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Résumé — Vers une quantification fiable des incertitudes sur les estimations de production : plans
d’expériences adaptatifs — La quantification des incertitudes est une phase essentielle dans l’évaluation
des réservoirs pétroliers. La précision des estimations de production est fortement liée à l’incertitude sur
les variables qui contrôlent les performances du réservoir (perméabilité, contact huile-eau, etc.). Le pro-
blème est complexe parce que l’effet des variables sur les performances du réservoir est souvent non-
régulier, ce qui ne peut être détecté a priori.
La méthode des plans d’expériences est généralement utilisée pour quantifier les incertitudes sur la pro-
duction et obtenir une représentation probabiliste de cette dernière, avec par exemple la détermination de
scenarii de production P90, P50 et P10. En sélectionnant de manière optimale les simulations à effectuer,
les plans d’expériences permettent la construction d’un modèle approché qui reproduit l’impact des para-
mètres incertains sur les performances du réservoir. L’utilisation de plan d’expériences permet de réaliser
des analyses de risque tout en effectuant un nombre limité de simulations potentiellement très coûteuses
en temps de calcul. Toutefois, l’utilisation des plans d’expériences est généralement associée à la
construction de surfaces de réponses polynomiales de faible degré, elle montre ses limites dès lors que les
paramètres incertains ont un impact non-régulier sur la réponse en production.
Nous présentons une nouvelle approche pour l’analyse de risque, fiable y compris lorsque l’impact des
paramètres sur la réponse est non-régulier. Nous proposons de construire des plans d’expériences évolu-
tifs, pour intégrer graduellement les non-régularités. Partant d’un plan d’expériences initial, la méthodo-
logie détermine itérativement de nouvelles simulations susceptibles d’être informatives sur le comporte-
ment de la réponse. Inspirée de méthodes statistiques et de plans d’expériences, cette approche a montré
son efficacité pour la modélisation de réponses complexes et non-régulières. Elle fournit une estimation
fiable des incertitudes sur les estimations de production.

Abstract — Toward a Reliable Quantification of Uncertainty on Production Forecasts: Adaptive
Experimental Designs — Quantification of uncertainty in reservoir performance is an essential phase of
proper field evaluation. The reliability of reservoir forecasts is strongly linked to the uncertainty in the
information we have about the variables that control reservoir performance (e.g. permeability, oil-water
contact, etc.). The problem is complex, since the effect of the variables on the reservoir performance is
often non-linear, which cannot be inferred a priori.
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INTRODUCTION

Modeling of oil and gas fields has become increasingly
sophisticated during the last decades. With the advent of high
technology data acquisition programs, it is now possible to
calibrate complex numerical models that integrate a large
degree of information concerning reservoir behavior.
However, the data acquisition, its processing, interpretation
and integration, can have significant errors. These errors,
combined with the necessary geological assumptions, lead to
a complex reservoir model which is populated by a very
large number of uncertain parameters. The main consequence
is that the output of the reservoir modeling workflow, for
instance, fluid in place, reserves and production profiles are
uncertain.

In order to have realistic production forecasts, it is essen-
tial to take into account the characteristics of the uncertain
parameters influencing the production response. This is usu-
ally done in two steps. In the first step, it is essential to iden-
tify, within all the specified uncertain parameters, those para-
meters which have a large influence on production forecasts.
This is termed a sensibility study. Then in the second step, a
quantification of the risk associated to the influential parame-
ters is performed. From the results of this step, the reservoir
engineer is able to make important decisions during reservoir
exploitation, while taking the parameter uncertainty into
account. 

Quantifying the impact of each uncertain parameter on
production requires many fluid flow simulations. Because of
the large number of parameters and the physical complexity
of the reservoir, fluid flow models are difficult to construct
and very computationally time consuming. In order to control
the cost of an uncertainty study, classical experimental design

methods are commonly used to create proxy models of the
production response. These proxy models can be a good rep-
resentation of the fluid flow simulator.  Their evaluation is
very rapid, and therefore allows for risk analysis using Monte
Carlo sampling. Constructing a proxy model is therefore
essential to obtain reliable production forecasts which
account for uncertainty. A proxy model needs to satisfy the
two following requirements: 
– to reproduce the behavior of the simulated data: the model

should fit the simulations already performed using the
fluid flow simulator;

– to predict reliably the behavior of the production response
for any value of the parameters where no simulations had
been performed. 
Recent work [1, 2] has been performed on the subject of

uncertainty management in reservoir engineering. These
authors construct 1st or 2nd order polynomial proxy models
using classical experimental designs. However, this approach
is limited to regular responses, i.e. for responses which can
be approximated with a low order polynomial model.
However, this is not correct for many reservoir engineering
applications, as illustrated in Figure 1. Therefore, in order to
estimate uncertainty, it is essential to develop a methodology,
which can reliably predict irregular responses, but requires
few simulation runs. A good compromise between the com-
putational cost of the study and the model quality must be
reached. 

In this paper, we propose a methodology to construct an
effective proxy model of the fluid flow simulator which takes
into account the potential irregularities of the response.
Contrary to classical experimental designs which assume a
polynomial behavior of the response, we propose a procedure
to build evolutive experimental designs to fit gradually the
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Experimental design methods are well-known and widely used to quantify uncertainty and obtain proba-
bilistic representation of production through, for instance, the P90, P50 and P10 production scenarios.
By optimally selecting the flow simulations that should be performed, experimental design builds a proxy
model that mimics the impact of the uncertain parameters on the reservoir performance. Using experi-
mental design, one can perform risk assessment while performing a limited number of potentially expen-
sive fluid flow simulation runs. However, experimental designs are based on simple polynomial response
surface approximations, which show clearly their limits when the production response varies irregularly
with respect to reservoir parameters.
We present a new approach to properly assess risk even if the impact of the uncertain parameters is
highly irregular. Contrary to classical experimental designs which assume a regular, 1st or 2nd degree
polynomial-type behavior of the response, we propose to build evolutive designs, to fit gradually the
potentially irregular shape of the uncertainty. Starting from an initial trend of the uncertainty behavior,
the method determines iteratively new simulations that might bring crucial new information to update the
current estimation of the uncertainty. Inspired by statistical methods and experimental designs, this origi-
nal methodology has demonstrated its efficiency in modeling accurately complex, irregular responses,
and thus in providing reliable uncertainty estimation on production forecasts.
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potentially irregular shape of uncertainty (as shown in Fig.1a).
This methodology benefits from the advantage of experimen-
tal design, which allows the control of the number of fluid
flow simulations, combined with the flexibility to study
irregular behavior which is too complex for classical statisti-
cal methodologies. The evolutive approach also does not
require assumptions as to the shape of the response, which is
difficult to quantify a priori.  

The outline of the paper is as follow. In Section 1, the
principle of the evolutive methodology is explained. We then
present the proxy model used to fit the data, which is a com-
bination of regression and residual kriging. In Sections 2 and
3, we propose criteria to enhance iteratively the initial experi-
mental design, starting with the search of stationary points of
the response and then the search in under-sampled area of the
experimental design. Sections 4 and 5 present validation tests
on analytical functions and a real field case from offshore
Brazil. We then conclude with a discussion on possible direc-
tions of future work.

1 ADAPTIVE MODELING AND EVOLUTIVE
EXPERIMENTAL DESIGNS

1.1 Principle of the Methodology

This methodology aims at modeling an irregular function f,
for example the results of a fluid flow simulator, depending
on k uncertain reservoir parameters, with a reasonable num-
ber of simulations.  The simulations used for building the ini-
tial proxy model are located employing experimental design
techniques. Let us consider the following notations:  

– k, the number of uncertain parameters and n the current
number of simulations performed;

– f : Rk → R the fluid flow simulator model;
– Xj, j=1,..., k, the uncertain parameters;
– xi, the locations of the  performed simulations: xi = (xi1, ...,

xik), i = 1, ..., n;
– f (xi), the simulated value obtained at the location xi:

f = (f (xi))i = 1, ..., n;

D = ∏ k
j = 1[Xj

min, Xj
max], the experimental domain with

Xj
min and Xj

max respectively the minimal and maximal value
that can have the j-th parameter.

The methodology is based on an association of two meth-
ods: evolutive experimental designs and kriging estimation.
We propose an adaptive technique in order to capture, step
by step, the irregularity of the response. An illustration of the
principle of the methodology is presented in Figure 2.

The first step of the methodology is to construct an initial
experimental design, noted X(1). Since reservoir simulation
can be time consuming, it is important to select a small num-
ber of simulations which provides a maximum of informa-
tion. Experimental design is used for selecting an optimal set
of simulations to obtain an initial approximation (proxy
model) of the response behavior as a function of the influen-
tial uncertain parameters. In the current context, in the
absence of prior knowledge about the response behavior, we
propose the use of Latin hypercubes with maximin distance.
Maximin Latin hypercubes rely on a uniform spatial distribu-
tion of the points which maximize the minimum distance
between two points [3]. This kind of design provides a good
starting point to capture the mean behavior of the response.
Reservoir simulations are performed following this initial
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(a) Representation of an irregular production response.
(b) 2nd order polynomial model for this response [13].
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experimental design X(1) to obtain observations of the produc-
tion response and to fit a first approximation f~(1). At this
point, the methodology aims at determining iteratively new
informative simulations that are added to the experimental
design X(i). The location of new simulation runs is optimized
according to the current experimental design X(i) and approxi-
mation f~(i) in order to maximize the amount of information
brought by each simulation.

We thus obtain a set of hierarchical experimental designs
X(i) i = 1,..., m such as X(1) ⊂ X(2) ⊂ X(3) ⊂ ... ⊂ X(m) ∈ D, and a
set of corresponding approximations  f~(i) i = 1,..., m. The first
approximation  f~(1) is obtained on the basis of the initial
experimental design X(1), which includes few data, therefore
may not be very accurate. As the number of iterations i
increases, the experimental design X(i) contains more simula-
tions and the corresponding approximation f~(i) becomes grad-
ually more reliable.

One strength of this approach is that it allows the user to
control the number of simulations based upon desired accu-
racy of the current approximation: at each iteration i, one can

decide either to add simulations to get a more accurate
approximation f~(i+1), or to sacrifice approximation accuracy
in order to reduce the overall simulation time and consider
f~(i) as the final proxy model of the fluid flow simulator.

1.2 Definition of the Proxy Model

In the case of computer experiments, the data are determinis-
tic, i.e. running the simulator with the same parameters val-
ues gives identical observations. Therefore, the response sur-
face should exactly fit the simulator data. For this reason,
interpolation techniques are usually preferred to regression
models for computer experiments. The basic idea, suggested
initially by Sacks et al. [4, 5], consists in adding an error term
to the polynomial approximation of the trend of the observa-
tions. To do so, we assume that the proxy model is defined as
the sum of a regression model and a random process: 

 

�f g Z G Zj
j

p

jx x x x x( ) = ( ) + ( ) = ( ) + ( )∑ β β
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Principle of the adaptive methodology.
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with:
– G(x) β = E[ f(x)] the deterministic part of the model, for

instance a 2nd order polynomial. The coefficients g1(.),...,
gp(.) are known regression functions and ββ = (β1,..., βp) is
the vector of unknown regression coefficients.

– Z(x), the residuals of the response f with respect to the
deterministic approximation. Z is assumed to be a station-
ary random process with zero mean and covariance
between Z(t) and Z(u) defined by: C(t,u) = Cov(Z(t), Z(u))
= σ2R(t,u), where σ2 is the variance of the process and
R(t,u) the correlation function between Z(t) and Z(u).
The choice of a low order polynomial model to adjust the

trend of the response is driven by the desire to limit the num-
ber of required simulations to be performed for this initial
step. This initial fitting of the response is obtained using a
traditional least-square optimization. Note that the approach
is valid for any kind of initial approximation model, however
complex its structure. 

The residual model is obtained by kriging. We assume
that the least squares optimization leads to an unbiased esti-
mate of the trend of the response. In this case, the residuals
have no mean, and simple kriging is sufficient for modeling
the residual. However, if the trend estimator is biased, ordi-
nary kriging should be used. The kriging predictor at x0, in
the case of simple kriging with zero mean, is [6]: 

with:
– tc(x0) = [Cov(Z(x0), Z(xl)), l = 1, ..., n], the covariance of Z

between x0 and the points of the current experimental
design X(i),

– C = [Cov(Z(xl), Z(xj)), l, j = 1, ..., n], the covariance of Z,
for instance exponential or Gaussian.
In our adaptive approach, we use universal kriging to

model the production response, its expression is:
f~(x0) = G(x0) ββ̂ + tc(x0)C–1[f – Gββ̂] (1)

Note that Equation (1) is a function of the covariance
between the observations. In the case of computer experi-
ments, we usually have too few simulations to fit a covari-
ance (or variogram) model. In general, the spatial correla-
tions of a response are extremely difficult to infer, and no
prior information about the structure of the covariance is
available. We employ two methods to fit a variogram
depending on the quantity of simulated data. A detailed
description of the methods is provided in Appendix A.

The initial experimental design X(1) includes few simulation
runs. If the predictivity of the model is poor, new simulations
must be added to the experimental design to explore new areas
and to improve the accuracy of the approximation. In this
paper, we propose three criteria of adding new points, divided
into two categories: search of the stationary points of the cur-
rent approximation  f~(i), and a more global search, consisting in
sampling areas where no simulations have been performed.

2 RESPONSE SURFACE MODELING: 
CAPTURING OF STATIONARY POINTS

2.1 Search for Maximum and Minimum Values

The first criterion for adding new simulation runs attempts to
find the extremes of the response. Therefore, we look for the
maxima and minima of the current approximation f~(i), in
order to improve the current experimental design X(i). We
present here the methodology for the search of the maxima.
The same principle is used for the minima. 

The production response is assumed to be irregular, so we
look for several maxima using local optimization with differ-
ent starting points x j

init. The search is realized in a neighbor-
hood ϑj of the starting points as illustrated in Figure 3. In our
case, the objective is not to find the global maximum of the
response. The local maxima are also of interest because they
allow for a better characterization of the overall response sur-
face.

Figure 3

Maximization for several starting initial points.

One local maximum of the current approximation (proxy
model) f~(i) in a neighborhood of x j

init is given by:

A flow simulation is subsequently performed at and
a new proxy f~(i+1) is fitted. Because this initial search 
of maximum is based on the approximation f~(i), a test is

xmax
jϑ
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performed: we compare the value of the response at the point
with the value of the response at the point x j

init:

– if is small, we assume that is close to a maxi-
mum of the current approximation f~(i+1) (the response has
not increased sufficiently) - no more information is needed
in the area of x j

init,
– if is negative, the assumption of a local maximum in

the neighborhood is invalid - no more simulations are
performed,

– if is large, the addition of in the neighborhood
of x j

init is valid - perform a line search to simulate a new
point in the direction of increasing f~(i+1) in order to find the
maximum.
In the later case, since we have two points in , the line

search for a new maximum is inspired by the simplex method
proposed by Nelder and Mead [7]. The coordinates of the
new point in the increasing direction are:

A simulation is then performed at the point , and once
again, we calculate the amount of information brought by the
simulation, i.e. we calculate . This iterative procedure

continues until the simulation of the new point is not suffi-
ciently informative.

The aim of this method is to find the extremes of the
response. In order to best characterize the local extremes and
the sinuosity of the response, we propose to search for min-
ima starting from maxima determined previously. Therefore,
we search for the point x j

init, with initial point :
, where D is the experimental domain.

The search for extremes is illustrated in Figure 4. Note that this
method makes use of the knowledge of the current approximation
and the values of the response in the explored neighborhood.

This approach is crucial in the adaptive method, since it
allows the characterization of the sinuosity and the variability of
the response. However, this criterion alone does not catch all
the irregularities of the response. Therefore, we propose to
search for points where one or more partial derivatives are zero. 

2.2 Search for Null Derivative Points

In order to better characterize the variations of the response,
we propose to search for points where one or more partial
derivatives are zero. The dependence of the response with
respect to the parameters is not isotropic. Thus, we propose
to perform at each iteration a flow simulation at points for
which at least one of the k partial derivative is zero, where k
is the number of parameters. 

The derivative of the estimator f~(i) of the response at each
point x of the experimental domain is given by:

The search of the zero of can be written as a function
to minimize:

As in the previous procedure, the minimization is per-
formed using local optimization at several initial points. As
the current approximation increases in accuracy, the simula-
tion at point xg should allow the determination of extremes or
directional inflexion points of the response. At each iteration
the point xg is determined based on the current approximation
which may be inaccurate. The point xg is considered to be a
stationary point in the direction defined by Xj. To confirm
this assumption, we construct a new approximation f~(i+1)
using Equation (1) which incorporates the point xg, and we
calculate the numerical directional derivative at xg :
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where ε = (0,...,0,εj,0,...,0).
A test of the value of f~’(i+1)(xg) is then performed:

– if f~’(i+1)(xg) ≈ 0, the search of stationary points at the cur-
rent iteration i is accomplished with the determination
of xg,

– if f~’(i+1)(xg) ≠ 0, the point is not stationary for the new
approximation. A new search for a stationary point is
performed, starting from xg.
Note that it is necessary here to use the numerical deriv-

ative because the analytical derivative is not defined at the
points of the experimental design. 

An example of how null partial derivative points are
added is presented in Figure 5. In this example, one null
partial derivative point is added as long as the value of the
numerical derivative does not equal zero. We can see that
an inflexion point is detected. 

The search for points of null partial derivative allows
for the detection of the inflexion points, thus capturing the
curvature of the response.

Both criteria presented, the search of the extremes and
the directional null derivative points, are important for the
modeling of irregular responses. Later, in Section 4.2, we
will demonstrate the importance of each search criterion.
Note however that since they are based on the current
approximation of the response, they can lead to over-sam-

pling of regions already explored without sampling in new
areas for which little or no information is available. In
order to sample areas of sparse information, we study, in
Section 3, the behavior of the current approximation at
points where the kriging variance is maximal. These points
are the most distant from points already simulated in the
experimental domain. 

3 SURFACE GLOBAL FITTING: UNDER-SAMPLED
AREAS AND PILOT POINTS

3.1 Maximum Kriging Variance

One advantage of the use of universal kriging for the proxy
model is that it provides information on the kriging vari-
ance. As illustrated in Figure 6, the construction of such an
estimator implies that the kriging variance is equal to zero
at the experimental design points and maximal in the
under-sampled areas. 

A large kriging variance indicates a lack of information
that would constrain more accurately the response surface
model. Therefore, the points which maximize the kriging
variance are good candidates for performing flow simula-
tion: they are located in areas where no information is pro-
vided by the current experimental design. Consequently,
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we search for the points x which maximize the kriging
variance, i.e. we consider the criteria L:

where: 
– σ~ 2 is usually estimated by maximum likelihood method, as

proposed initially by Currin et al. [8] and recommended
later by many authors [9, 10]:

– r(x) the correlation between the points of the current
experimental X(i) and the point x,

– R the correlation between the points of the current experi-
mental X(i),

– n the size of the current experimental X(i) and q = range (G).
A natural approach could consist in directly simulating the

point of maximal kriging variance.  This procedure ensures
the sampling of unexplored areas of the experimental
domain. However, continual repetition of this procedure
would eventually be equivalent to simulation using a uniform
design, which would be too computationally time consum-
ing, and would result in a poor sampling of the parameter
space. Instead of using this uniquely spatial criterion of maxi-
mizing the kriging variance, in our approach, we propose to
integrate information concerning the behavior of the current
approximation of the response. To do this, we test the sensi-
tivity of the approximation to new information at the points
of maximum kriging variance, and then perform simulations
only at the most sensitive points. This test is performed using
the concept of pilot points.  

3.2 Pilot Points

The pilot point methodology was initially introduced by
De Marsily in 1995 [11]. It consists in using points for
which no simulations are performed, whose values are
assigned and varied according to the pilot point algorithm.
In our application, we use pilot points to help to determine
the most sensitive areas of the uncertain domain for which
a flow simulation is necessary. Our strategy is divided in
two main steps:
– determination of the pilot points xi

PP by searching for
points of maximum kriging variance;

– study of the sensitivity of the current approximation to
new information at the points xi

PP. 
In order to test the impact of the point xi

PP on the approx-
imation, we attribute a fictitious value Yi

PP at xi
PP, then mod-

ify the value of Yi
PP within an interval Ii

PP, and finally evalu-
ate the effect on the classical predictivity coefficient Q2
[12]. Through this procedure, we can identify the points for
which additional information (obtained by flow simula-
tion) may considerably change the shape of the approxima-
tion, particularly in terms of predictivity.

Due to the structure of the kriging model f~, the classical
prediction interval is given by [13]:

with the qα quantiles of the pivotal distribution of Z. 
In order to select the most sensitive points to new infor-

mation and ensure a sufficient increase in the predictivity
of the approximation, we evaluate the value of Q2 by vary-
ing the values of Yi

PP ∈ Ii
PP. Depending on the variation of

Q2, we perform:
– Flow simulation at the points xi

PP for which the variation
of Q2 is maximal and Q2 is large. In this case, the addi-
tion of real information is warranted in order to stabilize
the predictivity;

– Suppression of the pilot points which induce no varia-
tion of the predictivity, or result in a low value of pre-
dictivity. If Q2 is small, we prefer to continue the itera-
tive process by the addition of stationary points. If the
variation of the value of the pilot point does not imply a
variation of Q2, then the simulation of this point is not
considered informative.
The principle of the pilot point method used to test the

predictivity of the approximation on different points is
illustrated in Figure 7.

To provide an example, Figure 8 illustrates the case of
3 pilot points, located at the maximum of the kriging vari-
ance. In Figure 8, the top graph presents the location of the
pilot points and their associated interval of fictitious values,
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Kriging variance.
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shown with red arrows. The bottom three graphs show the
variation of the Q2 coefficient at each xi

PP with respect to
the pilot point value Yi

PP. In this case, according to the vari-
ation of the Q2 coefficient, we eliminate the first point of
the experimental design (shown in the bottom left graph),
and we perform flow simulation at the second and third
points (bottom middle and bottom right graphs).

Note that the pilot point technique can also be used to
optimize the predictivity of the current approximation f~. In
the optimization procedure, the fictitious values at the pilot
points are modified in order to maximize Q2. This idea is
discussed in greater detail in Section 6.

3.3 Summary

Three criteria have been proposed above for adding new sim-
ulation points to the current experimental design. The goal is
to optimize the location of the simulation points which then
bring a maximum of information to the current approxima-
tion. The optimization procedure is illustrated in Figure 9.
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The confirmation points are selected at the points of maxi-
mum kriging variance, i.e. where sparse or no information is
available. The purpose of the confirmation simulations is to
test the posterior predictivity of the approximation, i.e. based
upon the accuracy of the current model to the new points in the
uncertain domain, the user can decide if more iterations are
necessary, or if current approximation is sufficiently accurate.

4 VALIDATION OF METHODOLOGY USING
ANALYTICAL FUNCTIONS

4.1 Modeling of a 2D Irregular Function

We present here an example of validation of our approach,
which is tested using an explicit irregular analytical function,
given by:

.

Using the adaptive methodology, we propose in this
example to simulate, at each iteration, 1 maximum and 1
minimum, 3 null derivative points and 3 points of maximum
kriging variance through pilot points. The covariance is
assumed to be Gaussian and anisotropic. 

In Figure 10, we present the results of the modeling of
function F within the domain [– 1,1]2. In Figure 10a, we
show the 3D view of the function. Figure 10b presents the
iso-line plots of the reference (in black), and the approxima-
tion (in blue) showing the simulation points in the experi-
mental design. Finally, Figure 10c plots the predicted values
obtained with the approximation versus the simulated values
on a grid of 900 points. In this latter plot, we present the rela-
tive error, which is given by:

After a total number of 58 simulations, the approximation
of the function F using the adaptive modeling is of good
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quality. Figure 10b shows that the iso-lines of the approxima-
tion and the reference are very close to each other, and many
irregularities of the response are detected. The global maxi-
mum, located in (0.25, 0.6) is also detected through the iso-
simplex method, although no point of the initial experimental
design was located in this area.

The objective in the next section is to present the impact
of each criterion presented in this paper on the accuracy of
the approximation (proxy model) f~.

4.2 Interest of Each Criterion of Adding
New Simulations

In this section, we examine the impact of each criterion for
adding new simulations. To do so, we model the analytical

function G, with 40 simulations using different criteria of
adding new simulations. The expression of the function G is:

The quality of the approximations is presented on Figure
11, using a plot of the predicted values obtained with the
approximation versus the simulated values on a grid of 900
points. The first plot in Figure 11a presents the results
obtained with the approximation of the function G using the
adaptive methodology. Figure 11b shows the approximation
fitted using the adaptive methodology but without the simu-
lation of the extremes. Figure 11c presents the results without
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Figure 11

Modeling of the function G: (a) with the adaptive modeling, (b) without addition of extremes, (c) without null derivative points, (d) without
testing sensitivity to predictivity with the pilot point method.
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incorporating the null derivative points into the approxima-
tion. Finally, we simulate directly the point of maximal krig-
ing variance, instead of using pilot points to determine the
points most sensitive to perturbations. These results are
shown in Figure 11d. 

As Figure 11 shows, the results obtained using the adap-
tive methodology are more accurate than those obtained
without using all four criteria. Tests on other analytical func-
tions have resulted in the same conclusion [14]. Each crite-
rion proposed in this paper increases the amount of informa-
tion brought by the simulations. The extremes and the null
derivative points allow a better characterization of the inflex-
ions of the response, whereas the pilot point methodology is
crucial in the methodology to explore optimally new areas
and to improve the predictivity of the approximation.

4.3 Higher Dimension Experimental Designs –
Comparison with Latin Hypercubes

In this section, we compare the results of modelling analyti-
cal functions with 2, 3, 4 and 5 parameters using first the
adaptive modeling and then Latin hypercubes with universal
kriging. The relatives errors obtained with some functions are
presented in the Table 1. The number of simulations required
is shown in parentheses. The second column represents the
results obtained with the adaptive modeling. The third col-
umn presents the size required for a Latin hypercube to have
an equivalent quality. Finally, the reduction in the number of
simulations using the adaptive modeling instead of the Latin
hypercube method is given.

TABLE 1

Relative error and # of simulations for many irregular functions

Adaptive Latin Reduction
Modeling Hypercube in simulations

2D function #1 0.014 (43) 0.014 (58) 26%

2D function #2 0.016 (58) 0.016 (74) 22%

3D function #1 0.051 (74) 0.051 (120) 38%

3D function #2 0.002  (69) 0.002 (110) 37%

4D function #1 0.162 (100) 0.161 (345) 71%

4D function #2 0.011 (97) 0.019 (405) 76%

5D function 0.016 (134) 0.061 (1350) 90%

Clearly the results obtained using the adaptive method are
more accurate than those obtained using Latin hypercubes.
Note that because many Latin hypercubes can exist for a
given number of simulations and parameters, multiple tests
were performed for each analytical function. In Table 1 we
show the results for the Latin hypercube with the fewest
number of simulations. 

Using tests on many analytical functions, we construct a
plot representing the number of simulations required as a
function of the number of parameters using first the adaptive
modeling approach, and then using Latin hypercubes of same
quality (relative error). 

Figure 12 shows that the number of simulations appears to
increase exponentially for the Latin hypercube method and
linearly for the adaptive approach. This result suggests that as
the number of parameters increases, the greater the benefit is
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found using the adaptive approach (in terms of number of
flow simulations). In other words, for the same number of
simulations performed, the adaptive method provides for a
more accurate approximation of the response.  

5 NUMERICAL RESULTS FOR A BRAZILIAN
RESERVOIR UNCERTAINTY QUANTIFICATION

5.1 Description of the PBR Field

The PBR reservoir is an oil field located offshore Brazil and
operated by Petrobras. Figure 13 shows a top view of the PBR
field. The reservoir is delineated by structural and strati-

graphic traps. The North and South limits are due to strati-
graphic closures, whereas the East and West ones are due to
fault. The mean depth of the reservoir is about 3100 m and its
thickness varies between 90 to 180 m. There are 34 production
wells and 13 water injection wells. All the wells are vertical.

For a more detailed description of the PRB field, please
refer to Reis et al. [15].

5.2 Uncertainty Quantification

The objective of the study is to construct a proxy model of
the fluid flow simulator, for a given production response.
This model is built in order estimate the risk associated with
the uncertainty of the influential fluid flow parameters on the
response, which is the cumulative oil production at 6 years.

After a sensitivity study for 18 parameters, 4 parameters
were determined to have an important effect on the oil pro-
duction:
– the water-oil contact depth in the sector 1, named ZOW1;
– the skin factor, named SKIN;
– the maximum relative permeability for gas, named

KRGM;
– the maximum relative permeability for water, named

KRWM.
The intervals of variation for these parameters is given

in Table 2.
TABLE 2

Minimum and maximum value for each uncertain parameter

Parameters Min Max

ZOW1 (m) 3 092 3 118

SKIN (adim) – 5 10

KRGM (adim) 0.4 0.6

KRWM (adim) 0.25 0.45

The objective is therefore to predict, using the adaptive
method, an accurate approximation of the cumulative oil pro-
duction (CumOil) after 6 years as a function of the parame-
ters: ZOW1, SKIN, KRGM, KRWM. 

In order to validate the methodology, we performed simu-
lations on a grid 64 = 1296 points. This is usually not possible
in reservoir study, because of the time required for each flow
simulation. This set of simulations is used as a reference to
allow for comparison between different approaches. 

We present the results of the proxy models obtained first
using the classical approach, which consists of performing
simulations following classical experimental designs, then
using adaptive modeling, and finally using two types of Latin
hypercubes. In all of these cases, the only change concerns
the sampling of the experimental domain, the model is
obtained using universal kriging (Equation 1).
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5.2.1 Classical Experimental Design: Factorial Design and
Composite Design

We first perform simulations corresponding to a factorial
design with 16 points and a composite design with 25 points.
Figure 14 illustrates for both cases the prediction obtained
with the proxy model versus the reference case using flow
simulations at 1296 points on the grid. 

As we can see, both models have poor quality. Prediction
of the cumulative oil with classical experimental designs
would in this case be unreliable. This is demonstrated in
Figure 15. This figure shows the impact of the poor model
quality on the probability density estimation. The probability
density is calculated using Monte Carlo sampling with uni-
form distribution between the minimum and maximum val-
ues for each parameter. To create the probability density,
10 000 points are selected within the uncertain domain, and
the proxy model is evaluated at each point.

The probability density estimated from the proxy model
obtained with classical experimental designs is very different
from the reference. As shown in Table 3, the estimation of
the quantiles P10, P50 and P90 are not reliable - decisions
based on this results can be poor.  

TABLE 3

Quantiles for classical designs (Mm3)

P10 P50 P90

Reference 8.17 8.27 8.28

Factorial 8.14 8.20 8.26

Composite 8.16 8.25 8.27

We now apply the adaptive method in order to improve
the quality of the model.

5.2.2 Adaptive Modeling and Latin Hypercube Modeling

For the adaptive model, the initial experimental design is a
Latin hypercube with 25 simulations. The design is enhanced
at each iteration with 1 maximum and 1 minimum point, 2
points of null partial derivative and the 3 most sensitive
points on the predictivity of the approximation, located at the
maximum of the kriging variance. The results are presented
in Figure 16. 

A total of 67 simulations was necessary to obtain an accu-
rate modeling of the cumulative oil production CumOil. The
proxy model obtained using the adaptive method is of good
quality, with a relative error of 0.00029.

In order to test the performances of the adaptive method,
particularly the quality of sampling strategy, we propose to
model CumOil using Latin hypercubes requiring the same
number of simulations than the adaptive method, i.e. 67 sim-
ulations. The results are presented in Figure 17.

The approximations fitted according to Latin Hypercubes
do not provide a good predictivity of the model, particularly
for the minimal values of CumOil. Figure 17 shows that the
values below 8.20 Mm3 are badly estimated, which can have
serious implications for decision taking.  

After an analysis of the parameters, a large value for the
SKIN implies low cumulative oil production. Therefore, it is
important to study particularly the risk induced for large val-
ues of the SKIN. To do so, we construct a Monte Carlo sam-
pling for which values of the parameters SOW1, KRGM and
KRWM are distributed uniformly between the minimum and
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maximum values in Table 2, and the SKIN value is fixed to
its maximum value: 10. As previously, the sample size is
10 000 points. Figure 18 gives the probability density
obtained with the two Latin hypercubes, and the results for
the adaptive modeling. 

Note that in Figure 18 there are significant differences
between the probability densities obtained using the two
Latin hypercubes and the adaptive modeling. The use of the
adaptive modeling captures more accurately the reference
probability density. Once more, the quantiles are unreliable,
as shown in Table 4. Note that a more accurate probability
density results in a more reliable quantification of risk. For
example in this case, with an oil barrel at $ 70, an overesti-
mation of 50 000 m3 in production forecasts leads to an
overestimation of $ 22 015 000, which may considerably
change decisions.  

TABLE 4

Quantiles for adaptive design and Latin hypercubes (Mm3)

P10 P50 P90

Reference 8.101 8.164 8.176

HL1 8.166 8.207 8.289

HL2 8.163 8.211 8.229

Adaptive 8.120 8.165 8.179

Note that Latin hypercubes are generated using a stochas-
tic algorithm using a random number generator. For a differ-
ent initial seed, the Latin hypercube samples the uncertainty
space differently. In addition, the correct number of simula-

tions is difficult to know a priori, and may be computation-
ally time-prohibitive. Thus, using uniquely Latin Hypercubes
for uncertainty quantification may not give reliable and
repeatable results.  

6. DISCUSSION

In this paper we have presented a methodology for uncer-
tainty quantification and risk assessment through the con-
struction of a reliable proxy model of the fluid flow simula-
tor. This proxy can be considered as a good representation of
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the fluid flow simulator, whose evaluation is not expensive
and therefore allows for risk analysis using Monte Carlo
sampling. In addition to risk analysis, this method can also be
used to optimize production schemes. For example, one can
determine the value of the control parameter (e.g. location of
infill well) in order to maximize the production while mini-
mizing the risk associated with uncertainty. In doing so, the
impact of uncertainty on production forecast is reduced and
decisions are made that enable a compromise between maxi-
mum production and minimal risk.

In Section 3.2 above, we have shown how the pilot point
method can be used to test for the sensitivity of the pilot
point location and value on the prior predictivity of the model
approximation. In addition to testing the sensitivity, the pilot
point methodology can be use to optimize the prior predictiv-
ity of the proxy model. By varying the fictitious value at the
pilot point, a standard optimization procedure can be
employed to maximize the common predictivity coefficient
Q2. By doing so, this procedure ensures a better robustness of
the approximation without adding additional flow simula-
tions. Scheidt [14] provides further detail on the pilot point
optimization, and examples of its application.   

Future work includes researching methods to systema-
tically determine sources of irregularities. The adaptive
method could improve its effectiveness by evaluating first the
regularity or the irregularity of the response for each parame-
ter, using a sensitivity analysis (Sobol’, Fast) for example.
This would allow a more intensive sampling in the sub-
domain defined by the most irregular parameters. An alterna-
tive could be to reduce the dimension of the uncertain
domain using principle axes defined by screening methods
such as canonical analysis or principal component analysis.
This should allow the addition of new simulations in the sub-
domain, and therefore to reduce the total number of simula-
tions. See [12] for preliminary work in this area.  

Other improvement of the methodology consists in taking
advantage of different kriging operators proposed in the bib-
liography. For instance, the use of kriging with moving
neighborhood in the over-sampled areas allows for local
trend fitting. However, it should be noted that in the case
where data is sparse, universal kriging should be preferred.

Finally, the sampling strategy proposed in this paper is
designed to optimally capture the behavior of an unique
response. Therefore, this sampling may not be optimal to
catch the complexity of other production responses. To get a
global overview of the risk, it would be of interest to be able
to consider multiple responses. 

CONCLUSION

Modeling of irregular production response surfaces is a com-
plex problem due to practical limits on the number of fluid
flow simulations that can be performed. The common

approach consists in building proxy models using regression
or kriging. These models are created with a limited number
of simulations defined by classical experimental design or
quasi Monte Carlo sampling with Latin hypercubes. A major
drawback of these approaches is that they require a prior
knowledge of the dependence between the parameters and
the response, and find the limits of practicality when the
response is complex. 

This work presents a new approach for uncertainty quan-
tification to properly assess risk even if the impact of uncer-
tain parameters is complex and the response is irregular. The
adaptive modeling method combines the advantages of geo-
statistical interpolation techniques and experimental designs.
Since the response is deterministic (i.e. the fluid flow simula-
tor gives a unique response given an identical set of parame-
ters), universal kriging is used to model the response. The
requirement of a minimal amount of flow simulations to
model the response leads to using an experimental design
approach. The use of evolutive designs maximizes the
amount of information obtained for a given simulation. In
addition, the adaptive aspect of the methodology allows the
control of the number of simulations. The reservoir engineer
can decide either to add simulations to get a more accurate
approximation, or to sacrifice the approximation quality in
order to reduce the overall simulation time.  

The method was validated on many analytic functions and
with a real field case from offshore Brazil. The method
enabled an efficient modeling of highly irregular responses,
with a better approximation of the response compared to
Latin hypercube of the same size. In addition, results show,
for same quality of predictivity, a dramatic decrease in the
number of simulations compared to classical designs. This
work has the potential to improve considerably the effective-
ness of decision making while accounting for uncertainty. 
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APPENDIX A: VARIOGRAM FITTING

One of the difficulties in using kriging is the estimation of the
variogram. We propose two different ways for building a
variogram.

Case 1: Few simulations in the current experimental
design X(i)

Usually, at the beginning of the iterative process, the current
experimental design contains few simulations and thus it is
not possible to estimate empirically the covariance function.
In this case, we use the approach described in [10]. These
authors suggests assuming that the covariance is Gaussian
with the form:

In addition, we propose to estimate the value of the para-
meters θi by the restricted maximum likelihood method
(Patterson and Thompson in 1971). It has also been called the
marginal maximum likelihood estimate [10]. 

An estimate of the variance of the process is given by :

where q = range(G) and n the total number for simulations.
Using this expression, it is straightforward to deduce the

value of θ~MLE by the minimizing the function:

Case 2: Large number of simulations in the current
experimental design X(i)

After several iterations, the experimental design may have
a sufficient number of simulations to challenge the assump-
tion that the covariance is Gaussian. In this case, we propose
to determine the covariance function which minimizes an
objective function J that represents the squared sum of the
error between the empirical variogram and the theoretical
variogram:

where:
– γe(hl) represents the empirical variogram obtained accord-

ing to the simulated runs,
– γe(hl,θ) is a theoretical variogram usually used in reservoir

engineering: exponential, Gaussian or spherical,
– hl represents the distances used for the construction of the

empirical variogram.
However, using a single theoretical variogram is not

always optimal (Fig. 19a). Therefore, we propose to general-
ize the objective function J with the estimation of a linear

combination of these theoretical variogram expressions. The
variogram to optimize is then:

where:

The objective is to evaluate the values of the parameters
λ1, λ2, θθ1, θθ2, c and p in order to minimize the function:

As we can see in Figure 19b, the use of this kind of vari-
ogram allows a better fit of the experimental data - the error
is reduced. Therefore, when the number of simulations of the
experimental design X(i) is sufficient, we perform an opti-
mization of the variogram, avoiding a prior assumption on
the choice of a particular variogram model.
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Figure 19

Variogram fitting: (a) Gaussian, exponential and spherical
theoretical variogram; (b) linear combination of theoretical
variograms.
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