nevertheless, the cell quality 337 

stay above 60% even for coarse meshes (Fig. 6b). Additional studies are given in Appendix A 338 

to illustrate how the FraC approach deals with bounded fractures, multiple intersections as 339 

well as to assess the influence of Lmin parameter on resulting meshes. In the next section, the 340 

FraC meshes will be used as inputs of steady-state flow simulations and validated against 341 

available benchmark simulation results and analytical solutions. 342 

 343 
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3. Mesh validation by steady-state single-phase simulations 344 

As mentioned above, FraC meshes may be used as input for Cast3M (2017) or Dumux 345 

(2017). In order to validate the meshing approach, three test-case simulations are conducted: 346 

the two first validations are done using Cast3M (finite element numerical scheme) whereas 347 

the last one using Dumux (finite volume numerical scheme). The mesh validation using 348 

single-phase flow simulations are performed by considering the effective permeabilities along 349 

three main directions of the DFN block. A Dirichlet-condition for pressures is specified on 350 

two opposite facets Γi and Γ’i of the domain, leading to a directional pressure gradient ∆Pi. 351 

No-flow conditions are prescribed on the other boundaries. The effective permeabilities may 352 

then be calculated using the inverted Darcy equation based on the pressure gradient and the 353 

normal fluxes computed on Γi or Γ’I (Zimmerman et al., 1996). Although this classical 354 

upscaling approach is not consistent to determine upscaled properties of highly heterogeneous 355 

media, it is still useful for validation purposes.  356 

  357 

3.1. Benchmark simulations 358 

The benchmark simulations are performed on the previous 33-fracture network previously 359 

studied in Section 2.2. We consider the meshes created using the AoM approach to assess the 360 

effect of the strategy for intersection points management.  361 

Fig. 7 shows the effective permeabilities along three main directions x, y, z computed from 362 

single-phase flow simulations on FraC meshes, which are then compared to the solution of the 363 

MP-Frac code (De Dreuzy et al., 2013).  364 

The MP-Frac meshing approach is based on a discretization of the intersections using a 3D 365 

regular grid. This stair discretization are projected onto fracture planes and local adjustments 366 

are done to guarantee the geometrical properties (Erhel et al., 2009a; Pichot et al., 2012; 367 

Pichot et al., 2010). In the FraC approach, no regular grid or projections are used. 368 
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Nevertheless, as already explained, the critical point is how to deal with the intersection 369 

points. 370 

 371 

 Fig. 7. Effective permeabilities computed from flow simulations on our meshes and the 372 

solution obtained through the MP-Frac code (De Dreuzy et al., 2013). 373 

 374 

The underestimated effective permeabilities are observed from very coarse simulations on 375 

AoM meshes. This is however an expected result. Indeed, for high hi values, the discretized 376 

contours of the fractures do not have enough points to be representative of elliptic fractures. 377 

Therefore, some fracture intersections cannot be captured, resulting in the reduced 378 

connectivity of the DFN. The underestimation of effective permeabilities are thus the direct 379 

consequence of a decrease of DFN connectivity due to the poor contour discretization.  380 

Contrariwise, simulations on fine meshes generated using the AoM approach are in excellent 381 

agreement with the MP-Frac results. This implies that the connectivity of the fracture network 382 

is well captured in these meshes. Furthermore, by limiting the displacement of points and 383 

consequently the deformation of fractures, the AoM approach is able to alleviate the 384 

discrepancy between the computed effective permeabilities and the reference solutions. 385 

 386 
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To summarize, in light of studies on the mesh quality and the accuracy of flow numerical 387 

simulations, the AoM approach appears to be the best solution for the intersection point 388 

treatment.  389 

3.2. Comparison with analytical approaches 390 

The fracture network studied in this section is a MWR-DFN (Modified Warren and Root 391 

DFN), which is inspired from the work of Warren and Root (1963). This DFN, already 392 

studied by Fourno et al. 2013, includes two superimposed sets of structured fractures in a 393 

100m x 100m x 8m block. Each set involves two orthogonal fracture families (Fig. 8).  394 

 395 

Fig. 8. Illustration of the fracture network MWR-DFN including two superimposed sets of 396 

structured fractures (WR-DFNs). Each set involves two orthogonal fracture families: the red 397 

and green fractures belong to the first WR-DFN and the blue and orange fractures gather 398 

together in the second WR-DFN. We refer the readers to the online version of this paper for 399 

the color mentioned in this caption. 400 

 401 

The effective permeabilities along three principal directions of the MWR-DFN are calculated 402 

both analytically by the Oda’s approach (Oda 1985) and numerically via steady-state single-403 

phase flow simulations. Numerical simulations are run on several meshes of different levels 404 
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of mesh refinement. The MWR-DFN is homogeneous with the isotropic permeability of the 405 

fractures 124 10 fk m2
 and the fracture aperture of 22 10 b m. Fig. 9 illustrates the 406 

solutions of single-phase flow simulations along x-axis on three meshes of the MWR-DFN: 407 

simulations on a very coarse mesh with h=5m (a), on a coarse mesh with h=1m (b) and on a 408 

fine mesh with h=0.1m (c). 409 

 410 

 

(a) 

 

(b) 

 

(c) 

 

Fig. 9. Numerical results of single-phase flow simulations along x-axis on three meshes of the 411 

MR-DFN: on a very coarse mesh with h=7.5m (a), on a coarse mesh with h=3.0m (b) and on 412 

a fine mesh with h=0.5m (c). These meshes contain respectively about 
31 10 , 

37 10  and 413 

52 10 mesh cells. 414 

 415 

Fig. 10a reports a comparison between the analytical and numerical effective permeabilities 416 

along principal directions, showing an excellent agreement between the analytical and 417 

numerical solutions. In addition, a diagram of the computational time of simulations on 418 

MWR-DFN meshes is displayed in Fig. 10b. The numerical simulations run very fast, for 419 

example the simulation on the finest meshes (about 52 10 mesh cells) takes only a few 420 

minutes on a personal desktop (RAM 16Go, 8 processors Intel(R) Xeon(R) CPU E5-1620 v3 421 

@ 3.5GHz). 422 
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(a)  (b)  

Fig. 10. MWR-DFN: (a) Computed effective permeabilities along three principal directions 423 

and (b) total elapsed time for mesh generation. 424 

3.3. Poor-connected DFNs  425 

In order to assess the capacity of the mesh generator to treat poorly connected DFNs, we 426 

consider in this section a 7-fracture system located within a 10m  10m  2m block (Fig. 11).  427 

(a)  (b)  

Fig. 11. 7-fracture DFN including two sets of vertical fractures, the first set including the 428 

fractures 1F , 2F , 3F  and the second one including 5F , 6F , 7F , which are related by a 429 

horizontal fracture 4F . All vertical fractures are completed throughout the block and the 430 

network is symmetric with respect to the center of DFN block. The intersection 431 

between 4F and two parallel fractures 3F  and 5F  creates an extremely small feature .  The 432 

DFN is shown in top-down view (a) and 3D view (b). 433 
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The DFN involves two separated sets of vertical fractures related by the horizontal one 4F . 434 

The intersections between 4F  with two parallel fractures 3F  and 5F  result in an extremely 435 

small sub-fracture of width ε. As discussed above in Section 0, the appearance of tiny sub-436 

fractures created by the intersection between fractures could yield to poor quality mesh cell in 437 

the resulting mesh. A well-known solution for this issue is to reduce the discretization size to 438 

the size of the small sub-fracture or to use adaptive meshes. In this configuration, it means 439 

that h has to be less than ε leading to the increase of the total mesh cell number. Another 440 

solution to circumvent this issue is to remove 4F  from the network as proposed by several 441 

DFN mesh approaches, for instance the FRAM method (Hyman et al., 2014). However, 442 

removing the fracture 4F  will obviously lead to the loss of global connectivity of the network 443 

along the horizontal directions. As an extreme example considering this fracture network 444 

without 4F , the effective permeabilities along x- and y-axis of the DFN will be equal to zero.  445 

Using FraC approach and its flexible strategy for intersection point treatment, the intersection 446 

between 4F  and 3F , 5F  can be accounted for into coarse meshes without using a lower 447 

discretization for 4F  and without affecting the global mesh quality and DFN connectivity.  448 

 449 

Fig. 12 illustrates an example of a coarse mesh (Fig. 12a) and a fine mesh (Fig. 12b) for the 7-450 

fracture DFN created using FraC. For both cases h is the same for all fractures. Obviously, as 451 

the tiny fracture width is smaller than h in the coarse mesh, the triangulation of this fracture 452 

leads to non-equilateral triangles. Moreover, we can easily notice from Fig. 12a the 453 

displacement of the intersection point between 4F  and 3F  to the location of the one between 454 

4F  and 5F . 455 

 456 
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(a) 

 

(b) 

Fig. 12. Meshes for the 7-fracture DFN built obtained through the FraC approach. The issue 457 

of tiny sub-fracture created by the intersections between 4F  and 3F , 5F  is solved by either 458 

applying the AoM approach to the coarse mesh (456 cells) (a) or reducing the mesh size 459 

which leads to a fine mesh (25 671 cells) (b). 460 

Qualitatively speaking, the Fig. 12a also reveals the good quality of the mesh cells around this 461 

location. To assess the influence of the minor change in DFN geometry, we compare 462 

numerical result of steady-state single-phase flow within both the coarse and fine meshes. The 463 

DFN is assumed to be homogeneous with the isotropic permeability of the fractures 464 

1110fk m2
 and the fracture aperture of 210b m. 465 

Table 1 shows the numerical effective permeabilities along three original directions: , fk  466 

computed from steady-state flow simulations on the fine mesh and , ck  from the coarse mesh 467 

with { , , } x y z .  468 

 469 

 470 
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 Fine mesh Coarse mesh 

, fk  [10-15 m2] CPU time [s] , ck  [10-15 m2] CPU time [s] 

x-direction 55.6 7.4 60.0 0.15 

y-direction 55.6 7.5 60.0 0.15 

z-direction 320.0 7.0 320.0 0.13 

Table 1. Effective permeabilities along three original principal directions: , fk  computed 471 

from steady-state flow simulations on the fine mesh and , ck  from the coarse mesh. 472 

 473 

It is noticeable that (i) the geometric similarity of the network along x and y directions leading 474 

to the equality between the effective permeabilities along these axis, xk = yk for both the fine 475 

and coarse simulations; and (ii) the effective permeabilities computed from the simulations on 476 

the coarse mesh are slightly higher than those obtained from those on the fine mesh but they 477 

are of the same order of magnitude. 478 

This discrepancy is due to the change of intersection location between the related fracture and 479 

the others ones. In addition, the geometry has been slightly changed compared to the original 480 

structure. Furthermore, the effective permeability along z-axis of both the fine and coarse 481 

meshes matches correctly, about 133.2 10 m2. It is noteworthy that the fracture 4F  spreads 482 

horizontally and therefore its influence on the vertical effective conductivity is negligible. 483 

Table 1 also emphasizes the speed-up in CPU time for flow simulations when using the coarse 484 

mesh instead of the fine mesh with a speed-up factor of 50. 485 

4.  Scalability of the mesh generator 486 

The scalability of the meshing algorithms is now investigated, based on the result of 487 

mesh generations of the benchmark 33-fracture and the Bloemendaal’s DFN (Verscheure et 488 

al., 2012) using the AoM approach and the open source software Dumux. The latter DFN is a 489 
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semi-synthetic DFN where the network's properties are closely based on the geological data 490 

from the fictitious but realistic Bloemendaal reservoir. The semi-synthetic DFN consists of 491 

more than 50,000 rectangular-shaped fractures that lie on a domain of 12 km × 15 km × 1.4 492 

km. The thickness of the flowing zone is about 200 m (Fig. 13a,b) while the mean reservoir 493 

thickness equals 10 m. 494 

 495 

Fig. 13. Semi-synthetic Bloemendaal fracture network in lateral view (a) and in top-down 496 

view (b). Only the region inside the red box in (b) will be meshed. An example of resulting 497 

mesh for the case L0 = 1 km where the DFN consists of around 5 × 102 fractures is shown in 498 

(c), and (d) reports variation of fracture number N in the bounding box (in red) w.r.t. the box 499 

size L0. 500 

 501 

Simulations using the DFN don’t model the whole fracture network at the reservoir scale. 502 

Classically, well-tests, flow-meters or interference tests, consider an influence zone of a few 503 
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kilometers around the wells (FracaFlow 2017, Bourbiaux et al., 2002). Therefore, only 504 

fractures inside a bounding box of L0 × L0 × 1.4 km (red box, Fig. 13b) are taken into account. 505 

The bounding box length L0 initially equals to 1 km, the associated DFN contains around 5 × 506 

102 fractures (Fig. 13c). The DFN under consideration is expanded by increasing L0 up to ten 507 

kilometers. Fig. 13d displays a log-log graph of the variation of the fracture number N in the 508 

DFN bounding box with respect to L0 showing a 2
0~N L  relationship. The unit mesh size h 509 

remains constant for all meshing realizations resulting in progressively larger grids. 510 

On one hand, using the benchmark DFN the performance of the mesh generator on a constant 511 

DFN for different refinement levels is studied. On other hand, the Bloemendaal case is used to 512 

provide a sensitivity analysis of the FraC’s performance considering statistical consistent 513 

DFNs of which the fracture number increase with space. Fig. 14a reports the variation of the 514 

elapsed time TSi required by the meshing step Si with 1,3i   (cf. section 2.1) as well as the 515 

final wall-clock time Tf with respect to the mesh cell number Nc.  516 

 

(a) (b) 

Fig. 14. Benchmark 33-fracture DFN: Log-log relationship of the total elapsed time Tcpu and 517 

that required by each meshing step with respect to the grid cell number Nc (a), and speed-up 518 

ratio of parallel realizations of the mesh generation for the finest mesh ( 68 10 cells) (b). 519 
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It can be noticed that the step S3 is the most expensive. It's remarkable that T3 is at least one 520 

order of magnitude higher than the two others ones for the meshes consisting of up to 105 521 

elements. This discrepancy in wall-clock time between the meshing steps could increase to 2 522 

or 3 orders of magnitude for the fine meshes. For Nc higher than 105, the total computational 523 

time Tf, with a significant contribution from S3, scales as Nc
1.3. It is noteworthy that the step S3 524 

can be run on several processors using the multiprocessing approach. The finest mesh (about 525 

68 10 elements) is used for the parallel computing exercise. The Fig. 14b illustrates the 526 

scaling up ratio n  which is the ratio between T1 over Tn, elapsed time of 1 and n (CPUs). It 527 

is expected that this ratio increases linearly with n, that is unfortunately not the case in our 528 

exercise: it shows that the speeding up is fairly good with n is up to 4 processors, then it 529 

degrades quickly for higher CPU numbers. This can be explained by the fact that the 530 

workload is distributed to the processors by dividing the number of closed outline by the n, 531 

the CPU number. This load balancing approach is simple to implement, however it leads to an 532 

load imbalance between different processors because of the difference between the fracture 533 

size. This could result in a nonlinear speeding up as observed in Fig. 14b. 534 

Fig. 15a illustrates the variation of the number of fracture intersections Nint, the number of 535 

closed contours Npoly and the number of grid cells Nc over Nf , the fracture number within the 536 

Bloemendaal DFN. It shows a roughly linear relationship between Nint, Npoly and Nc with 537 

respect to Nf . The execution times for meshing realizations are plotted in Fig. 15b, revealing 538 

that the mesh generation scales like 1.5
fN . Moreover, for large DFNs with up to 104

 fractures, 539 

the execution times required by S2 and S3 are of same order of magnitude. 540 

 541 
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(a) (b) 

Fig. 15. Semi-synthetic DFN of the Bloemendaal reservoir: Log-log plot of the number of 542 

fracture intersection Nint, the number of closed contours Npoly and the number of grid cells Nc 543 

with respect to the fracture number Nf (a); and log-log plot of the elapsed time versus Nf (b). 544 

 545 

From these remarks, one can observe that the mesh generator is scalable for moderate 546 

numbers of fractures and moderate number of intersections between fractures. However, 547 

advance numerical approach to reduce execution time, e.g. local mesh refinement or parallel 548 

computing, should be applied when working on large-scale densely-distributed DFNs. 549 

5. Conclusions 550 

In this paper, we have introduced a new conforming mesh method, so-called FraC, for 551 

mesh generation of fracture networks. The cornerstone of the FraC approach is to decompose 552 

each fracture into a set of connected closed contours, between which extended intersection 553 

segments will be discretized in a conforming manner. Three strategies for intersecting points 554 

are applied to ensure an acceptable quality of the final mesh. In light of the mesh quality 555 

studies and mesh validations using steady-state flow simulations, the adaptive AoM strategy, 556 

standing for Adding or Moving intersection points, proved its superiority against the two 557 

others. The triangulation step of closed contours and the triangulated surfaces merging are 558 
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done using the LaGrit toolbox (Los Alamos Grid Toolbox, 2013). FraC is able to create good 559 

quality meshes for complex DFNs, even in case of large variation in size between intersecting 560 

fractures as shown in Section 3.3. Another important advantage is that flow, transport or other 561 

numerical simulations can be carried out on FraC meshes using classical numerical methods 562 

and software without any additional computational effort. For example, the “non-manifold” 563 

topology of resulting meshes may be handled by finite element codes (Cast3M (2017)) or 564 

finite volume codes like PFLOTRAN (Lichtner et al., 2013; Hammond et al., 2014; Hyman et 565 

al., 2014; Makedonska et al., 2015; Karra et al., 2015; Hyman et al., 2015) and DuMux 566 

(Flemisch et al., 2011; Ngo et al., 2017). In this work, for demonstration and validation 567 

purposes, steady state flow simulations have been carried out using both Cast3M and DuMux 568 

codes. Another application for transport simulations through DFNs can be found in Ngo et al. 569 

2017. 570 

Ongoing works are about well test simulations and applications on the Bloemendaal reservoir 571 

where faults can act as barriers to fluid flow. In addition these faults are suspected to be 572 

longitudinal drains that can be modeled using related fractured fault. The analysis based on 573 

available data from two exploration wells emphasizes the flow barrier influences and have to 574 

be validated using numerical simulations. 575 

In many cases, the matrix surrounding the fractures should be considered as sources that feed 576 

the fluid flow through the fractures and therefore should be accounted for. A possible solution 577 

is to mesh the matrix along with the fracture network (Ahmed et al., 2015, Brenner et al., 578 

2015), however generating high-quality meshes for the fracture-matrix ensemble remains a 579 

great numerical challenge, especially for densely-distributed DFNs. It appears easier to 580 

perform simulations on fracture network meshes only and accounting for the matrix-fracture 581 

exchange via numerical or semi-analytical approximations. Such numerical techniques are the 582 

generalized dual-porosity (GDPM) method (Zyvoloski et al., 2008) or the Multiple 583 
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INteracting Continua (MINC) approach (De Dreuzy et al., 2013). The latter was initially 584 

developed in the late 1980s (e.g., Pruess and Narasimhan, 1985; Pruess et al., 1990) and 585 

improved more recently (e.g., Karimi-Fard et al., 2006; Tatomir et al., 2011; de Dreuzy et al., 586 

2013). Semi-analytical approximations may also be used (Grenier et al., 2005; Painter et al., 587 

2008; Noetinger, 2015). These approaches are useful because they allow to avoid challenging 588 

meshing issues. Nevertheless, it requires rigorous exercises for the validation of the matrix-589 

fracture transfer formulations. 590 

Finally, major issues are to model non-linear physical phenomena such as, multi-phase multi-591 

component flow, sorption or reactive transport, up to hydromechanical coupling for the 592 

purpose of many applications. 593 
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 600 

Appendix A 601 

This appendix deals with meshing of fracture intersection configurations that may be 602 

encountered when using DFN modelling tools. A discussion given in the last point outlines 603 

the impact of the critical length for intersection point merging Lmin. 604 

 Meshing of complex two fracture configurations 605 

Degenerated configurations of a simple two-fracture DFN are first studied. A horizontal 606 

fracture ( hF ) and another vertical one ( vF ) are linked by only one point (Fig. A1a), and by 607 
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only one side (Fig. A1b) located on the perimeter of hF . In both cases, the FraC meshing 608 

procedure tends to divide vF  into two sub-fractures along the extended intersection line (in 609 

red). The contour points of hF  inside the orange circle are very close but remain disconnected 610 

from vF . These examples show that in general the FraC approach is able to handle DFNs 611 

containing bounded fractures, i.e. fractures that terminate into another one. However, it still 612 

requires improvements to take into account other intricate cases, e.g. when the perimeter of a 613 

fracture are in extremely close proximity to another fracture plane but these fractures stay 614 

disconnected. For this purpose, a user-defined small parameter should be set for intersection 615 

tests.  616 

 

a) 

 

b) 

Fig. A1. Degenerated configurations of a two-fracture DFN: the fractures are connected by 617 

only one contour point (a) and by only one side (b). 618 

 619 

 Multiple intersections 620 

We explore now the MWR-DFN considered in Section 3.3. Three meshes are generated with 621 

h=1.4m, h=3.5m and h=7m. Two Lmin values are chosen to assess the impact of this parameter 622 
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on the behavior of the mesh generator at multiple intersection locations (Fig. A2). The mesh 623 

shown in Fig. A2a is generated with h=1.4m. It is noticeable that whatever the Lmin value the 624 

DFN geometry inside the triple intersection area is correctly modeled (Fig. A2a and A2b). 625 

Since the selected discretization is fine enough, all the intersection points are added to the 626 

fracture contours. 627 

The second discretization, h=3.5m, provides different results. For Lmin =0.01h the intersection 628 

area is explicitly modeled (Fig. A3b) without fracture deformation whereas with Lmin=0.2h 629 

two intersection points are merged (Fig. A3c). The intersection segments are partially merged 630 

because the selected discretization is fine enough to partially model the intersection. The Lmin 631 

criterion is fulfilled only for the red points in Fig. A3b, which are modeled by a single point in 632 

orange in Fig. A3c. The last discretization is obtained with h=7m (Fig. A4). For Lmin=0.01h, 633 

the geometry of the area under study is correctly modeled, however the mesh cell size spans a 634 

wide range from about 2m inside the intersection area to 7m elsewhere (Fig. A4a,b). Finally, 635 

for Lmin=0.2h, the three intersection points are merged and the three intersection lines are 636 

modeled by a single segment (Fig. A4c).  637 

 638 

639 
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 640 

 

a)  

b)  

Fig. A2.  a) Global view of the MWR-DFN mesh with h=1.4m, Lmin=0.2h. Zoom on a triple 641 

intersection location for Lmin=0.01h (b) and Lmin=0.2h (c).  642 

643 



 

38 
 

 644 

a)  

b)  c)  

Fig. A3.  a) Global view of the MWR-DFN mesh with h=3.5m, Lmin=0.2h. Zoom on a triple 645 

intersection location for Lmin=0.01h (b) and Lmin=0.2h (c).  646 

647 
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 648 

 

a)  

 

b)  

 

c)  

Fig. A4. a) Global view of the MWR-DFN mesh with h=7.0m, Lmin=0.2h. Zoom on a triple 649 

intersection location for Lmin=0.01h (b) and Lmin=0.2h (c). 650 

651 
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