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Long-Term Endogenous Economic Growth
and Energy Transitions

Victor Court,abc* Pierre-André Jouvet,ab and Frédéric Lantzc 

ABSTRACT

This article builds a bridge between the endogenous economic growth theory, the 
biophysical economics perspective, and the past and future transitions between 
renewable and nonrenewable energy forms that economies have had to and will 
have to accomplish. We provide an endogenous economic growth model subject 
to the physical limits of the real world, meaning that nonrenewable and renewable 
energy production costs have functional forms that respect physical constraints, 
and that technological level is precisely defined as the efficiency of primary-to
useful exergy conversion. The model supports the evidence that historical pro
ductions of renewable and nonrenewable energy have greatly influenced past 
economic growth. Indeed, from an initial almost-renewable-only supply regime 
we reproduce the increasing reliance on nonrenewable energy that has allowed 
the global economy to leave the state of economic stagnation that had character
ized the largest part of its history. We then study the inevitable transition towards 
complete renewable energy that human will have to deal with in a not-too-far 
future since nonrenewable energy comes by definition from a finite stock. 
Through simulation we study in which circumstances this transition could have 
negative impacts on economic growth (peak followed by degrowth phase). We 
show that the implementation of a carbon price can partially smooth such unfor
tunate dynamics, depending on the ways of use of the income generated by the 
carbon pricing. 

Keywords: Endogenous economic growth, Technological change, Exergy, 
Energy transition. 
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1. INTRODUCTION

Compared to previous millennia, human societies have experienced tremendous increases 
of development over the past two hundred years (Maddison, 2007). This period has been indeed 
mostly marked by increasing technological and material production improvements, which have 
however spread unequally through the different parts of the world. This pattern is commonly mea
sured by the growth rate of the gross world product (GWP) at global scale, or gross domestic 
product (GDP) at national level. Despite many critics regarding the imperfection of these indicators, 
they continue nowadays to attract most of the attention of economists, policy makers, and media. 
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1.1 Economic Growth Theories

Since the development of the Solow-Swan model of exogenous economic growth (Solow, 
1956; Swan, 1956), an important literature has been developed to propose different mechanisms 
for the endogenous origin of technological change: physical capital spillovers (Romer 1986), human 
capital spillovers (Lucas, 1988), research and development fueled by scarce physical capital (Romer 
1987) or potentially infinite human capital (Romer, 1990), Schumpeterian creative destruction 
(Grossman and Helpman, 1991; Rebelo, 1991; Aghion and Howitt, 1992). These conceptual models 
must be understood as short-term explanations for contemporary growth and are not designed to 
explain how humanity was able to leave the state of economic stagnation that has characterized the 
largest part of its history to reach the contemporary regime of high technological and economic 
growth. This point has led to a search for a Unified Growth Theory (UGT) as coined by Galor 
(2011). The purpose of this unified theory of economic growth is to capture in a single formulation 
the Malthusian Epoch of population and economic growth stagnation, the take-off of these two 
variables in a Post-Malthusian Regime, and the Modern Growth Regime of sustained per capita 
income growth and decreasing population growth. According to Galor and Weil (2000) the principal 
mechanism explaining the transition between these three states is that above a certain threshold of 
population size the rate of technological change is sufficiently high to induce an increase in the 
importance of education to cope with the rapidly changing technological environment, which trigger 
the substitution of quality for quantity in child rearing and launch the economy on a virtuous cycle 
of human capital accumulation, technology improvement, and economic production increases.1 

Despite the tremendous new insights brought by the current UGT, it is clear that similarly to the 
different models previously cited, it suffers (so far) from the same drawbacks, namely that (i) 
technological change is rather imprecisely defined in these models and most of the time stands as 
a time-dependent multiplier (or Total Factor Productivity2) of the aggregated macroeconomic pro
duction function; and more generally (ii) these theories do not take into account the fact that the 
economic system must necessarily follow the natural laws of the broader biophysical system in 
which it is embedded, and in particular the laws of thermodynamics. 

1.2 Goal and Content

It is the purpose of the present article to propose a theoretical model of long-term endog
enous economic growth that takes into account the underlying physical essence of the economic 
system. In section 2 we precise the background literature and the theoretical positioning of our 
work. We present in section 3 the model of a decentralized economy in which the accessibility of 
primary nonrenewable and renewable energy (in fact exergy), and the efficiency with which those 
inputs are converted into useful energy (exergy) services, determine the production of a final output 
good that is consumed or saved to allow investment. In section 4 we precise the calibration pro
cedure to global historical data and show that the model adequately reproduce, from 1750 to 2010, 
the pattern of historical global energy productions, technological change, and economic growth. 

1. The canonical UGT model of Galor and Weil (2000) has been enhanced in several ways, see Galor (2011). 
2. Such abstract representation of technological change aggregate very different production-augmenting factors such as: 

the primary-to-final and final-to-useful energy conversion efficiency (if energy is considered as an input factor), the division 
and organization of labor, the broader organization and efficiency of markets, the skill improvements of laborers, the 
contribution of information and communication technologies, but also the beneficial effects of inclusive institutions (which, 
for example, protect private property rights and consequently incentivize innovation and R&D). 
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We then run simulations of the model in order to study its dynamics in future times, in particular 
we assess the necessary conditions for a smooth transition towards an almost-renewable-only re
gime. We analyze in section 5 the interest of the implementation of a price on the polluting emissions 
of nonrenewable energy in order to smooth the transition towards increasing renewable energy in 
an original simulation setting in which the energy transition has negative impacts on economic 
growth. We conclude our work and discuss some of our hypotheses for further research develop
ments in section 6. 

2. LITERATURE REVIEW

2.1 Biophysical Economics

The possibility that the finiteness of Earth’s resources may limit future economic growth 
was formally addressed by Meadows et al. (1972). First responses to this study concerned meth
odological aspects, which unfortunately rapidly led to a rather unproductive debate. Nevertheless, 
this controversy led neoclassical economists to include a natural resource input in their theoretical 
models. For economic growth to continue forever in a finite physical world, neoclassical authors 
had to postulate in their models that human-made capital would ultimately be a perfect substitute 
for the natural resource input, or that technological change would have to be infinite in the future 
(Solow, 1974; Stiglitz, 1974; Dasgupta and Heal, 1974), or that macroeconomic value added would 
have to become increasingly dematerialized and based on knowledge (Smulders, 1995). These 
responses were clearly not satisfying for biophysical economists who viewed human society as a 
thermodynamic system (Georgescu-Roegen, 1971, 1979; Odum 1971, 1973; Daly, 1977; Cleveland 
et al., 1984), and for whom the capacity of the economy to increase its entropy production towards 
the broader environment is the main mechanism explaining apparent economic growth (Kümmel, 
1989; Ayres, 1998). In other words, biophysical economists state that economic growth is primarily 
determined by the ability of societies to collect high-quality primary energy (defined by a high 
exergy content), convert it in useful energy (in fact exergy in the form of light, heat, motion and 
electricity), and in doing so reject low quality energy (i.e. low exergy/high entropy) in their broader 
environment (Ayres and Warr, 2009; Kümmel, 2011). Indeed, as repeatedly stressed by some authors 
(Ayres and Warr, 2009; Warr and Ayres, 2012), what is commonly called energy in economic studies 
and models is in fact exergy. Exergy is the valuable part or, more formally the potentially useful 
part of energy that can generates actual work,3 it is therefore a measure of the quality of energy. 
As required by the first law of thermodynamics, energy is conserved in the economic process. On 
the other hand, the second law of thermodynamics stipulates that exergy is degraded through the 
functioning of the economic system since it is composed of multiples irreversible processes that 
imply some entropy creation. Energy enters the economy as a high quality (high exergy content) 
input in the forms of fossils fuels, nuclear energy, and concentrated solar energy (biomass and 
water/wind flows). Those energy forms are ultimately dissipated into a lower-quality (lower exergy 
content) heat output that potentially contains zero exergy (and thus zero ability to generate useful 
work) if its temperature is the same as the broader environment. Hence, it is the exergy content of 
energy that constitutes a production factor used up in the economic process and not energy per se. 

3. More precisely it is the maximum work that can be done by a system reversibly approaching thermodynamic equi
librium (Ayres and Warr 2009). 

Copyright © 2018 by the IAEE. All rights reserved. 
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In the remainder of this article we will sometimes stick to the familiar term of energy, even if, 
strictly speaking, we refer to exergy. 

From a more practical point of view, biophysical economists have focused their attention 
on the different energy-return-on-investment (EROI) of energy systems. The EROI is the ratio of 
the quantity of energy delivered by a given process to the quantity of energy consumed (i.e. energy 
invested) in this same process. Hence, the EROI is a measure of the accessibility of a resource, 
meaning that the higher the EROI, the greater the amount of net energy (produced minus invested 
energy) delivered to society (Hall et al., 2014). For biophysical economists it makes no doubt that 
the development of industrial economies has been largely dependent on fossil fuels and in particular 
on their high EROI and consequent capacity to deliver large amounts of net energy to society. 
Despite an important literature, people working on net energy and EROI concepts have never 
developed aggregated models able to assess the impact of the changing energy supply (i.e. energy 
transitions) on the societal EROI and the economic growth dynamics. An exception to this fact is 
the GEMBA model of Dale et al. (2012) that incorporates a dynamic EROI function into an ag
gregated simulation model but without any specification as to agents’ behaviour, and thus it com
pletely differs from neoclassical optimal growth models. 

2.2 Energy Transition in the Neoclassical Framework

On the other hand, several studies have focused on the transition between a nonrenewable 
and a renewable natural resource in a neoclassical analytical framework, but none of them refers 
to biophysical concepts such as exergy and EROI. Some of these studies (Jouvet and Schumacher, 
2011; Hartley et al., 2016) are not able to have a simultaneous use of nonrenewable and renewable 
energy but only successive regimes that use specifically one of these energy forms, which logically 
generates some energy crisis behavior at the time of the abrupt switch. Conversely, the optimal 
growth model of Tahvonen and Salo (2001) is able to represent for an abstract economy a first 
phase of economic development that only rely on renewable energy, a second phase where renew
able and nonrenewable energy are simultaneously used, and a third phase where the share of non
renewable energy decreases because of increasing extraction costs, thus leading to a society that 
relies on renewable energy only. In Tsur and Zemel (2005) the attention is more focused on the 
R&D investments that allow a reduction in the cost of use of a backstop technology, but the broader 
effect of an energy transition on economic growth is not studied. Acemoglu et al. (2012) have 
studied the importance of the substitutability between nonrenewable and renewable inputs in di
recting endogenous technical change, and the influence of the optimal mix of environmental policies 
between carbon tax and R&D subsidy. 

2.3 Bridging a Theoretical Gap

In light of what has been presented so far it is clear that the purpose of the present article 
is to build a bridge between the different literatures related to: the endogenous economic growth 
theory,4 the biophysical economics perspective, and the transition between nonrenewable and re

4. It is worth emphasizing that we do not consider our model to be an acceptable Unified Growth Theory model because 
we do not represent the population dynamics and its relation to human capital formation. One should consider the present 
paper as an effort to properly include energy in a very long-term endogenous economic growth model with the hope of 
producing a satisfactory energy-based unified theory of economic growth in future researches. 

Copyright © 2018 by the IAEE. All rights reserved. 
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newable energy forms. In fact, Fagnart and Germain (2014) have started to bridge this gap (though 
without referring to exergy) in a working paper in which the possibility of a smooth transition from 
nonrenewable to renewable energy and its impact on the EROI and economic growth is studied. In 
this model, uncalibrated simulations can only be done with an initial economy just before the 
nonrenewable energy peak and no production of renewable energy (which is thus not representative 
of reality). Hence, despite its novelty, there is different features of this model that we would like 
to address in the present paper, namely that (i) the nonrenewable energy is extracted without any 
capital requirement and consequently presents an infinite EROI, (ii) the backstop technology has a 
constant capital requirement per unit of energy output, (iii) technological change is bounded but 
completely exogenous, and (iv) the production function in the final good sector is of Leontief type. 
In order to address these particular settings and others mentioned earlier, we provide an endogenous 
economic growth model subject to the physical limits of the real world, meaning that nonrenewable 
and renewable energy production costs have functional forms that respect physical constraints, and 
that technological change is precisely defined as gains in the efficiency of primary-to-useful exergy 
conversion. Our model is consequently able to produce an increasing reliance on nonrenewable 
energy from an initial almost-renewable-only regime, and the subsequent inevitable transition to
wards renewable energy that human will have to deal with in a not-too-far future since nonrenewable 
energy comes by definition from a finite stock. 

3. STRUCTURE OF THE MODEL

3.1 Economic Product Allocation and Profit Maximization of Producers

Economic production allocation between sectors 

At each period t, the representative household receives the entire macroeconomic income 
made of the rents from total capital K loaned at price m and the different profits , , of the P X Wt t t t t 

respective nonrenewable energy (NRE), renewable energy (RE), and final good sectors. This total 
income is logically equal to the macroeconomic product Yt, so 

Y = m K + P + X + W , ∀ t ∈{0, . . . ,T}. (1)t t t t t t 

The capital stock of the economy Kt should not be considered as pure physical capital but rather 
as labor activated effective capital services since we do not represent the population and labor 
dynamics. Labor activated means that the capital services should be understood as the output result 
of the aggregation (in a production function that we do not explicit) of pure physical capital with 
routine labor hours provided by the population. Effective means that the capital services output also 
contain some human capital in the form of skills and hand-eye coordination (to which the recent 
contribution of information and communication technologies should be added). Given that we wish 
to calibrate the model on global historical data for the period 1750–2010, and then pursue simulation 
up to the point where nonrenewable energy is almost not used, we assume for simplicity a unitary 
depreciation rate of capital, implying that the time period tlength between t and t + 1  corresponds to 
the average capital lifetime set to 20 years. As a consequence, it is acceptable to not represent any 
maximization behavior of the intertemporal welfare of the households, and rather to consider that 
the representative household consumes from the macroeconomic output Yt what is left over after 
the investment It has been fulfilled. Hence, with Ct representing the discretionary consumption at 
the macroeconomic level, we have 

Copyright © 2018 by the IAEE. All rights reserved. 
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Y = C  + I ,  ∀ t ∈{0, . . . ,T}. (2)t t t 

This means that the cost of capital services is in fact constant5 and worth m≡ (1 + l)tlength /k, where 
l corresponds to the annual real interest rate of the economy, and k>0 represents the productivity 
of the transformation of investments goods into productive capital. The dynamics of the capital 
investment level is 

Kt + 1It = . (3)
k

Furthermore, equilibrium on the capital market must hold at each time period. Hence, the total 
capital stock of the economy K is the sum of the NRE sector capital Z , the RE sector capital G ,t t t 

and the final good sector Ht. 

Z + G + H , ∀ t ∈{0, . . . ,T }t t t eKt =  (4)
G + H , ∀ t ∈{T +  1, . . . ,T}.t t e 

Where Te is the final time period of nonrenewable energy resource exploitation. 

Profit maximization of NRE producer 

The ultimately recoverable resource (URR) R represents the total amount of accessible 
primary nonrenewable energy in the Earth underground and exploited up to period Te by a repre
sentative price-taking firm. It is assumed that the representative firm does not know R but observe 
that its production cost evolves as the nonrenewable resource is progressively depleted. Extracting 
the annual gross primary nonrenewable energy quantity Rt implies to consume some capital services 
Z . Furthermore, a fraction 0<v <1 of the gross primary production R is self-consumed by the t  NRE  t  

NRE sector. Accordingly, in each period t the NRE producer chooses an amount of capital services 
Z in order to supply the quantity R (1– v ) of available primary nonrenewable energy to the final t  t  NRE  

good sector at the unitary price pt. Hence, the producer solves 

max P = (1  – v )p R  – vZ , ∀ t ∈{0, . . . ,T } (5)t  NRE  t t  t  e  
R ,Zt t  

under constraint, 

1 
Z = (R D  ) ,h with 0<h<1 ∀ t ∈{0, . . . ,T }. (6)t t t e 

Where Dt represents the capital intensiveness of the extraction process (i.e. the capital requirement 
per unit of gross primary NRE output), whose detailed definition is given in section 3.3. 0<h<1 
means that returns to scale are decreasing in the NRE sector. Recalling that tlength is the time period 
length in years between t and t + 1, we have 

5. Introducing the intertemporal welfare optimization behavior of the representative household implies a non-constant 
capital cost. This fact greatly complicates the calibration procedure but given the time frame chosen for the simulation it 
only smoothes the results without changing any of the qualitative outcomes of the model. 

Copyright © 2018 by the IAEE. All rights reserved. 
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Te

∑ tlength Rt ≤ R, ∀ t ∈{0, . . . ,Te}, (7) 
t = 0  

and, 

lim Rt = 0. (8) 
Te r + ∞

After the insertion of (6) into (5), the first order condition with respect to Rt gives 

h

p (1– v )h 1– ht  NRE  Rt = 1 , ∀ t ∈{0, . . . ,Te}. (9) D v  
h

t 

Profit maximization of RE producer 

We suppose that a very large (and never binding) flow of renewable primary energy (ag
gregation of solar radiant energy, geothermal, wave, and tidal energies) is accessible to the economy 
and that a price-taking representative firm is in charge of its exploitation. In order to capture the 
annual gross primary renewable energy flow Ft some capital Gt is obviously necessary and a fraction 
vRE of the gross energy output is self-consumed. Thus, in each period t, the RE producer maximizes 
its profit X and consequently chooses a capital stock G in order to deliver the flow Ft(1– v ) oft  t RE  

available primary renewable energy sold at the unitary price pt by solving 

max X = (1  – v )p F  – vG , ∀ t ∈{0, . . . ,T} (10)t  RE  t t  t  
Ft,Gt 

under constraint, 

G = (F B  ) ,
1 
γ with 0<γ<1 ∀ t ∈{0, . . . ,T} (11)t t t 

Where Bt represents the capital intensiveness of the RE producer (i.e. the capital requirement per 
unit of RE output), whose detailed definition is given in section 3.3. The fact that 0<γ<1 means 
that returns to scale are decreasing and that consequently the capital intensiveness of the RE firm 
increases with the production level.6 Once (11) is injected into (10), the first order condition with 
respect to Ft leads to, 

γ

pt(1– vRE  )γ 1– γ
F = 1 , ∀ t ∈{0, . . . ,T}. (12) 

γ
t  B v  

t 

6. Dale et al. (2011) used two databases of the National Renewable Energy Laboratory (NREL, 2010a, 2010b) to 
demonstrate that the frequency of wind and solar power sites in the USA is an inverse function of their productive potential, 
meaning that over time the availability of optimal sites will decrease. In the same view, Honnery and Moriarty (2009), and 
Hoogwijk et al. (2004) have shown that as wind energy production increases, the marginal capacity factor of wind turbines 
decreases. 

Copyright © 2018 by the IAEE. All rights reserved. 
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Profit maximization of final good producer 

The total primary energy Et available to the final good sector is: 

R (1– v ) +  F (1– v ), ∀ t ∈{0, . . . ,T }t  NRE  t  RE  eEt = (13)
F (1– v ), ∀ t ∈{T +  1, . . . ,T}.t RE  e  

This available primary energy Et is combined with capital services Ht in a Cobb-Douglas production 
function in order to produce the final output good Yt representing the macroeconomic product. The 
formulation of a production function must be independent of the choice of units, hence we introduce 

Y A E Ht t t tthe dimensionless variables y ≡ , a ≡ , e ≡ , and, h ≡ , where , , , and Y A E  H  are given t t t t 0 0 0 0Y A E H0 0 0 0 

quantities in the initial reference period. Hence, 

α 1– αy[a,e,h] = (a e  ) h , ∀ t ∈{0, . . . ,T}. (14)t t t t 

and, 

Y = y[a,e,h] Y , ∀ t ∈{0, . . . ,T}. (15)t t 0 

The output elasticities of useful energy and capital services inputs are constant and respectively 
represented by α and 1– α. We follow Ayres and War (2009) and other authors such as Cleveland 
et al. (1984) who have earlier emphasized that the aggregate technology level At of the economy 
is formally represented by the efficiency with which primary exergy contained in fossil fuels and 
renewable energy flows is converted into useful exergy services in the forms of light, heat, elec
tricity, and mechanical drive (i.e. motion). Hence, technological change corresponds to gains in the 
efficiency of primary-to-useful exergy conversion (i.e. increases of At). Formally, the primary-to
useful exergy conversion efficiency At is the product of: (i) the primary-to-final efficiency with 
which primary exergy contained in fossil fuels and the solar flow is converted in final exergy in 
the forms of carriers such as liquid fuels (e.g. gasoline), compressed gas, electricity and high-
temperature heat; with (ii) the final-to-useful efficiency with which exergy contained in these final 
forms is converted into useful exergy services in the forms of light, heat, electricity services and 
mechanical drive. Hence, A E represents the useful exergy7 provided in the forms of light, heat, t t  

electricity services and mechanical drive to the real economy. Of course, another part of the im
provement of economic productivity comes from the division and organization of labor, the en
hancements of laborer skills, the beneficial effects of inclusive institutions (which, for example, 
protect private property rights and consequently incentivize innovation and R&D), and the recent 
contribution of information and communication technologies. Such attributes are embedded in the 
labor activated effective capital services Ht , whose optimal value is found by considering the final 
good price as the numeraire, and that the representative firm in the final good sector seeks to solve: 

7. The term “useful work” is also used in the literature (see Ayres and Warr, 2009; Warr et al., 2010; Warr and Ayres, 
2012). 
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max W = Y – p E  – vH , ∀ t ∈{0, . . . ,T}, (16)t t t t t 
Et,Ht 

under constraint (14) and (15). The resolution of this problem implies to combine the first order 
conditions with respect to Et and Ht in order to find: 

1– α ptHt = Et, ∀ t ∈{0, . . . ,T}. (17)
α v 

Combining (17) with (14)–(15) in the first order condition with respect to Et gives (after mathe
matical arrangements): 

1α 1– α αY A H  0 t 0 1– α
p = α ( ) ( ) , ∀ t ∈{0, . . . ,T}. (18)t H A E  αv0 0 0 

For the clarity of the following of the presentation let us define now the saving rate of the economy 
S as the ratio of investment I to the macroeconomic product Y :t t t 

ItSt = ,  ∀ t ∈{0, . . . ,T}. (19)
Yt 

3.2 Endogenous Technological Change

The aggregate technological level At is necessarily bounded from above by a strictly posi
tive constant A representing the maximum efficiency of primary-to-useful exergy conversion that 
the economy will ultimately reach in the future. This positive upper bound is strictly inferior to one 
since the second law of thermodynamics imposes that perfect (i.e. 100%) efficiency of primary-to
useful exergy conversion is impossible.8 This uncertain parameter (for which we test several values 
in section 4) is taken as exogenous. The technological level increases over time at speed nt and at 
some point (when the maximum limit A is close) the incremental gains in At are so small that the 
dynamic system describing the economy is in a quasi-steady state. Hence, with tDA max as the par

t 

ticular time at which the growth rate of the technological level (i.e. the technological change) is 
maximum, we define the law of motion of At as 

A – A 
At = A + , ∀ t ∈{0, . . . ,T}. (20)

1 + exp( – n (t – t ))t DA maxt 

8. Ayres and Warr (2009, p.52–53) highlight that technological change at the macro level is ultimately defined by the 
limiting efficiency of all metallurgical, chemical and electronic processes at micro levels, which in turn depends essentially 
on the properties of structural materials. Indeed, some technologies, such as prime movers and many metallurgical reduction 
and synthesis processes, depend on the temperatures, and in some cases, pressures, achievable in a confined space. These 
are limited by the strength and corrosion resistance (chemical inertness) of structural materials at elevated temperatures. In 
the same way, turbines efficiencies also depend on the precision with which blades, piston rings, gears and bearings can be 
manufactured, which depends in turn on the properties of materials being shaped and the properties of the ultra-hard materials 
used in the cutting and shaping of tools. 

Copyright © 2018 by the IAEE. All rights reserved. 
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Furthermore, we suppose that the speed of convergence nt between the initial technological 
level A and its asymptotic value A (verifying 0<A<A) depends on the variation of the knowledge 
stock of the economy. This (potentially infinite) knowledge stock (that we do not represent) depends 
on the effort deployed in the R&D sector in previous periods that itself follows the saving rate of 
the economy (i.e. the level of investment compared to the level of economic production) of these 
same previous periods. In addition, the more recent the saving rate, the higher its influence on nt. 
Hence, we define the speed of convergence nt of the technological level as the first order exponential 
smooth of the saving rate of the economy during the N previous periods (where N is defined through 
calibration). With σ as the share of the macroeconomic investment going to R&D, we have 

σS0 for t = 0  

nt = 2 2 (21)
σ ( )St 1 + 1( – )nt –1 , ∀ t ∈{1, . . . ,T}.

N + 1  – N + 1  

This formulation of the technological level insures that in our model both technological change and 
economic growth are endogenous. 

3.3 Unitary Capital Requirements

Unitary capital requirement in NRE sector 

An accurate formulation of the nonrenewable capital cost Dt should, to our mind, neces
sarily reproduce three facts: (i) the cost associated with nonrenewable energy extraction must nec
essarily increase with cumulative production, this is because easier-to-exploit resources are used up 
first before attention turns to deeper and more remote resources (see Murphy and Hall (2011) for 
a graphic representation of this fact in the case of oil production);9 (ii) the initial unitary cost of 
NRE production was above the RE production cost before the nineteenth century, this is necessary 
to explain that despite being known since antiquity, coal was not produced on an industrial scale 
before wood charcoal became scarce and expensive in England in the late eighteenth century; (iii) 
learning processes and R&D have so far allowed a decrease of the NRE production cost. Since we 
did not find in the literature a formulation that would suit these three prerequisites, the NRE unitary 
capital requirement proposed in this model is (to the best of our knowledge) unique to the present 
article. 

The capital requirement per output unit of nonrenewable energy, Dt, is composed of two 
parts as defined in equation (22) and shown in Figure 1. The first part increases through the ex
traction process because of the quality depletion of the NRE resource, and the second part decreases 
through time thanks to learning and R&D processes. Hence, the first term depends on the ratio of 
nonrenewable resource depletion ϕt, varying between 0 when the nonrenewable energy resource is 
still virgin and 1 when it is fully depleted. The second term depends on the ratio of technological 
level advancement, varying between 0 when the aggregate technological level equals its lower 
bound A and 1 when the aggregate technological level equals its upper bound A. The idea behind 
this relation is that even though we do not explicitly represent the specific R&D of the energy 
sector, we can fairly assume that the different sectors of the economy evolve with technological 

9. The rational tendency of humans to first use easier-to-exploit high quality resources before turning towards harder-
to-exploit lower quality resources is commonly known as the “Best First Principle” (Hall and Klitgaard, 2012). 
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Figure 1: Capital Cost per Output Unit of Nonrenewable Energy. This Example is
Obtained with D0 = 0.3, D̃ = 0.2, x1 = 5, x2 = 0.5, and d = 4

consistency.10 Hence, even if from a formal point of view At represents the efficiency of primary
to-useful exergy conversion in the final good sector, we postulate that this variable, after being 
normalized between 0 and 1, is a proxy of the technological level of the energy sector. With D0 as 
the initial capital cost per NRE output unit, D̃ as the maximum capital cost reduction thanks to 
learning and R&D processes, and d as a constant parameter representing the rate of quality degra
dation of the NRE resource, we can define Dt as 

A – A x2 

dϕ x1 ˜ tD (ϕ ,A ) =  D exp  t – D( ) , ∀ t ∈{0, . . . ,T }. (22)t t t 0 eA – A 

Where x1 and x2 are positive constants determined when calibrating the model on historical global 
data in section 4. The exploited resource ratio ϕt is defined as 

t –1
tlength∑i = 0Riϕt = 

R
∈[0,1], ∀ t ∈{0, . . . ,Te}. (23) 

Unitary capital requirement in RE sector 

To be accurate, the capital requirement per renewable energy output unit, Bt, should be 
represented by a decreasing function since, over time, less capital is necessary to capture the same 
amount of primary renewable energy thanks to learning processes and R&D. Furthermore, as for 
the NRE sector, we postulate that the RE sector is technologically consistent with the rest of the 

10. Of course, some sectors might have faster technological improvements than others, and that is particularly true 
regarding the distinction we make between the two primary energy-producing sectors on the one hand, and the final good 
energy-consuming sector on the other. Nevertheless, we think that in average such sectoral discrepancies in technological 
levels cannot last more than a few decades. Indeed, on a larger time horizon, technological level gaps between sectors would 
imply investment opportunities and subsequent reallocation of financial capital and hence R&D. Considering that our time 
step is twenty years, we think that postulating a technological consistency between the different sectors of our model is 
rather justified. 
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economy, so that B is a function of A . The sigmoid decreasing function B (A ) describing the t t t t 

capital cost per unit of renewable energy output starts at value B and decreases at a constant speed 
s>0 to a strictly positive bound B since the production of any RE flow would always require a 
minimum quantity of capital: 

B – B 
Bt(At) =  B – , ∀ t ∈{0, . . . ,T}. (24)

1 + exp( – s(A – A ))t DB maxt 

Where A is the particular technological level at which the function B presents an inflexion DB max  tt 

point (i.e. the rate of degrowth of B is maximum when A = A ). In addition, we suppose that t t DB maxt 

the final unitary cost of renewable energy production B also depends on the final technological 
level A of the final good sector. Precisely, the higher the ratio of ultimate technological level gain 
A/A, the lower the final unitary cost of RE production B should be compared to its initial value B. 
Hence, with g as a parameter found through calibration to historical data (see section 4), we suppose 

B 
B = , with 0<g<1. (25)

g(A/A) 

3.4 EROI of Energy Sectors

In order to define the energy-return-on-investment (EROI) of the two energy sectors, we 
need to breakdown the saving rate St in three parts SH,t, SZ,t, SG,t defined respectively as the fraction 
of the economic output of period t invested in period t + 1  in the final good sector, NRE sector, and 
RE sector respectively: 

H Z Gt + 1  t + 1  t + 1St = SH,t + SZ,t + SG,t, with S H,t = , SZ,t = , and SG,t = . (26)
kY kY kYt t t 

According to Hall et al. (2014), the EROI is “the ratio between the energy delivered by a particular 
fuel to society and the energy invested in the capture and delivery of this energy”. King et al. (2015) 
point out that this definition is rather loose and that a clear distinction should be made between 
yearly power return ratios (PRRs) of annual energy flows and energy return ratios (ERRs) of full 
life cycle energy systems (i.e. cumulated energy production divided by total energy invested) which 
more formally represent EROIs. Understandably, energy return ratios represent integrals of power 
return ratios over the entire life cycle of the energy system under consideration. Recalling that in 
our theoretical model defined in discrete times, the time length between two consecutive periods 
equals the capital services lifetime, PRRs and ERRs are exactly the same in our particular theoretical 
setting. Furthermore, PRRs and ERRs can differ regarding the system boundary of their energy 
output (numerator) and energy input (denominator). We will consider as energy outputs the pro
duction levels of gross primary energy Rt or Ft in the NRE or RE cases respectively. The invested 
energy takes usually two forms: direct energy inputs in the form of self-consumption and external 
energy investments (generally as final carriers like electricity or liquid fuels), and indirect inputs 
energy embodied in capital and services. Since the energy sectors of the model represent upstream 
sectors producing primary energy, and considering that we do not represent downstream sectors 
that convert primary energy in final forms, the direct energy inputs of the two primary energy 
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producing sectors are only represented by their respective self-consumptions. In order to calculate 
the indirect energy investments embodied in capital services, let us consider the example of the 
nonrenewable sector in which the production of the gross primary energy output Rt requires the 
capital stock level Zt that comes from the fraction SZ,t – 1 of economic output Yt – 1. Since the pro
duction of Y has required the consumption of the primary energy E , it follows that the quantity t –1 t –1 

of indirect energy embodied in the NRE sector capital services used in period t is SZ,t –1Et – 1. Finally, 
given all previous precisions and referring to King et al. (2015) definitions, the EROI (a denomi
nation we keep for convenience) we compute is formally a gross power ratio that due to our discrete 
time setting equals its integral over time (i.e. gross energy ratio ). For the NRE sector, the 
EROINRE,t is defined as: 

RtEROINRE,t = . (27)
R v + S Et NRE  Z,t –1 t –1 

Similarly, the EROIRE,t of the RE production in period t is: 

FtEROIRE,t = . (28)
F v + S Et RE  G,t –1 t –1 

Finally, it is possible to define the EROI of the whole primary energy sector since delivering the 
total gross primary energy Rt + Ft to the final sector has directly required the self-consumption 
R v and F v , and indirectly required the embodied energy S E + S E . Thus globt NRE  t RE  Z,t –1 t –1 G,t –1 t –1 

ally, the EROIt of the entire energy sector in period t is: 

Rt + FtEROIt = . (29)
R v + F v + (S + S )Et NRE  t RE  Z,t –1 G,t –1 t –1 

Due to the highly nonlinear formulation of our model, studying its potential analytical 
solution would prove to be rather difficult if not impossible. Thus, it is preferable to study its 
dynamics through simulation. In the coming section 4, the model is calibrated on global historical 
data in order to reproduce the last two hundred and sixty-five years or so in terms of energy supply, 
technological improvement, and gross world product (GWP). We also study in this section the 
future transition towards complete renewable energy, which the global economy will have to ac
complish because of the finite nature of fossil fuels and nuclear energy, and we assess in which 
circumstances this transition could have negative impacts on the GWP pattern. 

4. CALIBRATION AND SIMULATION OF THE MODEL

4.1 Global Historical Data, Parameters, and Scenarios

Global historical data 

Four time series are used to calibrate the model on global historical data: nonrenewable 
primary exergy production, renewable primary exergy production, efficiency of primary-to-useful 
exergy conversion, and GWP. Since the time period tlength between t and t + 1  corresponds to the 
average capital lifetime set to twenty years, our data time series consist of fourteen discrete points 
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from 1750 ( t = 0) to 2010 ( t = 13  ). Of course, the different references used to retrieve global his
torical data do not always propose values for the specific year we need. Hence, the 20-years interval 
estimations of global historical data reported in Table A1 of the Appendix are rounded up values 
(comparison with original data of respective references are provided in Figure A1 of the Appendix). 

To suit the model structure we have aggregated in a single NRE production the different 
historical data for global primary production of coal, oil, gas, and nuclear energy. Following Küm
mel (2011) we made the assumption that these primary energy forms expressed in exajoule per year 
(EJ/yr) represent 100% exergy. Energy production values have been retrieved through the online 
data portal of The Shift Project (2015), which is built on the original work of Etemad and Luciani 
(1991) for the 1900–1980 time period and EIA (2014) for 1981–2010. Prior to 1900, we have 
completed the different fossil fuel time series with the original 5-years interval data of Etemad and 
Luciani (1991) and filled the gaps using linear interpolation. In the same way, the historical global 
primary production of biomass energy (woodfuel and crop residues11) from Fernandes et al. (2007) 
and Smil (2010) were aggregated with the historical global renewable energy production of The 
Shift Project (2015) for hydro, wind, solar, geothermal, wastes, ocean (wave, tidal, OTEC), and 
modern biofuels into a single primary renewable energy production expressed in EJ/yr. 

We give in Table A1 an estimation of the efficiency of primary-to-useful exergy conversion 
from 1750 to 2010 at global scale. It is important to emphasize that this estimate does not come 
from any calculation but only represents a best guess after considering the work of Warr et al. 
(2010) who have estimated the efficiency of primary-to-useful exergy conversion for the US, the 
UK, Japan, and Austria from 1900 to 2000 as shown in Figure A1b. 

Regarding the gross world product (GWP) expressed in Billion 1990 International Geary– 
Khamis dollar,12 we use the data of Maddison (2007) from 1750 to 1949 and the GWP per capita 
of The Maddison Project (2013) multiplied by the United Nations (2015) estimates of global popu
lation from 1950 to 2010. 

Parameters and scenarios 

All simulations are performed up to the time horizon T = 25  corresponding to the year 
2250. The initial technological level is logically set to A0 = A = 0.025 and we can also define Y0 = 
435 Billion G-K. $1990 from Table A1. Parameters v and v are arbitrarily set equal to 0.01 NRE RE 

because with have no reliable data to choose otherwise. All other parameters values synthesized 
for clarity in Table A2 of the Appendix are necessarily found through the calibration of the model 
to historical data. We have performed such procedures with two prerogatives: (i) the calibration 
must remain robust under the different scenarios that are tested; (ii) the scenarios must differ by 
the least possible number of differences in parameter values. Logically we found that the main 
determinant of a given scenario is the ultimate value A towards which technological level At con
verges. As shown in Figure A1b of the Appendix it can be fairly assessed that the global techno
logical level At has evolved from 0.025 in 1750 to 0.125 in 2010. Since the maximum attainability 
of the efficiency of primary-to-useful exergy conversion is necessarily below 1, we have tested 

11. Formally, food provided to laborers and fodder supplied to draft animals should be added to traditional biomass 
energy estimates, but it is generally discarded due to difficulties of estimation. This is also the case for traditional windmills 
and water wheels. 

12. The 1990 International Geary–Khamis dollar (Int. G-K. $1990), more commonly known as the international dollar, 
is a standardized and fictive unit of currency that has the same purchasing power parity as the U.S. dollar had in the United 
States in 1990. 
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Table 1: Specific Parameters Values of Low, Medium, High, and Extra-High Scenarios

Parameter Definition (unit) Low Medium High Extra-High 

A Final technological level of the economy, i.e. final efficiency 
of primary-to-useful exergy conversion in the final good 
sector (dmnl). 

tDA max Time of maximum technological change (model time period/ 
t 

actual year). 
D Maximum capital cost reduction per unit of nonrenewable ˜ 

energy thanks to learning processes and R&D (B$/EJ). 

0.25 0.35 0.45 0.65 

13.35 14.45 15.15 16.0 
(2017) (2039) (2053) (2070) 
6.180 6.295 6.365 6.458 

several values between 0.15 and 0.95 and decided to present the results for four scenarios, respec
tively described by the following A values: 0.25, 0.35, 0.45 and 0.65. Once A is defined, we found 
that in order to respect the objectives (i) and (ii) previously cited, only two additional parameters 

˜needed to be tuned, namely D and tDA max. Hence, the four different scenarios, called Low, Medium,
t 

High, and Extra-High, are exactly determined by their common parameters synthetized in Table 
A2, and their specific parameters presented in Table 1. 

One important parameter of the model merits specific attention: the ultimately recoverable 
resource (URR)13 of nonrenewable energy, R. This parameter represents the total amount of non
renewable energy that may be recovered at positive net energy yield, i.e. at EROI greater or equal 
to unity. A literature review led to the choice of McGlade and Ekins (2015) estimations for coal, 
oil, and gas URR, and the IIASA (2012) estimate for uranium URR. As reported in Table A3 of 
the Appendix, the conversion in exajoule (EJ) and aggregation of these different estimates yields a 
global nonrenewable URR estimate R = 175,500 EJ. Contrary to what one might think, sensitivity 
analyses of the model to this parameter (not presented in the paper for the sack of brevity) have 
shown a great robustness of its qualitative results. Changing the value of R does not change the 
dynamics of the model because it is necessarily balanced by a change in other parameter values (in 
particular D , x , and x ) in order for the calibration to the historical data to remain valid. 0 1 2 

4.2 Simulation Results

Figure 2 summarizes the simulation results of the most interesting variables of the model 
(primary energy productions, technological change, and GWP) for the entire 1750–2250 time frame. 
Figure A2 of the Appendix shows the same data on the restricted 1750–2010 time frame in order 
to better observe the calibration adequacy of the model to historical data. 

Calibration results 

Figure A2 of the Appendix shows that the global historical patterns of nonrenewable and 
energy productions (A2ab), technological change (A2c), and GWP (A2d) are acceptably reproduced 

13. According to British Petroleum (2015): the “URR is an estimate of the total amount of a given resource that will 
ever be recovered and produced. It is a subjective estimate in the face of only partial information. Whilst some consider 
URR to be fixed by geology and the laws of physics, in practice estimates of URR continue to be increased as knowledge 
grows, technology advances and economics change. The ultimately recoverable resource is typically broken down into three 
main categories: cumulative production, discovered reserves and undiscovered resource.” On the other hand, Sorrell et al. 
(2010) highlight that unlike reserves, URR estimates are not dependent on technology assumptions and thus should only 
be determined by geologic hypotheses. Unfortunately, this apparent contradiction of the URR definition is only a tiny 
example of the fuzziness of points of view that one could find in the literature regarding the different notions of nonrenewable 
resources and reserves. 
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Figure 2: Historical vs. Simulated Data, 1750–2250: (a) Primary Nonrenewable Energy
Production, (b) Primary Renewable Energy Production, (c) Global Efficiency of
Primary-to-useful Exergy Conversion, (d) Gross World Product

by the model. The model calibration is particularly good for past global efficiency of primary-to
useful exergy conversion and for past GWP. Regarding nonrenewable energy, the model slightly 
overestimates the historical global trend up to 1950. Concerning the global production of renewable 
energy (for which data uncertainty is higher than for nonrenewable energy), we have not been able 
to reproduce the nearly stagnant trend between 1750 and 1910 as the model is only capable of 
producing continuously increasing dynamics for this variable. 

Prospective results 

When the model is simulated up to 2250, differences between scenarios clearly appear. 
Obviously, this is visible in Figure 2c where the simulated values of the global efficiency of primary
to-useful exergy conversion are presented for the four scenarios. As formalized in the model, the 
technological change dynamics directly influence the nonrenewable and renewable energy produc
tions paths respectively presented in Figure 2a and 2b for the four scenarios. Concerning nonre
newable energy, the higher the final technological level, the higher the value of the production peak, 
and possibly the higher the time of that peak (2050 for the Low and Medium scenarios, 2070 for 
the High and Extra-high scenarios). Regarding the renewable energy production, its final value is 
obviously higher if the final technological level is higher. As can be seen in Figure 2d where the 
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GWP is expressed on a log scale for convenience, the energy supply dynamics has a great impact 
on the economic production. The final level of renewable energy production primarily determines 
the final GWP level, but more interestingly the combined dynamics of the nonrenewable and re
newable energy productions, i.e. the time path of the energy transition, determine the more or less 
smoothed course of the GWP. More precisely, if the nonrenewable energy peak is too high compared 
to the final combination of renewable production and technological level (as in the Low and Medium 
scenarios), the GWP can peak and then decrease before stabilizing (the log scale of Figure 2d hide 
this important result of the model, which is more visible in the Figure 5 d1/d2 of section 5). 

It is important to be clear here: the negative GWP patterns (overshoot before degrowth) 
of the Low and Medium scenarios do not arise solely because their final technological levels A 
(respectively at 0.25 and 0.35) are too low in absolute terms. Rather, the negative impact of the 
energy transition on economic growth is due in our model to the final value of the technological 
level and the way this variable influence the production cost of the two energy forms. Recall that 
this link between the technological level At of the final good sector and the production costs 
D (A ,ϕ ) and B (A ), of the nonrenewable and renewable energy sectors respectively, was estabt t t t t 

lished to ensure a technological consistency across all sectors of the model. No matter how one 
would like to change in the parameter values of the model, the negative impact of the energy 
transition on economic growth observed for the Low and Medium scenarios is unavoidable. In the 
coming section 5 we discuss different strategies that can help smoothing the GWP dynamics in 
scenarios that use the Low scenario settings in terms of parameter values. Before turning to this 
section, it is worth analyzing the dynamics of the EROI of the nonrenewable and renewable energy 
productions since, apart from Fagnart and Germain (2014), our model is the first to introduce these 
crucial variables in a neoclassical framework. 

EROI of energy sectors 

When computing the EROIs of nonrenewable and renewable energy production, we found 
quite strange results in light of the EROI literature. Raising these issues is important in order to 
indicate the features of our model that should deserve particular attention in order to be improved 
in future research. First, within a given scenario and a given time period, EROIs of nonrenewable 
and renewable energy productions have exactly the same value, i.e. EROINRE,t = EROIRE,t = 
EROIt. This outcome comes from two particular features of our model: (i) NRE and RE productions 
are perfect substitutes since they are sold at the same price, (ii) both productions have the same 
level of self-consumption since we have assumed v = v . The first hypothesis is a modeling NRE RE 

choice (and we think that including two different prices would not be as simple as one might think 
because the model would need further complexification in order to remain closed), the second 
hypothesis is due to the absence of reliable data and therefore the option to choose otherwise. 

Second, as shown in Figure 3, the EROIs of the economy have relatively low and restricted 
values (always between 4.1 and 5.8). These low values of the simulated EROIs might surprise 
people accustomed to the EROI literature. Indeed, generally accepted orders of magnitude of EROI 
are around 8–10 for traditional biomass energy (woodfuel, crop residues), 1–2 for modern biofuels, 
4–20 for modern renewables (wind, solar, etc.), 10–40 for conventional oil, 40–60 for gas, and 60– 
100 for coal (Hall et al., 2014). These estimates generally include direct energy consumption in the 
form of final energy (electricity, liquid fuels, etc.) and indirect energy embodied in physical capital. 
One should not forget that in our model, the quantity of capital services Zt and Gt formally represent 
labor activated effective capital services or, in other words, the aggregated output of physical capital, 
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Figure 3: EROI of the Global Economy, 1770–2250

routine labor and human capital.14 Hence, in our model the denominator of the EROI not only 
includes the energy embodied in physical capital formation but also the energy necessary to sustain 
labor (i.e. to provide, at a minimum, food and shelter to workers), and to support their skills 
development. As a consequence, the resulting EROIs of the model represent full lifecycle energy 
ratios of primary energy production and are thus necessarily quite low compared to conventional 
values found in the literature that do not take into account such an extended input boundary. 

Third, the simulated EROIs have clear U-shapes over the entire time frame, whereas the 
EROI theoretical model of Dale et al. (2011) suggest just the opposite. We interpret those U-shapes 
as the mark of the technological influence in the final good sector. Once the technological level 
At takes off, producing the final output good Yt require less and less primary energy, in other words, 
the energy embodied in capital services decreases. Hence, even if the capital intensiveness of both 
energy-producing sectors increases due to decreasing marginal returns, their EROI increase after 
reaching a minimum because the energy embodied in each unit of capital decreases. Logically, 
when the technological level At approaches its asymptotic maximal value, the EROI stabilizes. In 
order to correct this unrealistic feature of our model, it would be necessary to add another sector 
and to make a clear distinction between the production of an intermediary capital product and the 
final good product. 

Now that the model results have been analyzed, we can turn our attention on the strategies 
to avoid the unanticipated nonrenewable energy peak and associated renewable energy supply delay, 
which cause an overshoot and then degrowth of the economic production in the Low and Medium 
scenarios. At first approximation, this energy lock-in which generates this unfortunate GWP dy
namics can be thought of as a failure of the price system to incentive early renewable energy 
production. 

5. DISCUSSION ON THE IMPLEMENTATION OF A CARBON PRICE

We consider that the final technological level A of the economy, by far the most important 
parameter determining the dynamics of the model, can hardly be changed endogenously by a given 

14. The fact that capital services , , and H represent far more than just physical capital also logically translate in Z Gt t t 

the values of the saving rate St varying between 0.5 and 0.8 for all scenarios, which is indeed pretty high compared to real 
global saving rates of about 0.22–0.24 (World Bank, 2016). 
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policy action. This asymptotic value A cannot be known a priori but only a posteriori once ther
modynamic limits are reached for all the different energy-using devices of the economy, including 
the ones that have yet to be invented. But the intuition we want to test is that even if this parameter 
is primordial for determining the ultimate state of the economic system, there must be ways to 
change the trajectory that leads to this deterministic end. This point is especially important if this 
path is believed to generate welfare losses because of the (imposed and not chosen) economic 
degrowth as in the Low and Medium scenarios. In other words, the policy actions that must be 
investigated are the ones that help avoid as much as possible the lock-in phenomenon described 
previously that is characteristic of both the real world and our model: the tendency of the economic 
system to stay accustomed to fossil fuels without anticipating their inevitable supply peak and 
decline, and the need associated to an early increase of the renewable energy production. Starting 
from a Low scenario setting in terms of parameter values, the strategy we propose to avoid its 
adverse outcome (GWP peak followed by a degrowth phase) is to implement a tax on the nonre
newable energy production and to use the income revenue from this tax to direct the energy tran
sition dynamics and smooth its negative impact on GWP. Such a tax could be indexed to the 
polluting potential of the fossil energy and more precisely to its greenhouse gases (GHG) content 
(abstracting from the fact that the nonrenewable resource of the model also contain some GHG-
free uranium energy). 

Hence, in our model the price that we will exogenously impose on the NRE production 
could clearly be seen as a carbon price/tax. It is important to understand that the income from the 
carbon pricing can be used in three different ways that can be combined in various proportions to 
generate many different policy mixes. Indeed, the annual income from the carbon tax could be used 
to: (i) subsidize the general R&D sector of the economy in order to accelerate the convergence of 
At towards A; (ii) subsidize the R&D that is specific to the RE sector in order to accelerate the 
decrease of Bt towards B; or (iii) subsidize a direct increase in the capital investment Gt in the RE 
sector. In the following of this section we will first present the different equation changes resulting 
from the implementation of the carbon price. Then, the specific mathematical formalization of the 
uses of the carbon tax income will be successively presented. Finally, we will propose four policy 
mix scenarios and compare the results of their simulations. 

5.1 Common Equation Changes Due to the Carbon Price Implementation

Let us define qt as the unitary carbon price at period t (i.e. the carbon price per unit of 
pollution, hence expressed in $/tCO2eq, or B$/GtCO2eq in order to be consistent with the previous 
sections). This carbon price is zero prior to the time period tq start  in which it is implemented, and 
it evolves towards the maximum unitary carbon tax value q̄ at exogenous speed q following a 
sigmoid increasing form (Figure 4). The maximum growth rate of the unitary carbon tax occurs 
when t = tq start  + tq lag  , so finally: 

q̄ 
q = , ∀ t ≥ t (30)t  q  start.1 + exp( – q(t – tq start  – tq lag  )) 

Since the NRE producer has to pay the price qt for every unit of pollution (B$/GtCO2eq), he has 
to pay the amount qtj per unit of nonrenewable energy produced (B$/EJ), with j representing the 
GHG emission factor of nonrenewable energy (expressed in GtCO2eq/EJ). Hence, we deduce that 
the annual carbon tax income Qt is defined by: 
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Figure 4: Profiles of the Two Possible Carbon Prices q and q', 2010–2250

Q = R qt j, ∀ t ≥ tq (31)t  t  start. 

Implementing the carbon price also logically changes the equations relative to the NRE producer 
behavior. More precisely, the implementation of the carbon price leads to the replacement of equa
tions (5) and (9) with (32) and (33). 

maxP = (1  – vNRE  )(p – qtj)Rt – vZt, ∀ t ∈{0, . . . ,T } (32)t t e 
R ,Zt t  

h

(1– v )(p – q j)h 1– hNRE t tRt = , ∀ t ∈{0, . . . ,Te} (33)1

D vh
t 

In addition to the equation changes that concern the NRE producer previously presented, some 
equation changes will also be specific to each way of using the carbon tax income Qt. 

5.2 Specific Equations Change due to Particular Use of the Carbon Tax Income

Since we have potentially three simultaneous ways to use the carbon tax income, each 
option represents a share β , i ∈[1,2,3] of the total carbon tax income, with β + β + β = 1.i 1 2 3 

Option (i): carbon price income used to subsidize the general R&D sector 

A first option is to allocate the carbon tax income to the general R&D sector in order to 
increase the growth rate nt of the technological level. Doing so has a direct effect on the GWP 
through (14), and an indirect effect through the impact on the nonrenewable and renewable energy 
production dynamics with (18), (22), and (24). In order to formalize the use of the income from 
the carbon tax to subsidize the general R&D sector, we have to replace equation (21) defining the 
speed of convergence nt of the aggregate technological level with the following equation (34): 

σS + β e Q  for  t  = 00 1 1 t –1 

nt = 2 2 (34)
σ ( )S – + 1( – )n –1 + β e1Q – , ∀ t ∈{1, . . . ,T}.t 1 t 1 t 1N + 1  N + 1  
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Where e1 measures the efficiency with which the general R&D sector uses the carbon tax income 
to produce innovations that materialize in the form of nt increases. The functional form given in 
(34) insures that the higher the carbon tax income of period t –1 and the higher the share β1 of this 
income dedicated to the general R&D sector, the faster the technological level will converge towards 
its upper bound A. 

Option (ii): carbon price income used to subsidize the specific R&D of the RE sector 

A second way to use the income from the carbon tax is to allocate it to the R&D that is 
specifically dedicated to the renewable energy sector. Doing so should affect the rate of degrowth 
of the unitary capital cost of RE production Bt towards its lower bound B. An appropriate way to 
formalize this is to replace (24) with the following (35): 

B – B 
Bt(At) =  B – , ∀ t ∈{0, . . . ,T}. (35)

1 + exp( – (s + β e Q )(A – A )2 2  t –1 t DB maxt 

Where e2 measures the efficiency with which the specific R&D of the RE sector uses the carbon 
tax income to produce innovations that materialize in the form of RE production cost decreases. 
The functional form given in (35) insures that the higher the carbon tax income of period t –1 and 
the higher the share β2 of this income dedicated to the specific R&D of the RE sector, the faster 
the unitary capital cost of RE production will converge towards its lower limit B. 

Option (iii): carbon price income used as a direct capital investment in the RE sector 

The third option for using the income from the carbon tax consists of a direct subsidy to 
the renewable energy sector in order to increase the amount of available energy-capturing capital. 
This should be seen as the capacity of the RE producer to install an additional amount of physical 
capital and hire workers thanks to a subsidy from the carbon tax income of the previous period. To 
formalize this effect we propose to replace (11) with the following equation: 

1 
γG = (F Bt) +  β3 3e Q 1, ∀ t ∈{0, . . . ,T} (36)t t t – 

Where e3 measures the efficiency with which the RE sector uses the subsidy that is received in the 
previous period to build new capital and hire additional workers in the RE sector. The functional 
form given in (36) insures that the higher the carbon tax income of period t – 1 and the higher the 
share β3, the higher the additional renewable energy produced in period t. 

5.3 Policy Mix Definition, Carbon Price Profile, and Simulations

Defining policy mix scenarios and carbon price profiles 

Among an infinity of possibilities, we define four different policy mix scenarios charac
terized by their relative parameters share βi, i ∈[1,2,3]: 

• General R&D scenario: the totality of the carbon tax income is allocated to the general R&D 
sector, so β1 = 1, β2 = 0, and β3 = 0. 
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Table 2: Values for Parameters Defining the Two Possible Carbon Taxes q and q'

Parameter Definition (unit) Value for carbon tax q Value for carbon tax q’ 

q̄ Maximum level of the carbon tax (Int. G-K. 400 400 
$1990/tCO2eq) 

q Exogenous growth rate of the carbon tax (dmnl) 1.4 1.0 
tq start Time period for implementing the carbon tax 13 13 

(time period) 
tq lag  Time lag to obtain the maximum rate of growth 3 5 

of the carbon tax after its implementation time 
(time period) 

• One third each scenario: the income from the carbon tax is split equally between the three 
ways of revenue recycling, so β = 1/3 , β = 1/3 , and β = 1/3 .1 2 3 

• 50/50 RE R&D/investment scenario: the carbon tax income is split equally between the spe
cific R&D of the RE sector and the direct capital investment in the RE sector, there is no 
additional subsidy to the general R&D sector, so β1 = 0, β2 = 0.5 , and β3 = 0.5 . 

• 30/70 RE R&D/investment scenario: 30% of the income from the carbon tax goes to the 
specific R&D of the RE sector, and 70% is used as a direct capital investment in the RE 
sector. In this scenario also there is no additional subsidy to the general R&D sector, so 
β = 0, β = 0.3 , and β = 0.7 .1 2 3 

We have chosen to test two exogenous carbon price profiles called q and q'. They are 
defined in Table 2 by their respective parameters q̄ , q, tq start  , and tq lag  and shown in Figure 4. As 
previously mentioned we make the hypothesis that all new scenarios in which we implement the 
carbon price start with the parameter settings of the Low scenario. The value of parameter j rep
resenting the GHG emission factor of nonrenewable energy is set to 0.085 GtCO2eq/EJ. It is the 
average value found when dividing the historical global GHG emissions from fossil fuels estimated 
by Boden et al. (2013) by the historical nonrenewable energy production presented in Table A1. 
We consider that e3 has the same value as k since both parameters represent productivities of the 
transformation of investments goods into productive capital, and that there is no apparent reason 
to think that they should differ from one sector of the economy to another. Hence, e3 = k = 7.25 . 
On the other hand, since we have no clear way to estimate parameters e1 and e2, we have arbitrarily 
chosen the same value of 0.0002 for both parameters, which we found when performing the sim
ulations. 

Simulation results of carbon price scenarios 

In Figure 5, we compare the nonrenewable and renewable energy productions, and the 
GWP of the baseline Low scenario with the four scenarios that include the carbon tax q (left side) 
or q’ (right side). Simulations of carbon price scenarios deliver four results. (i) The desired smooth
ing dynamics of the GWP is only obtained with the 50/50 or 30/70 scenarios in which the carbon 
tax income is allocated to the specific R&D of the renewable energy sector and to direct capital 
investment in renewable energy technologies. (ii) For all scenarios, the GWP smoothing is higher 
with the more initially stringent carbon price q than with q’. (iii) For the General R&D scenario, 
and to a lesser extent the One third each scenario, the overshoot and degrowth phases of the GWP 
are accentuated compared to the original Low scenario, meaning that these carbon tax scenarios 
lead to a worse situation. In these scenarios with a carbon tax, accelerating the technological change 

Copyright © 2018 by the IAEE. All rights reserved. 



Long-Term Endogenous Economic Growth and Energy Transitions / 23  

Figure 5: Simulation Outputs of Carbon Price Scenarios, 1990–2250

of the final sector exacerbates the nonrenewable energy lock-in of the economy. (iv) This harmful 
effect of technological and energy resource lock-in is lower if the less stringent carbon price q’ is 
chosen. 

These results support the criticisms made by Weyant (2011) about the price fundamental
ism advanced by Nordhaus (2011). Pricing the polluting externality is not enough, and indeed 
additional incentives directed specifically to the renewable sector are needed to overcome its market 
failures, as modeled in the 50/50 and 30/70 RE R&D/investment scenarios. Of course, further 
refinements of the model would be needed to correctly define the best policy option for which we 
do not have an optimization criterion in the current modeling state. Moreover, we have only tested 
scenarios in which the relative allocation shares βi of the carbon tax revenue remain constant during 
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the entire simulation time, which is of course not the case in the real economy. Nevertheless, 
implementing the carbon tax in our model was interesting to see that it seems to represent an 
adequate strategy (among others surely) to attenuate, at least partially, the unfortunate future out
comes suggested by the Low scenario.15 

6. CONCLUSION

Our model supports the idea that both the quantity of net energy supplied by energy-
producing sectors to the energy-dissipative economy, and the ability of the economic system to use 
this energy (in fact exergy) are key elements of economic growth. To our knowledge, we are the 
first to develop a simple theoretical model that can be calibrated on global historical data and 
correctly reproduce long-term global historical trends for nonrenewable and renewable primary 
energy supply, aggregate technological change, and GWP. This is mainly because, unlike similar 
approaches, we have ensured that our theoretical model respects some of the many fundamental 
physical limits of the real world. These are formalized in the functional forms that we have estab
lished for the capital requirements of nonrenewable and renewable energy productions, and in the 
technological level of the economy formally defined as the aggregate efficiency of primary-to
useful exergy conversion. 

The main conclusion of this paper is clear: for an economy in which energy-producing 
and energy-consuming sectors are technologically consistent, and in the absence of any correction 
of the price system, the final efficiency of primary-to-useful exergy conversion of the global econ
omy must be sufficiently high (above 0.35) in order to have a smooth future transition from non
renewable to renewable energy that does not negatively impact economic growth. In our model, 
the economy cannot avoid a temporary energy lock-in (unanticipated nonrenewable energy peak 
occurring at a low level of renewable energy production) when this requirement for future tech
nological level is not attained. In such circumstances the energy transition from nonrenewable to 
renewable energy induces an overshoot and then degrowth of the economic product. Such lock-in 
behavior of the economy system can be (at least partially) avoided through the implementation of 
a carbon price, which has also the benefit of decreasing GHG emissions from fossil-fuels use and 
hence mitigates climate change. Therefore, implementing a carbon price on nonrenewable energy 
production and recycling its revenue could help in the choice of the best development path that, at 
minimum, should consist in a smooth energy transition that does not negatively impact economic 
development. However, in its current formulation our model cannot be used to define endogenously 
the optimal time path of the carbon price, nor the optimal time path allocation of the carbon tax 
revenue among the different recycling uses. This would require to add some micro-foundations to 
the model in order to explain how producers and consumers receive adequate incentives to change 
their respective behaviors. 

15. Implementing the same smoothing strategy in the Medium scenario leads to the same qualitative results. 
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APPENDIX

Historical Data

Table A1: 20-years Interval Historical Estimates used for Model Calibration, 1750–2010

Efficiency of 
Nonrenewable Renewable primary primary-to-useful Gross world product 

Time period (actual primary exergy exergy production exergy conversion (Billion Int. G-K. 
year) production (EJ/year) (EJ/year) (dimensionless) $1990/year) 

0 (1750) 0.00 19.55 0.0250 435 
1 (1770) 0.05 19.65 0.0250 465 
2 (1790) 0.20 19.85 0.0255 495 
3 (1810) 0.55 20.50 0.0265 530 
4 (1830) 1.00 21.25 0.0278 765 
5 (1850) 2.20 22.05 0.0300 920 
6 (1870) 6.00 22.75 0.0320 1115 
7 (1890) 14.70 22.95 0.0360 1675 
8 (1910) 31.50 23.20 0.0420 2550 
9 (1930) 42.50 25.50 0.0510 3720 
10 (1950) 70.30 28.00 0.0650 5315 
11 (1970) 201.5 38.35 0.0800 13720 
12 (1990) 326.5 52.30 0.1000 27350 
13 (2010) 480.0 74.25 0.1250 54150 

Source: see text. 

Figure A1: Original Data and 20-years Interval Estimates, 1750–2010: (a) Nonrenewable
and Renewable Global Primary Exergy Production, (b) Efficiency of Primary-
to-useful Exergy Conversion, (c) Gross World Product
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Parameter Values Common to All Scenarios after Calibrations

Table A2: Set of parameter values common to all scenarios

Parameter Definition (unit) Value Units 

T Time horizon of the model. 25 dmnl 
tlength Time period length in real years between t and t + 1. 20 years 

k Transformation productivity of investment goods. 7.25 dmnl 
l Annual real interest rate of the economy. 0.03 dmnl 
v Constant capital cost (dmnl), with v ≡ (1 + l)tlength /k 0.249 dmnl 
α Constant output elasticity of useful exergy. 0.6 dmnl 
σ Share of the macroeconomic investment going to R&D. 0.9 dmnl 
N Number of time periods used to smooth the saving rate of the economy in nt. 4.0 dmnl 

A, A0 Initial technological level. 0.025 dmnl 
R Ultimately recoverable resource of nonrenewable energy. 175,500 EJ 
D0 Initial unitary capital cost of NRE production. 6.35 B$/EJ 
d Rate of quality degradation of the NRE resource. 0.225 dmnl 

x1 Power exponent of the ratio of exploited resource ϕt in the cost increasing part. 1.05 dmnl 
x2 Power exponent of the ratio of exploited resource ϕt in the cost decreasing part. 0.05 dmnl 
B Initial production cost per unit of renewable energy output. 1.35 B$/EJ 
s Growth rate of Bt towards B. 15 dmnl 
g Constant used to link the final capital cost of RE production B to its initial value 0.25 dmnl 

B, and to the ultimate technological level gain ratio A/A. 
h Returns to scale in the NRE sector. 0.5 dmnl 
γ Returns to scale in the RE sector. 0.5 dmnl 

vNRE Share of gross primary energy production self-consumed by the NRE sector. 0.01 dmnl 
vRE Share of gross primary energy production self-consumed by the RE sector. 0.01 dmnl 
H0 Initial (1750) capital in the final sector. 745 B$ 
Y0 Initial (1750) gross world product. 435 B$/yr 
S0 Initial (1750) saving rate of the economy. 0.5 dmnl 

Nonrenewable URR

To obtain the value of the aggregated fossil URR we use the recent work of McGlade and 
Ekins (2015) ant take their best estimates for oil (Gb: giga barrels), gas (Tcm: terra cubic meters), 
and coal (Gt: giga tonnes), which for the record are in accordance with the last IIASA Global 
Energy Assessment report (IIASA, 2012). For uranium (EJ: Exajoule), we aggregate the best es
timate of conventional and unconventional uranium resource provided by IIASA (2012), giving the 
rounded value of 14,500 EJ. After conversion and aggregation, the total nonrenewable URR value 
retained for our simulations is 175,500 EJ as can be seen in Table A3. 

Table A3: Data used for the Aggregation of Coal, Oil, Gas and Uranium Global URR

Energy resource Global URR (diverse units) Conversion factors (diverse units) Global URR (EJ) 

Coal 4085 (Gt) 105,000 
63% hard coal 2565 (Gt) 32.5E-9 EJ/tonne 83,500 

37% lignite coal 1520 (Gt) 14.0E-9 EJ/tonne 21,500 

Oil 5070 (Gb) 29,000 
Conventional oil 2615 (Gb) 5.73E-9 EJ/barrel 15,000 

Unconventional oil 2455 (Gb) 5.73E-9 EJ/barrel 14,000 

Gas 675 (Tcm) 27,000 
Conventional gas 375 (Tcm) 40 EJ/Tcm 15,000 

Unconventional gas 300 (Tcm) 40 EJ/Tcm 12,000 

Total fossil fuels 161,000 
Uranium 14,500 
Total nonrenewable energy 175,500 

Source: IIASA (2012), McGlade and Ekins (2015).
Notes: URR values expressed in EJ have been rounded up to the nearest 500.
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Simulations Results on the Restricted 1750–2010 Period

Figure A2: Historical vs. Simulated Data, 1750–2010: (a) Primary Nonrenewable Energy
Production, (b) Primary Renewable Energy Production, (c) Global Efficiency of
Primary-to-useful Exergy Conversion, (d) Gross World Product
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