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Résumé — Optimisation sous contraintes de la répartition d’énergie d’un véhicule de type micro-
hybride — Les véhicules hybrides constituent l’une des technologies les plus prometteuses pour
réduire la consommation de carburant et les émissions de polluant. Le travail présenté est basé sur une
architecture de type micro-hybride. Le véhicule complet est modélisé sous AMESim, la consommation
de carburant pour un cycle défini étant ensuite calculée. Le contrôle de la répartition d’énergie entre
les deux sources de puissance est optimisé par rapport à la consommation de carburant, à l’aide d’un
algorithme de programmation dynamique (DP). Nous proposons par la suite une autre méthode basée
sur le Principe du Minimum de Pontryagin, qui fournit des résultats très proches de ceux de (DP) en
un temps de calcul plus faible. Les résultats d’optimisation fournissent la loi de contrôle optimale à
partir de laquelle peuvent être dérivées des lois de contrôle implémentables sur véhicule. Différentes
tailles de batterie / moteur électriques sont testés, ainsi que différents types de moteur thermique, afin
d’évaluer le gain en consommation.

Abstract — Constrained Optimization of Energy Management for a Mild-Hybrid Vehicle — Hybrid-
electric vehicles appear to be one of the most promising technologies for reducing fuel consumption and
pollutant emissions. The presented work focuses on a power train architecture for mild hybrid vehicles.
The complete mild-hybrid vehicle is modelled in AMESim environment and the fuel consumption for
given driving cycles is estimated. The control strategies for the energy management between the two
power sources are optimized with respect to fuel consumption with a classical dynamic programming
(DP) method. We propose an other method based on Pontryagin Minimum Principle which furnishes
results very close to the DP results for a significantly reduced calculation time. These optimization
results furnish the optimal control laws from which could be derived the control laws to be implemented
on the vehicle. To illustrate the potential of optimization for component design, mild hybrid vehicles
with varying battery and electric motor sizes, with different types of engine (gasoline / natural gas), are
evaluated in terms of consumption gain with the presented methodology.

New Trends on Engine Control, Simulation and Modelling
Avancées dans le contrôle et la simulation des systèmes Groupe Moto-Propulseur
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INTRODUCTION

Growing environmental concerns coupled with concerns
about global crude oil supplies stimulate research on new
vehicle technologies. Hybrid-electric vehicles appear to be
one of the most promising technologies for reducing fuel
consumption and pollutant emissions [1]:
– Fuel economy. It is well known that the kinetic energy

gained by the classical vehicle after an acceleration can
not be recuperated when braking. One of the advantage
of the hybrid vehicle is the ability to recuperate a part
(depending of efficiencies) of this energy, to store it in a
battery, and to re-use it latter. This electric energy can
therefore be used by an electric motor to power the vehi-
cle and to save fuel.

– Reduction of pollutant emissions. As using an electric
motor to supply the traction power, it becomes possible to
distribute the power in order to reduce the pollutant emis-
sions. The engine can also be downsized, and still fulfill
the maximum power requirements of the vehicle, which
can decrease again the pollutant emissions. Last but not
least, hybrid vehicles allow to eliminate the idle fuel con-
sumption by turning off the engine when no power is
required (system called “stop’n go’’).
The control of hybrid power trains is more complex than

control of classic engine. Indeed, the control laws have to
deal with the state of charge of the battery, which provides
the level of energy remaining, and with the variable effi-
ciency of each element of the power train. Optimization
of energy management strategies on given driving cycles is
often used to derive sub-optimal control laws to be imple-
mented on the vehicle (see among others [2-5]).

IFP, in partnership with Gaz de France and the Ademe,
has combined its downsizing technology with a natural gas
engine in a small urban demonstrator vehicle (VEHGAN
vehicle), equipped with a starter alternator and super capac-
ity manufactured by Valeo [6]. In this paper, we focus
on this hybrid architecture which is modelled in AMESim
environment. Two different optimization algorithms are pre-
sented and applied on this model:
– a Dynamic Programming algorithm, classically used to

handle this kind of optimal control problem [2-4]),
– an algorithm based on Pontryagin Minimum Principle.

In a third section, we will show some results on the
architecture of the VEHGAN vehicle with different kinds
of engine, different sizes of battery and of electric motor.

1 SYSTEM MODELLING AND OPTIMAL CONTROL
PROBLEM

1.1 AMESim Model

AMESim environment combined with IFP libraries Drive,
Engine and Exhaust allows to model anything from a whole

Figure 1

AMESim Model of the VEHGAN vehicle.
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Figure 2

Fuel consumption map of natural gas engine of VEHGAN
vehicle.

vehicle to the fine behavior of the engine. Figure 1 presents
the scheme of our AMESim model of the VEHGAN: a mild
hybrid vehicle with a natural gas engine and a starter alter-
nator [6].

This AMESim model consists in a model of:
– the vehicle (mass, wheel inertia, resistance force);
– a driver model (which can anticipate the driving cycle);
– a driving cycle to follow (imposing vehicle speed and

gear shifts);
– a manual gearbox coupled with a clutch;
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Engine and electric motor torque simulated with AMESim model of VEHGAN vehicle of Figure 1.
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Figure 4

State of charge of the battery simulated with AMESim model
of VEHGAN (Top); First 200 s of the NEDC cycle (Bottom).

– a 660 cm3 natural gas engine, with fuel consumption map
displaying in Figure 2;

– a 3 kW starter alternator;
– a battery (voltage source and an internal resistance) of

0.4 Ah;

– and the control unit which manages the energy reparti-
tion between the engine and the electric motor. Control
laws obtained by solving the optimal control problem
presented in Section 1.2 can be tested thanks to this con-
trol unit.
Figure 3 and 4 display results of a simulation of the natu-

ral gas hybrid vehicle on the NEDC cycle. In this example,
electric motor is used only for small torque requests; we
can also see the regenerative breaking, when the battery is
recharged.

1.2 Optimal Control Problem

The optimal control problem under study consists in min-
imizing the fuel consumption of the vehicle along a given
vehicle cycle, taking into account physical constraints from
battery, engine and electric motor. The general optimization
problem is the following:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min

{
J(u) =

∫ T

0
L(x(t), u(t), t)dt + g(x(T ), T )

}

subject to:

ẋ = f (x(t), u(t), t), x(0) = x0

xmin � x(t) � xmax

umin(t) � u(t) � umax(t)

(1)
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with
– 0 and T : respectively the initial and the final time steps

of the given driving cycle,
– u(t): control, i.e. repartition of the energy between the

engine and the motor,
– x(t): state of charge (SOC) of the battery,
– L(x(t), u(t), t): instantaneous fuel consumption,
– f (t): function controlling the variations of state of charge

of the battery,
– g(x(T ), T ): penalization term handling a constraint on the

final state of charge.
Let introduce other useful notations:
• the requested torque (associated with the chosen cycle) is

written as

Trq(t) = Te(t) + Tm(t) + Tbk(t) (2)

• the engine torque is

Te(t) = u(t)Trq(t) (3)

• the electric motor torque is

Tm(t) = (1 − u(t))Trq(t) (4)

During braking, Trq(t) < 0, the braking torque completes the
electric motor torque to slow down the vehicle.

Tbk(t) = Trq(t) − T min
m (t) (1) (5)

with T min
m (t) is the minimal electric motor torque depending

on the engine speed, thus depending on time.
A simple model is implemented for the battery, the state

of charge of the battery evolves according to

ẋ(t) = −ω(t)Tm(t)K′

Ubatt(t)ncapa
(6)

with
– ω(t): clectric motor and engine speed,
– Ubatt(t): battery voltage,
– K′: scaling constants,
– ncapa: nominal capacity of the battery.

In the following, we assume that the battery voltage is
constant along the cycle. We set K = K′

Ubatt .ncapa and by
replacing Tm(t) by its expression, we obtain

ẋ(t) = −Kω(t)(1 − u(t))Trq(t) (7)

In this optimal control problem, we make several hypoth-
esis:
• the pollutant emissions are not taken into account in the

optimization process,
• the engine speed ωe and the electric motor speed ωm are

equal, ωe = ωm = ω,

(1) We neglect any friction torque of the engine.

• as the optimization problem is applied on a mild hybrid
vehicle, the engine can not be stopped when the torque is
provided only by the electric motor, except for the stop’n
go mode at the idle speed. So, for a command u(t) that
cancels the engine torque and for positive torque request,
the fuel consumption does not vanish (Fig. 2),
• recharging the battery is only possible for negative

torques (breaking request), we did not consider recharg-
ing by an additional engine torque beyond the driver
request torque. Thus the command u(t) remains
between 0 and 1,
• we neglect any friction torque of the electric motor.
• the gear ratios are constant (they are not optimized, as

they are given by the vehicle characteristics) and the
transmission is considered ideal (no losses).
As in the general optimal control problem (1), the com-

mand variable u(t) but also the state variable x(t) are submit-
ted to several constraints:

• the engine can only produce a positive torque, and is
limited to a maximum torque which depends on engine
speed ω(t):

0 � Te(t) � T max
e (ω(t)) (8)

• the electric motor has a maximum torque, and also a min-
imum torque during regeneration breaking:

T min
m (ω(t)) � Tm(t) � T max

m (ω(t)) (9)

• the storage capacity implies a minimum and a maximum
state of charge of the battery (which are fixed to 0% and
100% in our example)

xmin � x(t) � xmax (10)

• the final state of charge is constrained to be equal to the
initial state of charge to maintain a null electrical energy
balance (to avoid to discharge totally the battery for min-
imizing the consumption)

x(0) = x(T ) (11)

Constraints on command u(t) are directly derived from
(8, 9) and (10)

u(t)Trq(t) � T max
e (t) (12)

T min
m (t) � (1 − u(t))Trq(t) � T max

m (t) (13)

In the following, we will write U(t) in continuous time
(respectively Uk in discrete time) for the feasible domain for
u(t) respecting the constraints (12) and (13).

2 DYNAMIC PROGRAMMING OPTIMIZATION

Classically, the Dynamic Programing method (DP) is used
to solve the problem (1) [3, 4]: it relies on a very simple
idea, the principle of optimality, stated by Richard Bellman
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as follows:
An optimal policy has the property that, whatever the

initial state and initial decision are, the remaining decision
must constitute an optimal policy with regard to the outcome
resulting from the first decision.

The principle of optimality (or Bellman principle) sug-
gests that an optimal policy can be built step by step sequen-
tially, first by building an optimal policy for the “tail sub-
problem’’ involving the last step, then by extending the
optimal policy to the “tail subproblem’’ involving the last
two stages, and by iterating until an optimal policy is built
for the complete time interval. DP algorithm applied to
our problem furnished an optimal trajectory of the state of
charge of the supercapacitor. First, the optimal control prob-
lem (1) is discretized in time:

min
u∈U J(u) :=

N−1∑
k=0

Lk(xk, uk) (14)

where Lk(xk, uk) is the cumulated fuel consumption over the
time interval [k, k + 1], xk is the state of charge of the super
capacity at time k, and N is the final time of the driving
cycle.

The constraint on the final SOC (11) is introduced by a
penalizing term g(xN) = β.(xN − x0)2 (β, a constant to be
chosen (2)) in (14)

min
u∈U J(u) :=

N−1∑
k=0

Lk(xk, uk) + g(xN) (15)

From Bellman principle, the minimum cost Vk(xk) at the
time step k, 0 � k � N − 1, is then expressed as follows:

Vk(xk) = min
uk∈U

(Lk(xk, uk) + Vk+1( fk(xk, uk))) (16)

fk being the function that modelizes the battery state of
charge dynamic in the discrete form of (7). At time N, the
cost function is

VN(xN) = g(xN) (17)

This optimization problem is solved backward from final
time step to initial time step using a discretization of func-
tion V in the command space and in the state space. It
allows a fast optimization: (N − 1) constrained optimization
problems (16) of one parameter, uk, to be solved with a fine
time discretization of the controller. It furnishes the optimal
power repartition uk at each time step regarding fuel con-
sumption with constraints on the battery state of charge. (We
refer to [12] for some theoretical results on the convergence
of the method and error estimations).

A direct constrained optimization of (15) is an alternative
method but leads to a large non linear optimization problem
with a large number of inequality constraints. This is the

(2) In the following results, the value of 10 has been implemented.

reason why the DP algorithm is often preferred when the
number of state variables is small (one or two state vari-
ables).

2.1 DP Optimization Algorithm

As to get Vk(xk) for different values of xk, a 2-D grid (time
and SOC nodes) is set. A standard time step used in our
examples is 1 s, and the SOC step is 0.5%. A classical
DP algorithm consists in computing each feasible command
(to go from a point xi

k to an other point x j
k+1), finally taking

the best trajectory (3). In such a method, the state of charge
trajectory remains on the points of the defined grid in the
state space. We propose, in our algorithm, to interpolate
the function V(xk, k) in the state space, for each time step
k. Therefore, it is possible to use a (state) continuous con-
strained optimization algorithm to solve each problem (16).

The optimization algorithm is only used when Trq > 0:
when the request torque is negative or null, the optimal com-
mand uk is completely known, as the battery is recharged as
much as possible, the command uk being constrained by the
minimal electric motor torque from (13) and by maximum
SOC from (10).

2.2 Results Obtained with DP Method

DP algorithm described in previous section is applied on
the VEHGAN vehicle problem: the optimal SOC trajectory,
depending of the fuel consumption map and of the vehicle
cycle is displayed for NEDC cycle in Figure 5.
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NEDC cycle (Top); Optimal state of charge trajectory of
VEHGAN vehicle computed for NEDC cycle with DP algo-
rithm (Bottom).

(3) The trajectory which minimizes at each step k the sum (Lk(xk , uk) +
Vk+1( fk(xk , uk))).
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In this problem, the optimization is performed on NEDC
cycle, where both vehicle speed and gear shift are given.
Optimization results obtained with DP method are presented
and commented in Section 4.

3 PONTRYAGIN MINIMUM PRINCIPLE OPTIMIZATION

In this section, we propose an alternative method to solve
the optimal control problem (1). It relies on the Pontryagin
Minimum Principle (PMP) and unlike the DP method does
not require any discretization scheme.

3.1 Pontryagin Minimum Principle

The optimization problem (1) with the constraints defined in
Section 1.2 is rewritten as:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
u∈U

{
J(u) =

∫ T

0
L(x(t), u(t), t)dt + g(x(T ), T )

}

subject to

ẋ = f (x(t), u(t), t), x(0) = x0

xmin � x(t) � xmax

(18)

We introduce the Hamiltonian function

H(u(t), x(t), p(t)) = L(x(t), u(t), t) + p(t)ẋ(t) + η(t)h(x(t), t)
(19)

p(t) is called the co-state or adjoint variable of our sys-
tem. η(t) is the Lagrange multiplier associated with the state
inequality constraints xmin � x(t) � xmax. In this section,
we simplify the problem by cancelling this constraint. We
assume here that L is a smooth convex function of u and f
is affine linear versus u.

The Pontryagin Minimum Principle states that a neces-
sary condition of the problem (18) is the existence of p(t)
such that

∂H
∂x
= −ṗ (20)

If there is no constraint on command variable, we have
also

∂H
∂u
= 0 (21)

We refer to [8] and [10] for further details about Pontrya-
gin Principle.

3.2 Application

The fuel consumption L(t) to be minimized in (18), is
defined by a discrete map L(ω, Te) that can be modelled by a
2-order polynomial [7], to be used for continuous optimiza-
tion. Choosing a 2-order polynomial ensures an unique solu-
tion (under some assumptions on polynomial coefficients)

and allows to model a large variety of engine maps as shown
in Section 4. The fuel map is therefore written as:

L(ω, Te) =
2∑

i, j=0

Ki j.ω
i.T j

e (22)

The problem (18) is written as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
u∈U

{
J(u) =

∫ T

0
L(ω(t), Te(t))dt + g(x(T ), T )

}

subject to

ẋ = −Kω(t)(1 − u(t))Trq(t), x(0) = x0

xmin � x(t) � xmax

(23)

From (20) and (7) we obtain

ṗ = 0⇒ p = constant = p0 (24)

Without any constraint on the state and on the command,
the minimization problem can be easily solved. The mini-
mum fuel consumption is then reached for u∗ so as

∂H
∂u
=
∂L
∂u
+ p
∂ f
∂u
= 0 (25)

The optimal command u∗ can be calculated easily by
solving Equation (25), which depends linearly on u. u∗
finally depends on p(t), Trq(t) and ω(t)

u∗(t) = −

2∑
i=0

Ki1ω(t)i + p0.K.ω(t)

2
2∑

i=0

Ki2ω(t)i.Trq(t)

(26)

The expression of p0 (27) is obtained by replacing u∗(t)
by its expression in the state equation (7), and by integrating
this equation in time

p0(τ) =
x(0) − x(τ) −

∫ τ
0

(K.ω(t)(Trq(t) + F(t))dt

∫ τ
0

ω(t)2K2

2
2∑

i=0

Ki2ω(t)i.Trq(t)

dt

(27)

with

F(t) =

2∑
i=0

Ki1ω(t)i

2
2∑

i=0

Ki2ω(t)i.Trq(t)

(28)

and τ is the considered final time which can be set to a
different value than T as we will see in next section.



G. Rousseau et al. / Constrained Optimization of Energy Management for a Mild-Hybrid Vehicle 629

0 200 400 600 800 1000 1200
−40

−20

0

20

40

60

80

Time

S
O

C

Step 0

0 200 400 600 800 1000 1200
0

20

40

60

80

100
Step 3

Time

S
O

C

0 200 400 600 800 1000 1200
0

20

40

60

80

100
Step 1 & 2

Time

S
O

C

0 200 400 600 800 1000 1200
0

20

40

60

80

100
Final trajectory

Time

S
O

C

Figure 6

The proposed algorithm based on Pontryagin Minimum Principle.

3.2.1 Handling Constraints on Control and State Variables

The previous section presents the computation of the opti-
mal control of the continuous problem in a restricted case
where no constraint is introduced. While control constraints
are generally easily taken into account, handling the state
constraints is cumbersome in the continuous optimal con-
trol problem. To handle control constraints, several singular
cases can be found in [8]. In our application, we are not able
to find an analytic solution of the optimal control problem
with control constraints: indeed, these constraints depends
on time (via their dependency on engine speed) and depends
on p0 which depends on final SOC (cf. previous section).
By an iterative method (called algo1 in the following), we
can compute the value of p0 in order to reach the desired
SOC at final time with the control, computed thanks to (26),
projected on bound constraints (coming from the feasible
domain U).

Concerning the inequality state constraints, [8-12] have
studied the general problem (18). In our application, we
can show that p(t) presents discontinuities at the time steps
where the state inequality constraints are saturated. The
time steps where such discontinuities occur are not a priori
known: this prevents us to solve explicitly the continuous
optimal control problem with these state constraints.

3.2.2 PMP Optimization Algorithm

Considering the difficulties described in the previous sec-
tion, we propose a heuristic iterative method that allows to
find a sub-optimal trajectory from the constrained continous
optimal control problem (18). The proposed algorithm con-
sists in an initialization step and 3 steps:

0. algo1 is applied on the NEDC driving cycle [0, T ] (see
Fig. 6 Step 0). The obtained optimal trajectory violates
the state constraints, the farthest SOC (i.e. the “most
violated point’’) from the bounds being for instance in
the figure at point (x(tv) = −37%, tv = 818 s). The initial
time is called ti, here set to 0.

1. The SOC at tv is projected on the nearest bound of the
feasible state domain (for instance, SOC is fixed to xmin =

0 at point tv).
2. algo1 is applied again on [ti, tv] (see Fig. 6 Step 2). If

the obtained trajectory still violates the state constraints
on [ti, tv], steps 1 and 2 are applied again on the farthest
SOC from the bounds (defining a new point tv). This
procedure is repeated until the trajectory remains on the
feasible domain. Then the last point tv becomes the new
initial time ti in step 3.
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Figure 7

NEDC cycle (Top); Optimal state of charge trajectory of VEHGAN vehicle computed for NEDC cycle with PMP & DP algorithm (Bottom).

3. algo1 is applied on [ti, T ] (see Fig. 6 Step 3). If the
obtained optimal trajectory still violates the state con-
straints, steps 1 and 2 are repeated. This sequence is
repeated until we reach the final step T at the desired
final SOC, without violating the state constraints (Fig. 6
bottom right).

3.3 PMP compared to DP Results

Using the same fuel consumption map and vehicle cycle
than with Dynamic Programming, we can compare the two
optimization algorithms along the NEDC driving cycle in
Figure 7.

The two curves are very similar, the commands u(t) being
very similar too. We now compare the two algorithms on
Urban Artemis driving cycle [13], with the same fuel con-
sumption map, in Figure 8.

We notice again that the 2 curves are almost superim-
posed. In the following will be presented some results
obtained with Pontryagin Principle algorithm, as it is about
1000 times faster than DP (DP algorithm computation time
is about 1 hour), and gives quite the same results than DP.
The small differences between the 2 algorithms can be min-
imized by taking smaller time and space discretization steps
in DP, but it leads to a too expensive computation time.

4 RESULTS

In this section we present results for different kinds of
engine, different sizes of battery, and different sizes of elec-
tric motor. As our mild-hybrid vehicle is a urban vehicle, we
will present results on the urban Artemis driving cycle. For
all simulations, we will assume that initial SOC is 80%, final
SOC of 80% being introduced as a constraint to be close to
initial SOC.

4.1 Different Kinds of Engine

The both following results, natural gas engine and gasoline
engine, were obtained with a battery capacity of 0.4 Ah,
and a 3 kW electric motor, as on the VEHGAN vehicle, in
Figures 9 and 11.

4.1.1 Natural Gas Engine

The first engine used is a natural gas engine, from the
VEHGAN project.

As the natural gas engine has an efficiency growing with
the torque (the best operating points being between 2500
and 4500 rpm and over 60 Nm, see Fig. 2), the optimization
decreases the fuel consumption using the electric motor in
the worth efficiency points, i.e. when ω < 2500 rpm. As
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Figure 8

Urban Artemis cycle (Top); Optimal state of charge Trajectory of VEHGAN computed with PMP & DP algorithm (Bottom).
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Figure 9

Urban Artemis driving cycle with natural gas engine: optimal
state of charge trajectory (Top); electric motor torque (Bottom).

using electric motor on low torque operating points would
lead to worth operating points as illustrated in Figure 10,
only high torque operating points are modified by an active
hybrid mode.

4.1.2 Small Gasoline Engine

We now use a gasoline fuel map to optimize the fuel con-
sumption for a 600 cm3 gasoline engine.

As displayed in Figure 12, the optimized operating points
are quite the same than ones of natural gas engine. Nev-
ertheless, as the gasoline engine does not present a good
efficiency at high torque operating points, the electric motor
is also useful in high torque requests.

4.2 Different Sizes of Battery

In this section we optimize the fuel consumption for the nat-
ural gas engine, with different sizes of battery. As we can see
in Figure 9, the state of charge crosses the point xmin = 0%,
meaning that the whole range of the state of charge of the
battery is used. Then, if we increase the battery capacity,
the optimization algorithm should give better results in term
of fuel consumption.

With a battery capacity of 0.4 Ah, we obtain a fuel con-
sumption of 5.90 l/100 km, while a pure thermic mode
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Figure 10

Operating points of engine in hybrid mode obtained by PMP algorithm for the urban Artemis Driving Cycle with a natural gas engine.

consumption gives 6.08 l/100 km on the whole cycle, so
we decreased the consumption of 2.9%. Optimizing the
torque repartition with a battery capacity two times big-
ger, i.e. 0.8 Ah, we obtain the same fuel consumption:
5.90 l/100 km.

We obtain the same consumptions with the two battery
sizes because of the low power of the electric motor, which
is often saturated at regenerative breaking.

4.3 Increasing the Electric Motor Torque Power

From the conclusion of these last results, we multiply by
two the minimum and maximum electric motor power, to
take advantage of a higher energy when regenerative break-
ing. We also increase the size of the battery, to have coher-
ent battery capacity regarding to regenerative breaking and
maximum electric motor power. Figure 14 presents the SOC
evolution and the electric motor torque. The fuel consump-
tion with this new electric motor reaches 5.87 l/100 km, i.e –
3.4% compared to pure thermic mode, and −0.5% compared
to the smaller electric motor and battery. Figure 15 resumes
all the results obtained.

4.4 Discussion

The previous results show that it is possible to decrease by
2 to 4% of fuel consumption along a urban driving cycle
with this mild hybrid vehicle. Activating the stop’n go mode

would save around 10 to 15%, but it would also decrease the
available electric energy from battery, as this energy must be
used to turn on the engine after a stop.
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Figure 11

Urban Artemis driving cycle with gasoline engine: optimal
state of charge trajectory (Top); electric motor torque (Bottom).
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Figure 12

Operating points of engine in hybrid mode obtained by PMP algorithm for the urban Artemis Driving Cycle with a gasoline engine.
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Figure 13

Urban Artemis driving cycle with natural gas engine and a 0.8
Ah battery capacity: optimal state of charge trajectory (Top);
electric motor torque (Bottom).
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Figure 14

Urban Artemis driving cycle with natural gas engine, a 6 kW
electric motor and a 1.2 Ah battery capacity: optimal state of
charge trajectory (Top); electric motor torque (Bottom).

CONCLUSIONS

In this study, we have presented two of the three most
used methods in optimal control optimization. The heuris-

tic method based on Pontryagin Minimum Principle, well
known in the free state constraint case, has been applied
successfully to our state constrained problem, with very
similar results to Dynamic Programming methods and a
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Electric Motor
Power (kW) 3 6

Battery Capacity
(Ah) 0.4 0.8 1.2 1.6

Hybrid mode
Consumption
(l/100 km)

5.90 5.90 5.87 5.87

Thermic mode
Consumption
(l/100 km)

6.08

Figure 15

Results with different sizes of battery and of electric motor on
Artemis Urban Cycle.

computation time divided by 1000. Nevertheless, there is
currently no theoretical proof to confirm the presented vali-
dation results. Moreover, there are some limitations to this
approach, mainly the assumptions on the fuel consumption
map, modelled by a smooth convex function of control u
(2-order polynomial); this limitation could lead to a bad
approximation of the real fuel consumption for some partic-
ular engines, thus to a non optimal use of the electric motor.
The case study, a mild hybrid vehicle, does not present as
good results as could be obtained with a full hybrid, in terms
of fuel consumption gain. So in future work will be studied
optimization applied to full-hybrid vehicles, as the ability to
turn off the engine while the electric motor only power the
vehicle is a key advantage. Other degrees of freedom, as the
gear-shifting sequence should also be taken into account in
the optimization problem. Reduction of pollutant emissions
will also be studied by considering a second state.

From optimization results could be derived a suboptimal
feedback law [3, 4, 7] based on state of charge and/or speed
measurements.

ACKNOWLEDGEMENT

We would like to thank Gilles Corde, Philippe Moulin and
Antonio Sciarretta for helpful discussions and advice at
various stages of the elaboration of this work. We acknowl-
edge Jean-Charles Dabadie and Luc Voise for their precious
help on Amesim modelling, and Quang Huy TRAN for
his advice on numerical methods. We would like to thank

the referee Antonio Sciarretta and Gérard Gissinger for their
constructive remarks on this paper.

REFERENCES

1 German, J.M. (2003) Hybrid powered vehicles, Society of
Automotive Engineers.

2 Sciarretta, A., Guzzella, L. and Back, M. (2004) A Real-Time
Optimal Control Strategy for Parallel Hybrid Vehicles with on-
board Estimation of the Control Parameters. Proceedings of
IFAC Symposium on Advances in Automotive Control AAC04,
pp. 502-507.

3 Scordia, J. (2004) Approche systématique de l’optimisation
du dimensionnement et de l’élaboration de lois de gestion
d’énergie de véhicules hybrides. Thèse, Université Henri
Poincare, Nancy 1, France.

4 Wu, B., Lin, C.-C., Filipi, Z., Peng, H. and Assanis, D. (2002)
Optimization of Power Management Strategies for a Hydraulic
Hybrid Medium Truck. Proceeding of the 2002 Advanced Vehi-
cle Control Conference, Hiroshima, Japan.

5 Delprat, S. (2002) Évaluation de stratégies de commande pour
véhicules hybrides parallèles. Thèse, Université de Valenci-
ennes et du Hainaut-Cambresis, France.

6 Tilagone, R. and Venturi, S. (2004) Development of Natural
Gas Demonstrator Based on an Urban Vehicle with a Down-
sized Turbocharged Engine. Oil Gas Sci. Technol., 59, 6, 581-
591.

7 Guzzella, L. and Sciarretta, A. (2005) Vehicle Propulsion Sys-
tems, Springer.

8 Bryson, E. and Ho, Y.C. (1975) Applied Optimal Control,
Hemisphere Publishing Corp.

9 Hartl, R.F., Sethi, S.P. and Vickson, R.G. (1995) A Survey of
the Maximum Principles for Optimal Control Problems with
State Constraints. SIAM Rev., 37, 181-218.

10 Pontryagin, L.S., Boltyanskii, V.G., Gamkrelidze, R.V. and
Mishchenko, E.F. (1974) Théorie mathématique des processus
optimaux, Editions Mir, Moscou.

11 Evans, L.C., An Introduction To Mathematical Optimal Control
Theory.

12 Guilbaud, T. (2002) Méthodes numériques pour la commande
optimale. Thèse, Université de Paris VI.

13 André, M. (2004) The ARTEMIS European driving cycles
for measuring car pollutant emissions. Sci. Total Environ.,
334-335, 73-84.

Final manuscript received in June 2007

Copyright © 2007 Institut français du pétrole
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made
or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this
work owned by others than IFP must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute
to lists, requires prior specific permission and/or a fee: Request permission from Documentation, Institut français du pétrole, fax. +33 1 47 52 70 78, 
or revueogst@ifp.fr.




