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Résumé — Utilisation combinée de la méthode des points pilotes et de la méthode de déformation
graduelle pour contraindre des modèles de perméabilité par des données dynamiques — On se
concentre sur des techniques de paramétrage développées dans le cadre de la modélisation inverse de
champs de perméabilité. Deux contributions essentielles sont la méthode des points pilotes et la méthode
de déformation graduelle. Ces techniques ont été mises au point pour réduire le nombre de paramètres et
pour assurer la préservation de la structure spatiale malgré les perturbations. La méthode des points
pilotes pose problème sur deux points : des valeurs extrêmes et aberrantes peuvent être attribuées aux
points pilotes et les corrélations spatiales entre les points pilotes sont négligées. Pour outrepasser ces dif-
ficultés, nous proposons une nouvelle technique de paramétrage, la méthode des points pilotes graduels.
Elle s’organise comme la méthode originale des points pilotes, hormis le fait que les valeurs des points
pilotes sont ici modifiées par l’intermédiaire des paramètres de déformation graduelle et non directement
par l’optimiseur. Contrairement aux points pilotes usuels, les points pilotes graduels ne prennent pas de
valeurs extrêmes. En outre, lorsque tous les points pilotes graduels sont perturbés à partir d’un unique
paramètre de déformation, les corrélations spatiales entre les points pilotes sont prises en compte. Aussi
de nombreux points pilotes peuvent-ils être placés sur le modèle de perméabilité à modifier sans se sou-
cier des positions sélectionnées. Les points pilotes graduels sont utilisés pour modifier un modèle locale-
ment ou globalement. L’expérience numérique développée pour illustrer l’intérêt de la méthode des
points pilotes graduels est construite suivant deux étapes. Tout d’abord, le modèle de perméabilité est
modifié dans sa globalité à l’aide de la méthode de déformation graduelle, puis des améliorations y sont
localement apportées en utilisant la méthode des points pilotes graduels.

Abstract — Combining the Pilot Point and Gradual Deformation Methods for Calibrating
Permeability Models to Dynamic Data — We focus on specific parameterization techniques developed
in inverse stochastic modeling for determining permeability fields from dynamic data using a reduced
number of parameters. Two major contributions are the pilot point method and the gradual deformation
method. They were designed to reduce the number of parameters and to respect the inferred spatial
structure. Weaknesses have been revealed for the pilot point method: pilot points can be assigned unrea-
sonably extreme values and possible correlations among the pilot points are neglected. To bypass these
limitations, a new approach, called the gradual pilot point method, is suggested. It follows the basic
workflow of the pilot point method, but the pilot point values are not driven by the optimization proce-
dure. Intermediate gradual deformation parameters are introduced which govern the pilot point values.
Compared to the original pilot point method, the gradual pilot point method does not produce extreme
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INTRODUCTION 

Identifying a permeability or a porosity field from the 
available production data (pressures, flow rates, water cuts,
etc.) and the collected 4D-seismic attributes is an important
problem in reservoir engineering and hydrology. Given a
flow model, it consists in approximating a subsurface reser-
voir by a grid of permeability or porosity values for which
the simulated flow response replicates the observed produc-
tion and 4D-seismic data. The determination of the perme-
ability or porosity values can be performed by linearizing the
fluid flow equation. Such an approach is valid as long as the
permeability field is not too heterogeneous. An alternative is
to invert the production data based on an optimization
process. The problem boils down to minimizing an objective
function which quantifies the mismatch between the mea-
sured data and the corresponding simulated data. For fluid
flow simulation, it is common to handle millions of grid
cells, with each grid cell having a permeability and a porosity
value. In this case, the purpose of the optimization process is
to identify millions of unknowns from the available data. 

The difficulty in analyzing subsurface flow is mainly due
to the heterogeneity of the geological formations. This com-
plexity is often described by a random function with a spatial
structure (e.g., variogram) inferred from the measured perme-
ability or porosity data. This feature motivated the develop-
ment of specific parameterization techniques which ensures
the preservation of spatial structure and which decrease the
number of parameters. A first geostatistical parameterization
technique was introduced by de Marsily (1978): it is often
referred to as the pilot point method or the master location
method. This technique was extended later by RamaRao et
al. (1995) and Gomez-Hernandez et al. (1997) to the calibra-
tion of permeability fields to pressure data. Recently, a sec-
ond geostatistical parameterization technique was suggested
by Hu (2000a): the gradual deformation method. Both tech-
niques provide means to modify permeability and porosity
fields from a limited number of parameters while preserving
the spatial variability, which is a major improvement 
compared to other existing parameterization techniques.

In this paper, we review the major contributions devel-
oped for determining permeability fields from production
data. First, we recap how permeability fields are built and
which kind of data is integrated in the objective function to
be minimized. Secondly, we focus on the existing geostatisti-

cal parameterization techniques, that is the pilot point method
and the gradual deformation method. Then, we suggest mix-
ing both of them to derive a new version of the pilot point
method, called the gradual pilot point method. This last
approach overcomes the limitations often pointed out for the
original pilot point method. The last section focuses on a
numerical example, which stresses the interest of the pro-
posed parameterization technique. 

1 INVERSE PROBLEM

Production data and 4D-seismic attributes are called dynamic
data since they change with time due to fluid displacements.
Here, permeability fields are considered as realizations of a
random function. They are used to populate grids with a
finite number of cells. As a result, the whole paper focuses on
finite permeability realizations. This random function is
defined from a variogram, which characterizes the distribu-
tion of permeability (or porosity) values in space. Identifying
a permeability field from dynamic data is an inverse prob-
lem. When simulating multi-phase flow, the relationship
between the petrophysical properties and the dynamic
answers is highly non-linear. Thus, the method to find a solu-
tion must be iterative. A solution can be reached through an
optimization procedure. In such a case, an objective function
quantifying the suitability of the permeability field has to be
defined and minimized. The first difficulty is about the objec-
tive function definition, the second one being about the mini-
mization process.

Early approaches placed the emphasis on providing a
good fit only between the simulated and the measured pro-
duction data. Basically, a log-permeability field y is proposed
as a starting guess. Then, the production answers are com-
puted through a fluid flow simulation. The suitability of the
proposed log-permeability field is given by the objective
function:

(1)

Summation is over the total number of dynamic data. wi

are weighting coefficients, dobsi are the collected dynamic
data, and dsimi are the corresponding simulated answers. g is
the operator from the space of unconditional log-permeability
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variations. Moreover, when the whole set of pilot points is modified simultaneously from a single 
deformation parameter, the correlations among the pilot points are accounted for. Thus, many pilot
points can be placed on the permeability field, whatever their locations. They can produce local and
global deformation. The performed numerical experiments show that a two-step approach for calibrating
permeability fields is useful. First, the gradual deformation method is used to globally deform the perme-
ability fields. Once the permeability fields have been globally improved, they can be locally refined using
the gradual pilot point method.
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fields to the space of production data: dsim = g(y). After 
analyzing the computed data, the log-permeability field is
adjusted until it reproduces the dynamic data as well as possi-
ble. As Equation 1 does not account for correlations among
the permeability values, the final calibrated permeability field
can exhibit any kind of spatial structure, which is not 
suitable. 

The actual log-permeability field should be the minimizer
of the objective function. However, when solving inverse
problems, a difficulty known as ill-posedness may arise (e.g.,
Sun, 1994). A well-posed problem must fulfill the following
requirements:
– a solution must exist;
– the solution must be unique;
– the solution must continuously depend on the data. 

If one of these criteria is not fulfilled, the problem is ill-
posed. The third criterion is often difficult to respect. Adding
small perturbations in the data may force large errors in the
solution. To make the problem well-posed or at least, “less”
ill-posed, one refers to regularization. If regularization is
properly performed, it should reduce the risk of introducing
large errors in the solution and exclude the possibility of pro-
ducing non-physical solutions. Two regularization processes
are usually listed. 

The first one is based upon the addition of extra informa-
tion into the objective function:

(2)

Index i refers to the available dynamic data while index j
refers to the parameters of the model. Vector y is the current
estimate of the log-permeability field, vector yo is its prior
estimate and vector v gathers weighting coefficients.
Subscript i lists the vector components. α is a regularization
coefficient. The second right-hand side term or regularization
term prevents the log-permeability field y from departing too
far from the prior estimate. For zero α, the regularization
term vanishes and the problem may be ill-posed. The prob-
lem boils down to the previous case when there is only
dynamic data in the objective function. For infinite α, the
problem is well posed, but the observed data have no impact
on the solution. The greatest problem is to find an appropri-
ate value for α. Neuman (1973) showed that adding prior
information in the objective function maintains the log-per-
meability field close to the prior estimate as desired, but also
stabilizes the optimization process. A more general frame-
work for integrating prior information is given by the inverse
problem theory (Tarantola, 1987):

(3)

The first term on the right-hand side is the likelihood con-
straint and measures the mismatch between the simulated and
the observed data. The second one is the prior constraint and
evaluates the discrepancy between log-permeability field y
and the prior estimate yo. Covariance matrix CD quantifies
the experimental and theoretical uncertainties and covariance
matrix CY characterizes the uncertainties in yo. Minimizing
this equation yields a solution y so that g(y) is close to dobs
and y is close to yo. Computing such an objective function
may be difficult because of the two covariance matrices to
invert. CD is assumed to be diagonal: computing its inverse is
straightforward. Discussing this hypothesis is beyond the
scope of this paper. Conversely, determining CY

-1 may be
very difficult, essentially because of the dimension of y. An
example of application is provided in seismic inversion. Brac
et al. (1988) and Tonellot (1999) proposed to add geological
information into the objective function through the prior
term. CY was considered to be a function of the range, the
variance and the variogram type. The range and the variance
were defined from the spatial structure. The variogram was
assumed to be exponential to make computations tractable. 

The regularization process can be also envisioned from a
different point of view. Instead of adding information into the
objective function, one may narrow the space wherein the
solution is searched. To successfully restrict the parameter
space, some knowledge is required about the nature of the
solution. In reservoir engineering, one often assumes some
geological continuity, which characterizes the spatial distribu-
tion of porosity and permeability in the reservoir. The zona-
tion approach (Stallman, 1956) was developed with this idea
in mind. This comprises grouping grid cells to create sub-
regions with constant permeability values. Optimization is
then performed by adjusting these values. Unfortunately, the
spatial structure handled by the zonation method keeps rough.
In this paper, we give attention to more sophisticated geosta-
tistically-based parameterization techniques, which also add
restriction to the solution space: the pilot point method and the
gradual deformation method. These methods allow for per-
turbing log-permeability (or porosity) fields from a few para-
meters while preserving the spatial variability. Therefore, the
objective function is reduced to the data mismatch term:

(4)

In such a case, it is not necessary to invert CY. The prior
constraint, that is the spatial structure, is accounted for
through the parameterization itself. This feature is discussed
in the following sections.

2 PILOT POINT METHOD

The pilot point method can be used to calibrate perme-
ability fields to dynamic data (RamaRao et al., 1995;
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Figure 1

Applying the pilot point method to change the values of
points located in 150 and 450 for a one dimensional realiza-
tion of a normal random function.

Gomez-Hernandez et al.; 1997). At this point, the idea is to
identify a log-permeability field from production or 4D-seis-
mic data using the pilot point method. Log-permeability
means that we handle the logarithm of permeability instead
of permeability itself. The reason is that the distribution 
of permeability is lognormal. Thus, the distribution of log-
permeability is normal. 

2.1 Pilot Point

Let us consider a randomly drawn log-permeability field y
discretized over a grid: it does not respect any permeability
measurement except luckily. A pilot point is a grid cell
whose log-permeability value may be modified (Fig. 1). The
resulting perturbation is propagated to the whole log-
permeability field by conditional kriging (e.g., Goovaerts,
1997; Chilès and Delfiner, 1999):

(5)y x y x y x y xc dK K( ) = ( ) + ( ) − ( )⎡⎣ ⎤⎦
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Figure 2

a) Unconditional log-permability field (y) and log-data.
b) Kriging estimate built from the log-data (ydk) and kriging estimate built from the unconditional value simulated at the data location (yk). 
c) Unconditional  log-permeability field minus the kriging estimate built from the unconditional value simulated at data location. 
d) Constrained realization.
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yc is the log-permeability field constrained to the available
log-permeability data, but also to the values attributed to the
pilot points. ydK is the kriging estimate of the log-permeabil-
ity measurement and the pilot point values. yK is the kriging
estimate of the y values simulated at the log-permeability
data locations plus the pilot point locations. A one dimen-
sional example is shown in Figure 2 to illustrate how
Equation 5 is used. To apply this relationship, one must
know the mean and covariance of y as well as the locations
and values of the measurements. The pilot point is consid-
ered just as a data, although its value can change during an
optimization process. Such an approach ensures, under some
constraints regarding the lag between pilot points, that the
modified log-permeability field still honors the same vari-
ability or covariance model as the starting log-permeability
field. This point is further discussed in the following section.
Figure 1 shows realizations of a normal random function
obtained when varying the values of two pilot points.

2.2 Optimization with Pilot Points 

Optimization processes based upon the pilot point method
are built as described below. The pilot point values are
regarded as unknowns, which are progressively adjusted by
the optimizer to minimize the objective function. We recall
that the objective function is reduced to the data mismatch
term as given by Equation 4. 

Given a stochastic function, a log-permeability field y is
randomly drawn to populate the grid. Once a few grid cells
have been selected to be pilot points, their y values are used
as starting values by the optimizer. Then, the log-permeabil-
ity field is constrained to the log-permeability data and the
pilot point values. A fluid flow simulation is run with the
resulting conditional field. The computed production answers
are compared to the collected dynamic data to estimate the
objective function. If this objective function is small enough,
the search process is stopped. If not, the pilot point values are
modified and the process is iterated. Describing the multiplic-
ity of the pilot point versions is beyond our scope. A more
detailed review is available in de Marsily et al. (2000).

The pilot point method allows for decreasing the number
of parameters and for honoring the prior constraint provided
the pilot point locations are not too close to each other: the
pilot point values are modified without accounting for possi-
ble correlations. It is also clear that the pilot point method
may be subject to numerical artefacts. RamaRao et al. (1995)
noticed that pilot points may be attributed unreasonably
extreme values to force the fluid flow simulation to repro-
duce the measured dynamic data.

3 GRADUAL DEFORMATION METHOD

The gradual deformation method was initially developed for
gradually changing Gaussian stochastic reservoirs models

while preserving their spatial variability (Hu, 2000a). Then, it
was extended to non Gaussian reservoir models simulated
from sequential indicator (Hu et al., 1999) and Boolean (Hu,
2000b; Le Ravalec-Dupin and Hu, 2004) algorithms. The
gradual deformation method is a stochastic parameterization
technique just as the pilot point method, which allows for
narrowing the search space.

3.1 Global Deformation

The simplest gradual deformation scheme consists in com-
bining two independent Gaussian random functions Y1 and Y2
with mean yo and identical covariances:

(6)

θ is a deformation parameter. This relation ensures that Y(θ)
is also a random Gaussian function with the same mean and
the same covariance as Y1 and Y2, whatever the value of the
deformation parameter. Given two independent realizations
y1 and y2 of Y1 and Y2, a continuous realization chain y can
be described varying the deformation parameter: 

(7)

y1 is considered as our initial realization. y2 is just a 
randomly drawn independent realization. Varying the defor-
mation parameter induces the continuous deformation of
realization y1 (Fig. 3). When θ is zero, y = y1. When it is π/2,
y = y2. Applying Equation 7 leads to the gradual deformation
of  the whole initial realization. As a result, the deformation
is said global.

Figure 3

Applying the global gradual deformation to modify the same
starting one dimensional realization as in Figure 1.
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The gradual deformation principle can be extended to the
combination of more than two independent realizations
(Roggero and Hu, 1998). In this case, the number of defor-
mation parameters equals the number of complementary 
realizations added to the starting one.

3.2 Local Deformation

The building of a y log-permeability field calls for the gener-
ation of random numbers to populate all of the grid cells.
These ones can be transformed into independent normal
deviates: they provide a Gaussian white noise, termed z, of
mean zero and variance 1.

The Gaussian white noise z is used to produce a y log-
permeability field from some stochastic simulation technique
(e.g., Le Ravalec et al., 2000). For instance, the Cholesky
decomposition method yields a y log-permeability field from
y = m + Lz. m is the mean vector and L is a lower triangular
matrix built from the covariance matrix of y: C = LLt. 
The main difference between y and z relies on the spatial
structure: y is a realization with a continuous spatial structure
and z exhibits a chaotic behavior. This difference is essential
when handling local gradual deformation. When you locally
apply a gradual deformation process, you induce a disconti-
nuity between the modified zone and the non modified one.
If you locally apply the gradual deformation process to y,
you severely perturb its continuous spatial structure, which
must be avoided. If z is locally changed from the gradual
deformation method, it is still chaotic and the spatial continu-
ity of the resulting y realization is preserved.

Therefore, we apply the gradual deformation method to z
instead of y. We can select a group of grid cells and modify
their normal deviates through the following formulation:

(8)

z1 and z2 yield realizations y1 and y2, respectively. The 
superscript “group” stands for “selected grid cells”. When
applying Equation 8 to the selected normal deviates only
(Hu, 2000a; Le Ravalec-Dupin et al., 2001), the y realization,
built from z, is modified in the corresponding selected grid
cells. In fact, the neighboring grid cells (that is, closer than
one correlation length) are also impacted by the deformation
process. The deformation is said to be local.

A degenerate case of the local gradual deformation con-
sists in applying the gradual deformation process to the nor-
mal deviate of a single point. The group of cells reduced to
one cell. Thus, the modified point gets kind of a pilot point.
However, in these conditions, the magnitude of the resulting
deformation is much smaller than what was observed when
using the pilot point method (Figs. 1 and 4).

Figure 4

Applying the local gradual deformation method to change the
values of points located in 150 and 450 for the same starting
one dimensional realization as in Figure 1.

3.3 Optimization with Gradual Deformation 

The gradual deformation method integrates nicely to 
optimization processes. Again, this parameterization ensures
regularization by narrowing the parameter space: the objec-
tive function is reduced to the data mismatch term (Equation
4). The basic flow chart is described in the following subsec-
tion. The idea is to calibrate a y log-permeability field to pro-
duction data by adjusting the deformation parameters.
Instead of considering the y field, we apply the gradual defor-
mation method to the underlying Gaussian white noise z for
the reason explained in the previous section.

First, a realization chain is built from the initial Gaussian
white noise and randomly drawn complementary Gaussian
white noises using the gradual deformation method
(Equation 8). The resulting Gaussian white noise z is used to
generate a log-permeability field y. This unconditional field
can be constrained to the available data referring to condi-
tional kriging (Equation 5). Running a fluid flow simulation
for this permeability field provides numerical answers, which
are compared to the dynamic data. The quality of the fit is
estimated through the objective function. A search process is
implemented to determine the deformation parameters mini-
mizing the objective function.

A single realization chain allows for exploring a very tiny
part of the realization space and can lead to an unsatisfactory
fit. Thus, a new realization chain is constructed by combining
the optimal Gaussian white noise identified at the end of the
previous search process with a new randomly drawn comple-
mentary Gaussian white noise. As explained above, a new
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search process is implemented to investigate this new chain.
Sometimes, it may be impossible to determine deformation
parameters decreasing the objective function. The reason is
that the search process is limited to the chain of realizations
built from Equation 8. Of course, this chain is just a very tiny
part of the whole search space. Clearly, investigating a given
chain does not necessarily lead to a decrease of the objective
function. When this happens, we go to another chain: the start-
ing guess is unchanged and a new independent realization is
drawn for z2, so that we build a new chain and explore another
part of the space. The search process is iterated until an appro-
priate matching is achieved. Building successively chains of
realizations allows for exploring further the realization space.
More details can be found in Le Ravalec-Dupin (2005).

Like the pilot point method, the gradual deformation
method can be used to identify log-permeability fields from a
reduced number of parameters while preserving the spatial
variability. It has also other advantages. First, it yields log-
permeability fields that depart much more from the prior esti-
mate than the pilot point method. This property is linked to
the fact that gradual deformation can be used to modify a
whole realization. Second, as long as the gradual combina-
tions are performed with respect to the basic hypotheses
(combinations of independent realizations with identical
means and covariances), the extreme variations  pointed out
for the pilot point method are avoided. However, when very
local deformations are required to improve the matching of
production data, gradual deformation based optimizations
may converge very slowly. We propose in the following sec-
tion to integrate part of the pilot point methodology into the
gradual deformation method to make it more efficient in the
case of localized deformations.

4 GRADUAL PILOT POINT METHOD

4.1. Optimization with Gradual Pilot Points

As mentioned above, the pilot point method presents two 
disadvantages: 
– it can attribute non physical values to the pilot points; 
– it disregards the possible correlations among the pilot

point values. 
To bypass the first difficulty, RamaRao et al. (1995) sug-

gested to add inequality constraints to the permeability values
of the pilot points. 

In this section, we propose an alternative method, named
gradual pilot point method, involving the mixing of both pilot
point method and gradual deformation method. We aim at
keeping as close as possible to the general workflow designed
for the pilot point method. The essential difference with the
original pilot point method is that pilot points are changed
now through gradual deformation rather than optimization.

Figure 5

Workflow for a gradual pilot point based optimization.

The workflow of the proposed approach is as follows 
(Fig. 5). A starting y log-permeability field is produced from
an arbitrary geostatistical simulator. The y values obtained at
the pilot point locations are regarded as the starting pilot
point values. Then, we need to draw a complementary set of
pilot points. Because the pilot points are located anywhere on
the grid, we use the Cholesky decomposition algorithm (e.g.,
Goovaerts, 1997) to produce an unconditional realization of
the pilot point values respecting the same covariance as the
log-permeability field. The Cholesky algorithm applies to the
covariance matrix of the pilot points. Other geostatistical
simulators could be envisioned also as far as they are not
restricted to regularly-spaced locations. Using the gradual
deformation method to combine the two sets of pilot points
provides a set of pilot points, which is used to constrain the
starting y log-permeability field (Equation 5). Then, numeri-
cal dynamic answers are simulated and compared to the
available dynamic data. By varying the deformation parame-
ters, we build a chain of pilot point realizations. A search
process is implemented to identify the gradual deformation
parameters leading to the best fit. Thus, we identify a set of
optimal pilot points. When the fit is unsatisfactory, the search
process is iterated, starting from the set of optimal pilot point.
A new complementary set of pilot point values is indepen-
dently generated. Combining the new starting pilot point val-
ues and the new complementary ones provides a new chain,
which can be investigated again.

nono

no yes

yes

Unconditional
permeability field

Flow simulation

Stop

Starting set of
pilot points

Independent set
of pilot points

Conditioning to
pilot points

(+ other static data) 

Gradual
deformation

Set of pilot
points 

Obj. func. < J? Convergence?

175



Oil & Gas Science and Technology – Rev. IFP, Vol. 62 (2007), No. 2

Figure 6

Applying the gradual pilot point method to change the values
of points located in 150 and 450 for the same starting one
dimensional realization as in Figure 1.

4.2 Different Gradual Pilot Point Strategies

A special feature of the proposed approach is that pilot points
can be gradually combined from one or several deformation
parameters. Two alternatives are distinguished.

4.2.1 Independent Gradual Pilot Points

We may apply the local gradual deformation method by
independently varying the pilot point values with one 

deformation parameter per pilot point. In this case, the 
correlations between the pilot points are disregarded, but the
number of degrees of freedom is the same as the one with the
original pilot point method.

4.2.2 Correlated Gradual Pilot Points

Another possibility is to apply the global gradual deformation
rule to modify all pilot point values simultaneously from a
single deformation parameter. Thus, the correlations among
the pilot points are accounted for, but the number of degrees
of freedom is reduced to one, which is less than with the orig-
inal pilot point method. In this special case, as correlations
are accounted for, there is no restriction regarding the 
number and the location of the gradual pilot points.

4.2.3 Discussion

Both approaches have advantages and disadvantages. In any
case, whatever the approach selected, we avoid the unreason-
able variations noticed when using the original pilot point
method, which is a major improvement. An example of
deformation obtained by gradually varying pilot point values
from a single deformation parameter is shown in Figure 6.
The variation range is smaller than with the original pilot
point method (Fig. 1), but much more significant than with
the gradual deformation method applied at points.

As a result, the gradual pilot point method allows for vary-
ing a realization at points from a few parameters while pre-
serving the spatial variability. Unlike the pilot point method,
it prevents pilot points from being assigned extreme non
physical values and it accounts for the spatial correlations
between the pilot points (when a single deformation coeffi-
cient is used to modify all of the pilot points). In addition, it
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produces more significant deformation than the gradual
deformation method when applied to points. This last feature
could make it more efficient to reduce the objective function.

5 APPLICATION TO A SYNTHETIC CASE

We created a synthetic problem to test the potential of the
gradual pilot point method. The proposed problem consists in
mapping a permeability field from a saturation map, which is
assumed to be deduced from seismic attributes measured at
time t.

We focus on this example, because it was shown that the
global gradual deformation method is not efficient enough to
match 4D-seismic attributes around the saturation front
(Langlais et al., 2005). Our idea is to use first the global
gradual deformation method to approximate the saturation
map and second the gradual pilot point method to refine this
approximation around the front.

5.1 Reference Case

The reference log-permeability field (Fig. 7, left) is 
discretized over 100 × 100 grid cells of size 1 m  × 1 m. The
log-permeability distribution is normal and characterized by
a mean of 3, a variance of 1. The variogram is spherical with
a correlation length of 60 grid cells along the principle axis at
45° and 15 grid cells along the perpendicular axis. The reser-
voir is assumed to be initially saturated by oil. Water is

injected in the bottom left corner and produced in the top
right corner. Then, a flow simulation is run to estimate the
saturation map at time t (Fig. 7, right). This map gives the
reference data to be inverted in order to estimate the perme-
ability field if we consider now that this permeability field is
unknown. 

5.2 Optimization Experiment

Given a starting guess (Fig. 8, left), an optimization process
involving global gradual deformation was run to minimize
the mismatch between the reference saturation map (Fig. 7,
right) and the saturation map simulated at time t for the pro-
posed permeability model. Figure 8 shows the successive
changes in the permeability model and the resulting satura-
tion maps during optimization. Global gradual deformation
induces strong changes in the permeability model mainly
during the first iterations. It allows for globally approximat-
ing the saturation front. The evolution of the objective func-
tion during this first numerical experiment is plotted in
Figure 9. It strongly decreases during the first iterations and
then, it reaches a plateau. Such a behavior is often evidenced
with the gradual deformation method: after a given number
of iterations, it gets very difficult to reduce the data misfit.
The objective function decreases by 65% after about 150
fluid flow simulations. Let us note that the number of flow
simulations could be significantly reduced if using gradients
to guide the minimum search.

177

350

300

250

200

150

100

50

0.5

0.6

0.7

0.8

0.9

1.0

0.4

0.3

0.2

0.1

0

Saturation

Permeability, loop #0

350

300

250

200

150

100

50

Permeability, loop #3

Saturation

0.5

0.6

0.7

0.8

0.9

1.0

0.4

0.3

0.2

0.1

0

550

500

450

400

350

300

250

200

150

100

50

Permeability, loop #7a 

Saturation

0.5

0.6

0.7

0.8

0.9

1.0

0.4

0.3

0.2

0.1

0

500

450

400

350

300

250

200

150

100

50

Permeability, loop #10

Saturation

0.5

0.6

0.7

0.8

0.9

1.0

0.4

0.3

0.2

0.1

0

Figure 8

Permeability models (top) and corresponding saturation maps (bottom) at different iterations during the optimization process involving global
gradual deformation.



Oil & Gas Science and Technology – Rev. IFP, Vol. 62 (2007), No. 2

Figure 9

Objective function against the number of flow simulations.

Figure 10

Map of differences between the reference saturation map and
the saturation map simulated for the optimal permeability
model determined at the end of the first optimization process.
Gradual pilot points are located where differences are the
largest.

In a second step, we start from the optimal permeability
model identified from the previous optimization process and
we launch a second optimization with gradual pilot points in
order to minimize further the objective function. To locate
the gradual pilot points, we compute the differences between
the reference saturation map and the one simulated for the
previous optimal permeability model. Gradual pilot points
are placed where the mismatch is the most important 
(Fig. 10). All pilot point values are perturbed from the same

deformation parameter, which means that spatial correlations
are accounted for. The obtained results are displayed in
Figure 11. Gradual pilot points provide additional flexibility
and make it possible to slightly change the shape of the satu-
ration front. Thus, the objective function is further reduced
by 13% (Fig. 12).

CONCLUSIONS

The emergence of geostatistics to describe heterogeneous
subsurface formations has motivated the development of two
geostatistical parameterization techniques: the pilot point
method and the gradual deformation method. Basically, they
allow for varying a log-permeability (or porosity) field from
a few parameters while preserving the spatial variability.
These geostatistical parameterization techniques have advan-
tages and disadvantages.

The pilot point method is used to modify only locally the
prior permeability estimate. On the other hand, the gradual
deformation method provides permeability fields that depart
significantly, and not only locally, from the prior estimate. 

A few weaknesses have been revealed for the original
pilot point method: the pilot points can be attributed unrea-
sonable values and possible correlations between the pilot
points are neglected. To bypass these limitations, we intro-
duce the gradual pilot point method. We keep the workflow
designed for the pilot point method, but we refer to the grad-
ual deformation method to vary the pilot point values. When
the whole set of pilot points is modified at once from a single
deformation parameter, pilot point correlations are accounted
for, but the number of freedom degrees is 1. In this case,
many pilot points, even close, can be placed on the perme-
ability field. They allow for deforming locally and globally
the permeability field. When the pilot point values are modi-
fied using one deformation parameter per pilot point, the cor-
relations are disregarded and the number of freedom degrees
equals the number of pilot points. In this case, the minimal
distance between two pilot points is the correlation length.
This technique can be used to produce local deformation
only. Whatever the used approach, the unreasonably high or
low permeability values are avoided, which is a major
improvement compared to the original pilot point method.

A numerical experiment was carried out to underscore the
interest of the gradual deformation method and the gradual
pilot point method. The problem considered was concerned
with the building of a permeability model by matching a sat-
uration map measured at some t time. It was solved using a
two-step approach. The gradual deformation method was
first used to approximate the saturation front. Then, at some
point, it was more and more difficult to improve the matching:
the objective function reached a plateau. Therefore, we used
the gradual pilot point method, which provided flexibility and
allowed for decreasing further the objective function.
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Figure 12

Objective function against the number of flow simulations.
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