
HAL Id: hal-02017227
https://ifp.hal.science/hal-02017227

Submitted on 13 Feb 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Information Technologies for Interoperability
Jean-Pierre Belaud, D. Paen, L. Testard, D. Rahon

To cite this version:
Jean-Pierre Belaud, D. Paen, L. Testard, D. Rahon. Information Technologies for Interoperabil-
ity. Oil & Gas Science and Technology - Revue d’IFP Energies nouvelles, 2005, 60 (4), pp.639-660.
�10.2516/ogst:2005046�. �hal-02017227�

https://ifp.hal.science/hal-02017227
https://hal.archives-ouvertes.fr

Oil & Gas Science and Technology – Rev. IFP, Vol. 60 (2005), No. 4, pp. 639-660
Copyright © 2005, Institut français du pétrole

Information Technologies for Interoperability
J.P. Belaud1*, D. Paen2, L. Testard2 and D. Rahon3

1 Laboratoire de Génie chimique, CNRS UMR 5503, INPT-ENSIACET, 118, route de Narbonne, 31077 Toulouse Cedex 4 - France
2 RSI, Parc technologique de Pré Milliet, 38330 Montbonnot - France

3 Institut français du pétrole, Hélioparc Pau-Pyrénées, 2, avenue du Président Pierre Angot, 64000 Pau - France
e-mail: jeanpierre.belaud@ensiacet.fr - didier.paen@rsi-france.com - laurent.testard@rsi-france.com - daniel.rahon@ifp.fr

* To whom all correspondence can be addressed or duplicated

Résumé — Technologies de l’information pour l’interopérabilité — Aujourd'hui, les systèmes
d'information font largement appel aux réseaux. Le développement des applications informatiques
complexes s’oriente vers un assemblage de composants disponibles sur un réseau local ou sur Internet.
Ces composants doivent être localisés et identifiés en termes de services disponibles et de protocole de
communication avant le lancement d’une requête. Cet article présente les principales technologies qui
permettent à des solutions informatiques hétérogènes et réparties de collaborer. Le premier chapitre
introduit les concepts de base des composants et des middleware. Les chapitres suivants décrivent les
différents modèles de communication et d'interaction disponibles à ce jour et leur utilisation dans des
applications industrielles. Enfin, le dernier chapitre montre comment des modèles différents peuvent
interagir.

Abstract — Information Technologies for Interoperability — Information systems largely involve
networking these days. The development of complex business applications is now focused on an assembly
of components available on a local area network or on the net. These components must be localized and
identified in terms of available services and communication protocol before any request. This article
presents the most common technologies that allow heterogeneous and distributed software systems to
collaborate. The first part of the article introduces the base concepts of components and middleware
while the following sections describe the different up-to-date models of communication and interaction
and their use in industrial applications. To finish, the last section shows how different models can
themselves communicate.

Software Interoperability for Petroleum Applications
Interopérabilité logicielle : les applications dans l’industrie pétrolière

D o s s i e r

http://ogst.ifp.fr/
http://www.ifp.fr/
http://ogst.ifp.fr/index.php?option=toc&url=/articles/ogst/abs/2005/04/contents/contents.html

Oil & Gas Science and Technology – Rev. IFP, Vol. 60 (2005), No. 4

LIST OF ACRONYMS

API Application Programming Interface
ASP Application Server Pages
B2B Business to Business
B2C Business to Consumer
BPEL Business Process Execution Language
BPEL4WS Business Process Execution Language for Web

Services
BPML Business Process Markup Language
BPMI Business Process Management Initiative

www.bpmi.org
CAPE Computer Aided Process Engineering
CASE Computer Aided Software Engineering
CCM CORBA Component Model
CLI Common Language Infrastructure
CLR Common Language Run-time
CML Chemical Markup Language www.xml-cml.org
CO CAPE-OPEN
COGents Agent-based Architecture for Numerical

Simulation www.cogents.org
CO-LaN CAPE-OPEN Laboratory Network

www.colan.org
CORBA Common Object Request Broker Architecture
COTS Components Off The Shelves
(D)COM (Distributed) Common/Component Object Model
DCS Distributed Control Systems
DLL Dynamic Link Library
DTD Document Type Definition
EAI Enterprise Application Integration
ebXML electronic business XML
EJB Enterprise Java Bean
ERP Enterprise Resource Planning
GUI Graphical User Interface
GUID Global Unique Identifiers
HTML Hyper Text Markup Language
HTTP Hyper Text Transfer Protocol
IDL Interface Definition Language
IIOP Internet InterOrb Protocol
IL Intermediate Language
INDISS INDustrial and Integrated Simulation Software

http://www.rsi-france.com/
IS Information System
ISO International Standard for Organization

www.iso.org
IT Information Technologies
J2EE Java 2 Platform Enterprise Edition
JRMP Java Remote Method Protocol
JSP Java Server Pages
MDA Model Driven Architecture
MOM Message Oriented Middleware

OA Object Adapter
OASIS Organization for the Advancement of Structured

Information Standards www.oasis-open.org
OLE Object Link Embedded
OMG Object Management Group www.omg.org
OO Object Oriented
OOP Object-Oriented Programming
OPC Object linking and embedding for Process

Control www.opcfoundation.org
ORB Object Request Broker
OS Operating System
PHP Hypertext Preprocessor
POSC Petrotechnical Open Standards Consortium

www.posc.org
RFP Request For Proposal
RPC Remote Procedure Call
SAML Security Assertions Markup Language
SGML Standard Generalized Markup Language
SOA Service Oriented Architecture
SOAP Simple Object Access Protocol
SQL Structured Query Language
SVG Scalable Vector Graphics
UDDI Universal Description, Discovery, Integration
UML Unified Modeling Language
VB Visual Basic
W3C World Wide Web Consortium www.w3c.org
WSDL Web Services Description Language
WS-I Web Services Interoperability association

www.ws-i.org
XMI XML Metadata Interchange
XML eXtensible Markup Language
XSL eXtensible Stylesheet Language

INTRODUCTION

It is a clear trend that enterprise software systems are becom-
ing more and more complex. Applications have changed
from simple stand-alone programs in a homogeneous envi-
ronment to highly integrated and distributed systems in het-
erogeneous environments. Over the last ten years the need
for web-enabled systems has led to additional requirements.
In 1990’s there was a need for connecting the whole software
system of an enterprise, now the web environment results in
the requirement to interconnect the software systems of
enterprises to take advantage of the great business opportu-
nities from the Net. The resulting Information software
System (IS) plays a key role in enterprise; it is based on three
fundamental parts: a set of data, a set of software processing
and, a set of end-user presentation channels. Among usual
needs for modern IS, the ability to interact and to exchange
information with external or internal, homogeneous or het-
erogeneous and remote or nearby applications is a key point.

640

JP Belaud et al. / Information Technologies for Interoperability

The engineering field does not escape the problematic of
information exchange. This journal issue has illustrated con-
crete examples of software interoperability for petroleum
applications. As an example, Belaud (2001) introduced
CAPE-OPEN (CO), a key technology for interoperability
and integration of process engineering software components
allowing a components off the shelves (COTS) engineering.

The need for integration has been illustrated in previous
articles addressing interoperability issues in application
domains. This final article focuses on the technologies for soft-
ware interoperability with immediate industrial applications.
IBM Glossary (2004) defines interoperability as the capability
to communicate, execute programs, or transfer data among
various software units. Information Technologies (IT) for
interoperability are technologies that allow interoperability in a
way that requires the final user to have little or no knowledge
of the unique characteristics of those units.

The first section gives an overview of information systems
and the associated technologies, then specific IT for commu-
nication, packaging and bridging are introduced.

1 SOFTWARE ARCHITECTURE AND TECHNOLOGIES

The different steps of software system development require
one to view the system with respect to several individual per-
spectives such as those of end-users, analysts, designers,
developers, etc. The software architecture is a good target as
a candidate to manage these different points of view along
the system lifecycle (Hofmeister et al., 2000). UML authors
also recommend making use of a development process which

is architecture-centric. According to Booch et al. (1998),
software architecture encompasses the set of significant deci-
sions about the organization of a software system such as:
– selection of the structural elements and their interfaces by

which a system is composed, behavior as specified in col-
laborations among those elements;

– composition of these structural and behavioral elements
into a larger subsystem and architectural style that guides
this organization.
We can distinguish four steps in software system history:

centralized architecture in 70’s, decentralized architecture in
80’s, distributed architecture in 90’s and web architecture in
2000’s. The latter integrates the web standard technologies
and internet business. The use of web technologies has
allowed more complex functionalities to be offered on the
net; from information publishing to heterogeneous applica-
tion integration. Services-Oriented Architecture (SOA),
Model Driven Architecture (MDA), as well as grid, seman-
tic, and autonomic architectures should be the main key-
words for the next steps of software architecture.

As shown in Figure 1 web (enabled/distributed) architec-
ture is based on multi-tier architecture that separates the
presentation, business logic and data. We use this architec-
tural vision to identify and place the different IT that can be
selected for building the system (Serain, 2001). This
approach concerns not only the physical view as shown in
Figure 1 but also the logical view (e.g. code organization,
application design, etc.).
– The presentation tier allows the graphical interaction

with the end-users over the network using a thin client

641

Internet
TCP/IP; HTTP; SOAP

Presentation
browser; HTML;

XML; OOP

Business logic
OOP; XML; EJB; COM;

.NET; CCM; web service

Presentation
web server; PHP; ASP; JSP; XML; OOP

Data
relational/XML data base; SQL

Local area network
TCP/IP; HTTP; SOAP;
IIOP; JRMP; DCOM

Figure 1

Web architecture basics.

Oil & Gas Science and Technology – Rev. IFP, Vol. 60 (2005), No. 4

(basically the browser) or a rich client (a dedicated GUI).
The thin client presentation is performed using web
browser-HTML (with script languages and XML if any).
The communication with the business logic tier is based
on HTTP-TCP/IP. Web dynamic technologies such as
PHP, Microsoft ASP and Java JSP do not differ from this
principle since these pages are compiled and executed on
the web server side to generate just-in-time HTML pages
displaying the graphical interface of e-business or other
applications. On the other side, the rich client presentation
is developed with usual Object-Oriented Programming
(OOP) languages such as Java, VB, C++, C#, Delphi, etc.,
and the communication is carried out by protocols from
middleware technology such as CORBA-IIOP, (D)COM,
.NET Remoting, Java RMI-JRMP, XML-HTTP and
SOAP according to component based programming. The
middleware technology is the basic mechanism by which
software components transparently make requests to and
receive responses from each other on the same machine or
across a network.

– The business logic tier encloses the application logic
representing the enterprise know-how and rules. Usually
this side is developed according to a component based
approach with Unified Modeling Language (UML). This
approach is based on advanced component models such as
EJB from SUN/Java community, (D)COM and .NET from
Microsoft, CORBA/CCM from OMG or web services
from W3C. These components are mainly implemented
following an OO programming and component intercom-
munication is performed by middleware inner protocols.
The components run within a software framework called
application server that provides a set of technical services
such as transaction, identification, load balancing, security,
data access, persistence, etc. The business logic tier can
include legacy systems, web server and portal server.

– The data tier has the data persistence service with rela-
tional, XML and object data bases generally using SQL to
manage data. In addition to usual data access techniques,
work is being done on XML-enabled and web service data
management (SQLXML).
To clarify the set of IT discussed in this article and intro-

duced above using the architecture view, we propose to
“classify” them according to six categories (the term technol-
ogy is used in a broad sense):
– modeling technology: languages (UML), meta-model

(MOF), model engineering (MDA);
– communication technology: Internet protocols (TCP/IP,

HTTP), data model (XML), middleware and related
communication protocol (CORBA-IIOP, DCOM, .NET
Remoting, Java RMI-JRMP, SOAP);

– implementation technology: object-oriented program-
ming (Java, C++, C#, Eiffel), web programming (HTML,
XML, ASP, JSP, PHP, PERL);

– packaging technology: component models and program-
ming (EJB, COM, .NET, CCM, web services);

– bridging technology: COM-Java RMI, EJB-.NET;
– memory technology: relational, object, XML data base,

SQL;
In order to develop such modern software applications and

systems, technology selection involves many criteria. One
main issue is to know if the technology is an (open) standard
technology or proprietary technology. Open standard tech-
nologies are developed by software engineering from IT/soft-
ware companies who collaborate within “neutral” organiza-
tions such as W3C, OASIS and OMG in accordance with a
standardization process. Such organizations represent a new
kind of actor additional to more traditional actors (academics,
software-hardware-services suppliers and end-users compa-
nies). It is worth noting that this trend, issued from web philos-
ophy, is also present in process and petroleum engineering
field. Open standard technologies are freely distributed data
models or software interfaces. They provide a basis for com-
munication and common approaches and enable consistency
(Fay, 2003), resulting in improvements in developments,
investment levels and maintenance. Clearly the common effort
to develop IT standard or domain oriented standard and its
world-wide adoption by a community can be a source of cost
reduction because not only is the development cost shared but
also the investment is expected to be more future-proof. Open
computing promises many benefits: flexibility/agility, integra-
tion capability, software editor independence, low develop-
ment cost and adoption of technological innovation.

It is also possible to build IS from enterprise software
especially for enterprise management. Enterprise Resource
Planning (ERP), Enterprise Application Integration (EAI)
and portal applications can provide build-in solutions that
need to be tailored to enterprise context and requirements.
These solutions, open source or commercial, involve stan-
dard technologies and compliant web architecture.

The following sections deal with information technolo-
gies for software interoperability explicitly communication,
packaging and bridging technologies.

2 COMMUNICATION TECHNOLOGY OVERVIEW

2.1 Interface, Class and Component

An interface, a key element for middleware technology, is a
collection of possible functions used to specify through its
operations the services of a software unit. Depending on the
selected middleware technology, interfaces are developed
with a specific definition programming language such as
OMG IDL for CORBA, Microsoft IDL for COM, Java inter-
face for RMI and WSDL for web services.

A class is an object-oriented concept. It describes a set of
shared objects and belongs to the implementation step. An

642

JP Belaud et al. / Information Technologies for Interoperability

object is an instance of a class. An object satisfies an inter-
face if it can be specified as the target object in each potential
request described by the interface. It belongs to the imple-
mentation step. However this object is distinct from the other
usual objects since it collects the remote calls. The develop-
ment of distributed software does not imply the choice of an
actual object-oriented language (commonly C++, VB and
Java) since middlewares such as COM and CORBA intro-
duce the notion of pseudo-objects.

The component is a software unit that encapsulates the
implementation of business process logic. Sessions (2000)
stresses the difference between component and object tech-
nology, the former being a packaging and distribution tech-
nology, focusing on what a component can do, while the latter
is an implementation technology, focusing on how a
component works. Objects and components are software enti-
ties; objects are typically fine grained units and interact in the
same computing process while components are rather coarse
grained units and are available outside their own process with
respect to interface definitions. They are issued from different
software design. The difference between these two states is
clearly identified in the CO standard from CO-LaN. A CO
compliant component is a piece of software that includes the
supplier proprietary codes—objects or not—which realize
or/and use CO interfaces. The communication between CO
component instances is defined unambiguously by the CO
interfaces introduced in Belaud and Pons (2002). In this case
the middleware technologies are CORBA and COM.

2.2 Middleware Principles

Component based applications consist of several pieces of
software which are executed independently and reside on the
same host or on remote hosts over a network such as intra-
extra- Internet. There is a need for application integration and
so for component communication through well defined inter-
faces. With this aim the middleware is a set of software that
allows and organizes communication and information
exchange between client component and server component.
Figure 2 shows this technology as a universal communica-
tion bus, the “glue” of any IS, for integrating the different
enterprise applications. It relies on a basic client-server
communication model adding a key element; the interface
defined in terms of Interface Definition Language (IDL) as
defined previously.

A middleware solution provides mechanisms for interface
definition and communication as well as additional services
easing the use and implementation of component based soft-
ware. The middleware interoperability protocol defines how
the components communicate which each other. It defines
marshalling process, how the data structures (integer, real,
string, etc.) can be translated into network messages. There
are three kinds of middleware technology: Message Oriented
Middleware (MOM), Remote Procedure Call (RPC) such

Figure 2

Middleware and client/server model.

as SOAP and Object-Oriented (OO). The interface design of
OO middleware follows the object-oriented paradigm. At
present the OO middleware solutions are (D)COM and .Net
Remoting from Microsoft, CORBA from OMG and RMI
from Java/SUN. COM, CORBA and SOAP are detailed in
following sections.

All communication between software components is han-
dled by middleware technology. Let us see the different alter-
natives for inter-system communication technologies e.g.
how our system could process requests between software
components. As a first approach we distinguish two ways for
exchanging information: the data model and Application
Programming Interface (API). These methods are usually
used in IS based on open computing architecture. With the
data model we can use point to point software integration
and file format/database integration. But this static asynchro-
nous communication is not appropriate to systems that use
intensive integrated calculations. Indeed the performance
penalty of managing physical files can be high and can pre-
vent this approach being effective for exchanging informa-
tion. Therefore interoperability can be achieved by API for
carrying out inter-communication processes. We can identify
basically two kinds of API technologies that are commonly
used in any IS project, tightly-coupled and loosely-coupled
middleware. Other distinctions can be used such as
distinction based on data/control/presentation integration
(Wassermann, 1990).
– Tightly-coupled middleware technology: this technology

requests that software components have a close relation-
ship. Typically this means that the components are built
on identical middleware. OO middleware are typical
examples. Here the components are closely linked by
implementation dependence. For example a COM com-
ponent can interoperate with a COM component on
Windows. However non trivial solutions exist to break
this tightly coupling such as bridging technologies dis-
cussed in Section 6.

Appli 1 Appli 2 Appli 3

Client Server

Middleware

643

Oil & Gas Science and Technology – Rev. IFP, Vol. 60 (2005), No. 4

– Loosely-coupled middleware technology: software
components do not need to share the common technology
platform and they can be deployed easily over the web.
The components are loosely-coupled by implementation
independence. The web is based on this kind of protocol
with HTML/HTTP. In this field the emerging industry
standard for loosely-coupled inter-communication process
is SOAP.
Section 3 introduces XML for information exchange by

data model and Section 4 CORBA, COM and SOAP for
information exchange by API.

2.3 Marshalling

An important notion for the API model is marshalling as
remarked previously. Because distributed systems are hetero-
geneous (i.e. non uniform hardware, operating systems, etc.)
the exchanges of data between different components must
adhere to the same conventions with respect to the internal
encoding of numeric data (little-endian, big-endian), to the
encoding of data over a network (unicode strings).

Marshalling is the mechanism that ensures that the para-
meters of a method call are properly passed between the
caller of the method and the callee (i.e. the code that imple-
ments the method).

2.4 Implementation of Components

The development of software that involves components is
known as component based software engineering (Brown,
1996). This is special case of object oriented software engi-
neering, and development techniques and methodologies
apply here also. Object oriented software development
methodologies exist and the implementation of software
components benefit from the use of these methodologies e.g.
unified process (Chan, 2003, discusses unified process
applied to COTS), iterative models for components integra-
tion (Boehm, 2000).

In this paper, we address the particular problem of the
implementation of software components. The main idea in
components is to identify business objects that correspond to
specialized activities, such as modeling, thermodynamics,
numerical resolution, control and advanced control.
Specialized engineers are developing new algorithms inside
specialized components that implement interfaces dedicated
to the corresponding domain. Each component can evolve
independantly and remain compliant as long as it preserves
the behavior of interfaces.

The use of UML (Booch et al., 1998) as a modeling lan-
guage is the central point of software engineering tools.
Some processes for software development employ standard

644

CArcUnit
Operation

CCapeOpenUnit
Operation

(from CAPE-OPEN)

CUnitOperation
Factory

CUnitOperation CUnitOperationImpl

1

#p_UnitImpl

1

Creation of the
units

Implementation
of the units:
CAPE-OPEN,
stub, etc.

CNodeUnit
Operation

CBatteryLimitUnit
Operation

CStubUnit
Operation

CIndissUnit
Operation

Types of units:
node, arc, or
battery limit

Figure 3

UML class diagram for unit operations..

JP Belaud et al. / Information Technologies for Interoperability

use of UML and tools to develop software of high quality
with an iterative lifecycle. UML use cases are good examples
to describe project requirements. The analysis is here done
using class diagrams with definition of high level classes,
packages and interfaces for components. The developer has a
global view of the classes and packages. Classes can imple-
ment different levels of complexity and heterogeneous envi-
ronment. Figure 3 shows a class diagram from the INDISS
project presented in Section 4.2. The dynamic behavior is
modeled with sequential or collaboration diagrams. The
development can be iterative due to the use of components.
Some components are implemented very simply for first pro-
totype; the idea is to attack risks early with an iterative lifecy-
cle and to focus the process on the architecture first. It is bet-
ter to detect major problems at the beginning rather than at
the end of the project. Then releases are planned with evolv-
ing level of detail.

Application classes are developed by application team
(numerical, thermodynamic, etc.) and technical classes are
developed by IT team for communication, management of
middleware data types and memory allocation. This separa-
tion is natural with UML class diagram. The use of middle-
ware types and structures is very complex and has to be
developed by a specialist IT team in specific technical classes
(Fig. 4).

UML CASE (Computer Aided Software Engineering)
tools enhance the capacity for changes in round-trip engi-
neering. This is important to always have an up-to-date
UML model. Then analysis and design documents can be
generated from the model. Class source code is also gener-
ated from the model. The round-trip functions are essential
for traceability quality requirements. The framework of a
modern CASE tool is able to handle links with tools for
software development:
– editor of source code;
– wizard of code environment, such as wizard to generate

classes for Microsoft COM interfaces;
– configuration management tool.

Thus component based software development and UML
modeling allow efficient cooperation of applicative and IT
teams in an iterative lifecycle process.

3 COMMUNICATION TECHNOLOGY
BY DATA MODEL

Inter-application communication by data model requires the
definition of a standard data format, because the effective
representation of the data is the heart of this model. In order
to be adopted by major actors of application development,
such a format should be standard, robust and open (i.e. can be
easily tailored to specific business needs). The W3C
consortium released the XML specification to address
this problem.

3.1 The XML Language

EXtensible Markup Language (XML) is a simple, very
flexible text format derived from SGML. Originally designed
to meet the challenges of large-scale electronic publishing,
XML from W3C is also playing an increasingly important
role in the exchange of a wide variety of data on the web and
elsewhere.

XML is an extensible file format because it is not a fixed
format like HTML (a single, predefined markup language).
Instead, XML is actually a meta-language—a language for
describing other languages—which can be specialized to
meet the needs of a particular domain, like scientific or busi-
ness domains (XMLFAQ, 2004). XML targets web develop-
ment, due to its syntax being close to the syntax of HTML,
thus providing natural transformations to produce web docu-
ments, but also targets other computer areas, such technical
data handling, knowledge management, etc. Furthermore, the
XML language itself is really easy to read and write, not only
for specialized software tools but also for humans, which was
not the case for SGML derived file formats.

XML files are based on UNICODE, which provides con-
sistent representation whatever the language of the writer of
the file and its reader. XML documents are generally made of
elements, an element being enclosed between tags:
<molecularWeight>18.5</molecularWeight>

An attribute is an additional property of a tag:
<Element Type=”Pure”>

<Name>NITROGEN</Name>

</Element>

Finally, elements can be nested, providing a hierarchical
view of a data file:
<MixtureDefinition>

<Element Type=”Pure”>

<Name>NITROGEN</Name>

</Element>

<Element Type=”Pure”>

<CasNo>[7732-18-5]</CasNo>

</Element>

</MixtureDefinition>

These simple language elements are the base of the syntax
of XML files, although the language also covers notions such
as namespaces, imports, typing, etc., to facilitate manage-
ment of the data contained in these files.

A DTD (Document Type Definition) is a formal descrip-
tion in XML declaration syntax of a particular type of docu-
ment. It sets out what names are to be used for the different
types of element, where they may occur, and how they all fit
together. DTD can be inline directly in an XML file, as well
as being referenced as an external resource, that may be
shared by different files. Given a DTD, the validity of a
XML document can be directly enforced by the XML parser

645

Oil & Gas Science and Technology – Rev. IFP, Vol. 60 (2005), No. 4

that reads the document, thus avoiding additional verifica-
tions of the document. An XML schema is another language
that expresses syntax constraints on XML files, but instead of
DTD, this language itself is based on a XML-like syntax.

XML files basically contain data along with enclosing
tags describing the semantics of the data, these files can be
processed in order to transform the structure of the file. XSL
(eXtensible Stylesheet Language) aims at easy transforma-
tion of XML files into files of different format, XML compli-
ant or not. XSL is a functional language that associates to the
elements of the input XML files a set of transformations of
the data contained in the input file.

One of the main use of XSL language is to transform
XML files containing technical data, for example a list of
data, into a more user friendly presentations, for example a
table containing exactly one data per line, with associated
color set depending on the nature of the data, and displayed
on a standard internet browser. Figure 5 shows an typical
architecture: a business application (a plant monitoring sys-
tem, or a process simulation software) produces an XML
compliant data file, which can be used by other, domain spe-
cific, applications (like a script that will extract all events-
related data in the file to produce an event log), or by a

generic tool (like a browser) which can produce a user
friendly view of the data contained in the input file, with the
help of business standard stylesheet.

3.2 XML Specializations

Since XML is a meta-language, it gave birth to other
languages, which are dedicated to particular business
domains. Amongst the many specializations of XML, we
can enumerate:
– SVG is an XML sub language that is used nowadays to

specify vector graphics and render them in commercial
browsers.

– XMI from OMG is an XML language that can be used to
describe UML entities, such as classes, diagrams, relation-
ship, etc.

– CML is an XML sub language that describes the geometry
of molecules.

– MathML from W3C is an XML language for mathemati-
cal expressions.

– OntoCAPE from the COGents project is an XML lan-
guage for (Computer Aided Process Engineering) CAPE
definition.

646

ICapeIdentification

ICapeUnit

Modeling class

UODataMgrCO-Impl

Figure 4

Domain and technical classes..

Figure 5

XSL transformation.

Business
application

Style
sheet
(XSL)

Script

Internet
browser

Data
(XML)

Rendered
HTML

Event
log

JP Belaud et al. / Information Technologies for Interoperability

– WellLogML: POSC, in conjunction with others in the oil
industry, initiated a project in 1999 to design an XML
schema for exchange of digital well log data. Version 1.0
of the WellLogML specification was published in April
2000 after extensive review by the oil and gas industry.

3.3 Conclusion

XML allows the flexible development of user-defined docu-
ment types. It provides a robust, non-proprietary, persistent,
and verifiable file format for the storage and transmission of
text and data both on and off the web (XMLFAQ, 2004). It
can be customized to meet the users’ needs in many kinds of
applications.

4 COMMUNICATION TECHNOLOGY BY API

Having seen the information exchange by data model, major
technologies by API are presented and illustrated by short
applications.

4.1 OMG CORBA

4.1.1 OMG

Dealing with heterogeneity in distributed computing enter-
prises is not easy. In particular, the development of software
applications and components that support and make efficient
use of heterogeneous networked systems is very challenging.
Many programming interfaces and packages currently exist
to help ease the burden of developing software for a single
homogeneous platform. However, few help deal with the
integration of separately-developed systems in a distributed
heterogeneous environment. In recognition of these prob-
lems, the OMG was formed in 1989 to develop, adopt and
promote standards for the development and deployment of
applications in distributed heterogeneous environments.
Since that time, the OMG has grown to become one of the
larger software consortiums in the world, with approximately
800 members. These members contribute technology and
ideas in response to Requests For Proposals (RFP) issued
by the OMG. Through responses to these RFP, the OMG
adopts commercially viable and supplier independent specifi-
cations for the software industry.

One of the first specifications to be adopted by the OMG
was the CORBA specification. The last major update of the
CORBA specification was in mid-2001 when the OMG
released CORBA version 3.0.

4.1.2 ORB

CORBA defines a model that specifies interoperability
between distributed objects on a network in a way that is
transparent to the programmer. CORBA achieves this by

defining ways for specifying the externally visible character-
istics of a distributed object in a way that is implementation-
independent.

This model is based on clients requesting the services
from distributed objects or servers through a well-defined
interface, by issuing requests to the objects in the form of
events. The Object Request Broker (ORB) is in charge of
delivering requests to objects and returns any responses.

Everything in the CORBA architecture depends on an
ORB. The ORB acts as a central object bus over which each
CORBA object interacts transparently with other CORBA
objects located either locally or remotely. Each CORBA
server object has an interface and exposes a set of methods.
To request a service, a CORBA client acquires an object
reference to a CORBA server object. The client can now
make method calls on the object reference as if the CORBA
server object resided in the client’s address space. The ORB
is responsible for finding a CORBA object’s implementation,
preparing it to receive requests, communicating requests to it,
and carrying the reply back to the client. A CORBA object
interacts with the ORB, either through the ORB interface or
through an Object Adapter (OA).

4.1.3 OA

The OA serves as the glue between CORBA object imple-
mentations and the ORB itself. An object adapter is an object
that adapts the interface of another object to the interface
expected by a caller. In other words, it is an interposed object
that uses delegation to allow a caller to invoke requests on an
object even though the caller does not know that object’s true
interface. OA’s represent another aspect of the effort to keep
the ORB as simple as possible.

4.1.4 IDL

CORBA objects are accessed through the use of an interface.
OMG’s Interface Definition Language (IDL) is used to
define interfaces, their attributes, methods, and parameters of
those methods within the interface. OMG IDL is just a
declarative language (see Fig. 6), not a programming lan-
guage. As such, it is not directly used to implement distrib-
uted applications. Instead, language mappings determine
how OMG IDL features are mapped to the facilities of a
given programming language. The OMG has standardized
language mappings for Java, C, C++, Smalltalk, Python and
Ada.

IDL code is processed to generate stubs (on the client
side) and skeletons (on the server side). Real operations are
then implemented on the server side using inheritance or del-
egation. Client programs to the IDL-defined object use stub
files, which provide communication through the ORB to
object implementation. Figure 7 illustrates the respective stub
and skeleton roles.

647

Oil & Gas Science and Technology – Rev. IFP, Vol. 60 (2005), No. 4

4.1.5 IIOP and Services

CORBA relies on a protocol called the Internet Inter-ORB
Protocol (IIOP) for remote objects and CORBA defines a
service-based architecture where distributed objects are only
accessed through their interface without need for knowledge
of the implementation details. Services can be shared by mul-
tiple clients and replaced by new ones supporting the same
interface without disturbing client operations. The
CORBAservices are standardized by the OMG in order to
facilitate the development of applications and higher-level
services across CORBA implementation. Among CORBA-
services we can mention Naming, Lifecycle, Persistent,
Transaction and Concurrency.

4.1.6 Current Status

Because CORBA is just a specification, it can be used on
diverse platforms, including Mainframes, UNIX, Windows
and so forth, as long as an ORB implementation exists for
that platform. Currently, major ORB suppliers offer imple-
mentations for numerous platforms and programming lan-
guages. Numerous free implementations are also available
for Java, C++ and Python. Puder (2004) maintains a compar-
ative table of the different products available on the market.

4.1.7 An industrial Product: OpenSpirit

OpenSpirit (2004) is an industrial software platform based on
the CORBA architecture that offers a standard access to mul-
tiple persistence solutions in the petroleum upstream domain.
OpenSpirit allows independent applications to interoperate by
sharing data and services. Through OpenSpirit, business
applications can reach distributed data and dynamically share
these data with the other connected applications, whatever the
hardware, the programming language used or the software
supplier. Given that integrated studies in the petroleum
upstream domain require many applications from different
vendors managing huge amounts of data, OpenSpirit allows
end-users to significantly improve their business workflows.
Petroleum engineers and geoscientists may integrate multi-
vendor applications into a kind of “virtual application”.
Figure 8 shows the global architecture of the product.

Figure 8

OpenSpirit architecture.

OpenSpirit is made up of:
– A Base Framework which offers a set of CORBA ser-

vices and a set of specific objects (session, links, coordi-
nate system, etc.). Figure 9 shows CORBA services in the
OpenSpirit base framework.

– Data Modules which are domain specific (drilling, sub-
surface, seismic). Each one implements a set of standard
objects relevant to that domain. One or more data servers
are developed for each data module and each data server
is specific to a particular physical project data store or cor-
porate data repository. Data servers are responsible for
managing data access between the data repository and the
business objects.

4.1.8 Conclusion

CORBA is a mainstream information technology thanks to
its capability to make software work together, regardless of
where they are located or what language their are written in.
It is now widely used even in traditionally conservative IT

Data modules

Base framework

Datastores

Clients

C++/Java
applications

WebBased
applications

Drilling Sub-surface
interpretation

CORBA Orb and Services

A B

648

Client
Object

implementation

Stub
Skeleton

ORB

Object adapter

Figure 6

Short IDL example.

Figure 7

Comunication through ORB.

JP Belaud et al. / Information Technologies for Interoperability

environments such as banking and insurance. Many commer-
cial and free implementations of the standard are available
for the main programming languages and CORBA is proba-
bly one of the best solutions to integrate legacy applications
with new components based on recent technologies.

4.2 Microsoft (D)COM

Microsoft introduced the COM technology in its Windows
platform in 1995, as a replacement for previous inter-
application communication technologies (OLE, etc.). The
first integration was performed in the NT family of
Windows. The aim of the COM technology is to provide
Windows developers a set of native OS functionalities as
well as an object model in order for them to be able to
develop component based application running on Windows.
The term COM refers to Component Object Model (Box,
1998) and the term DCOM refers to Distributed COM
(Eddon and Eddon, 1998): the former is the model of the
components themselves, and the latter is the middleware that
ties these components together.

4.2.1 IDL and Interfaces

Each COM object must be described by an IDL file whose
syntax is very similar to the OMG standardized CORBA IDL
syntax. The differences lie mainly in meta-data provided by
Microsoft IDL syntax, such as the specification of a Global
Unique Identifiers (GUID), the specification of additional
semantics provided to the COM object, or handled types.

An IDL file can be compiled and the result is a code skele-
ton that can be used to implement a COM object, as well as
other files than can be used to help the installation of the final
executable on client computers.

An IDL can contain the declaration of the following ele-
ments:
– Types declarations: typedef, enums, etc.
– Interfaces declaration: methods, types, etc.
– Co-classes: a co-class is a set of interfaces that are simul-

taneously presented by a given component.
– Libraries: a library is a set of components that can be

delivered together, as well as common type definitions,
enumerated values, etc. A library is usually associated to a
binary file (an executable file or a Dynamic Link Library),
as a delivery medium of the components.
Microsoft provided several language mappings of the IDL

syntax, namely mappings for C++, C# and VB.

4.2.2 COM Objects

A COM component is a binary file that contains the imple-
mentation of the methods of the interfaces it implements.
Before being used by a client application, a COM component
must be properly installed on a computer. The registration
mechanism of a component depends on the nature of the exe-
cutable it is contained in.

4.2.3 COM Component Activation

The process of creating a COM component and making it
available to clients is sometimes referred to as component

649

Managed
by

Converted
using

Locates
object
using

Broadcast
changes

Uses

Naming: Locates objects based on a multi-part
hierarchical name

Trading: Locates object services that meet specified
criteria

Query: Selects business objects based on a subset of
the SQL92 query language

Notification: Allows objects to send typed messages via
an event channel to objects that have registered interest

Property: Allows client applications to create properties at run time

Life cycle: Manages the life cycle of objects

Collection: Provides a standard means to managing
collections of distributed objects

Units

Coordinates

Reference values

Project set

User profile

Trading

Naming

Query

Property

Life cycle

Persistence

Collection

Notification

Session

Client
application

OpenSpirit
business

object

Figure 9

OpenSpirit CORBA services.

Oil & Gas Science and Technology – Rev. IFP, Vol. 60 (2005), No. 4

activation. Windows provides three ways to activate a com-
ponent:
– Inproc: the component is loaded in the address space of

the caller (i.e. the same process), and the method calls, to
the methods of the interfaces of the component, are
roughly the equivalent of usual function calls in C++.

– Local: the component is loaded in a different address
space than the process that requested the activation of the
component. As a consequence the parameters of the meth-
ods must be properly packed before being sent and calling
the method in the address space of the component.

– Remote: this activation mode is equivalent to the local
mode, but the address space in which the component is
loaded can be physically localized on another computer.
The three activations modes are shown the Figure 10 (the

local process, e.g. the process of the caller is shaded in gray).

4.2.4 IUnknown Interfaces

Windows provides a special interface, the IUnknown inter-
face that every COM object must implement. This interface
is used for basically two kinds of operations:
– Interface navigation: given an interface implemented by

a component, one can safely know if another interface is
implemented by that component. This interrogation mech-
anism is fundamental for modern component based soft-
ware engineering. In Figure 11, we show a synthetic view
of a component that provides two interfaces: the interface
IUnknown and another example interface IInterf. The
hatched region corresponds to the implementation of the

IInterf interface, provided by the developer of the compo-
nent, whereas the non hatched area corresponds to the sys-
tem provided implementation of the IDefault interface.
This default implementation provides the QueryInterface
mechanism that enables the use of the implementation
code of the interface IInterf (in the hatched area) from the
“basic” IUnknown interface. Furthermore, this navigation
mechanism is safe, i.e. at run-time, one can safely (with-
out any risk of crash of the application, as opposed to the
C language operation of cast) know whether a component
supports or not a given interface.

– Reference counting: since no client of a given component
is able to determine if an object must be present for future
method calls, each client must adhere to a reference count-
ing mechanism so that the OS is the only requester of
effective object destruction.

Figure 11

Interface navigation.

QueryInterface

IUnknown

IInterf

650

Local
computer

Remote
computer

Local process

LOCAL

REMOTE

Caller COM
component

COM
component

COM
component

INPROC

Different processLocal process

Figure 10

COM activation modes.

JP Belaud et al. / Information Technologies for Interoperability

4.2.5 IDispatch Interfaces

One other special interface provided by Windows is the
IDispatch interface which is aimed specifically at Microsoft
applications interoperability by being natively used by the VB
language. This interface provides a mechanism called late
binding, which in a word enables “textual calls” to be per-
formed on a object (e.g “call the method M on the object”),
the OS being responsible for effectively calling the method on
the object or rejecting the call if the object does not support
the interface or if the method is not part of the interface.

This mechanism is the basis of VB/COM interoperability.
Since VB is interfaced with practically every Microsoft
application (Excel, Access, Word) the IDispatch interface is
one of the key technologies for Windows system integration
of third parties software applications.

4.2.6 Marshalling

The standard behavior of this mechanism depends on the
type of the parameter that have to be marshalled:
– The standard IDL types are handled naturally (standard

RPC mechanism, the values are encoded before “being
sent over the wire”, Birrel and Nelson, 1984).

– UNICODE strings: the necessary memory allocations/
desallocations are performed by the OS.

– VARIANT: a VARIANT is a data structure that virtually
encapsulates every IDL supported data type. The neces-
sary memory allocations/desallocations are performed by
the OS during the marshalling of such values.

– Interface pointers: interface pointers can be marshalled,
thus enabling the remote use of an interface pointer from a
remote computer (call back mechanisms).

4.2.7 Operating System Related Considerations

One important feature of COM is to be deeply integrated in
Windows. This integration lies essentially in two areas: the
use of OS resources and the fact that COM objects are han-
dled by many Windows mechanisms, namely system admin-
istration and security.

COM mechanisms make extensive use of OS resources,
namely:
– the system registry, used to perform the registration of

COM objects;
– activation mechanisms;
– some global objects useful to use specific instances of COM

objects (Running Object Table, Global Interface Table).
The integration of COM components as standard system

objects enables one to apply security policies to these objects.

4.2.8 Conclusion

The COM object model is only suited to the development
of components under Windows, and is often opposed to

CORBA as an object model for component based applica-
tions. While the close integration in Windows can be a seri-
ous advantage, mainly due to the sharing of system objects
and to the fact that it requires no additional hazardous instal-
lation on the computers where it is used, it also has some dis-
advantages:
– COM is committed to Windows.
– COM is hard to administrate because of the inner com-

plexity of OS related concepts.
– The life span of the COM technology is only dependent

on Microsoft’s willingness, because Microsoft is the only
actor able to decide strategic choices concerning their
component technology.
Before beginning the implementation of a component

based application, the question of the choice of the correct
component technology must be solved. The previous ele-
ments should be taken into account before proceeding to the
final choice.

4.2.9 An Industrial Solution: INDISS

The INDISS simulation platform (INDustrial Integrated
Simulation Software) is designed to provide all the necessary
software tools that facilitate the implementation of applica-
tions in process engineering. One single core base will sup-
port various simulation environments that address different
modelling and simulation needs thus avoiding duplication,
additional engineering efforts and result discrepancies.
Robustness and fidelity is achieved through the use of physi-
cal properties and reaction kinetics. INDISS is the result of
an object-oriented development over ten years. The software
is coded in C++ under Windows environment. The open
nature of its architecture is visible in several functionalities:
– Development of unit operations is independent from

INDISS software. They can be converted into dynamic
libraries and then loaded by INDISS.

– INDISS proposes its internal thermodynamic package,
and an external thermodynamic package is also available
to provide thermodynamic calculations in specific condi-
tions.

– INDISS provides a GUI builder. This tool is used to build
a customer interface based on a standard simulator.
The use of technologies that allow modularity and evolu-

tivity is an essential point for INDISS development.
Communication with Microsoft tools and software engineer-
ing effort in component based development are central. As an
example, CO interfaces are integrated on the first level of
design of INDISS components.

INDISS takes advantage of being developed under
Microsoft tools by providing several levels of Microsoft
interfaces. This can be done by using first versions of
Microsoft interoperability tools. INDISS is a server that pre-
sents OLE (Object Link Embedded) interfaces. These inter-
faces allow simulation monitoring and access in reading and

651

Oil & Gas Science and Technology – Rev. IFP, Vol. 60 (2005), No. 4

writing mode to each variable of INDISS unit operations. It
is useful to automate test sequences and provide automatic
reports. This link is easy to establish under Excel or with
Visual Basic.

As described in the presentation of INDISS, development
of unit operations is independent from INDISS software to
produced libraries. This kind of library can only be loaded
inside INDISS because it uses proprietary structures for data
interfaces that are linked with the INDISS executable. COM,
as a middleware, adds one level of indirection between
INDISS and the units. The interface is described in an IDL
file that ensures the compatibility of client and server. The
middleware allows also by default a link with a local or
remote server. The interface is fully described in a text file.
The ease with which one can describe the interaction
between client and server is an important point in defining
business standards, as detailed in the next paragraphs.

INDISS and DCS connection
INDISS is a tool to build process engineering simulators : it
is often necessary to connect INDISS to third party software
like databases or control simulators. The traditional way to
connect INDISS to a control simulator for a Distributed
Control Systems (DCS) is to develop a new piece of soft-
ware. The proprietary API of the DCS provider is used to
exchange values of control and process values.

To avoid such developments, OPC is an emerging soft-
ware standard designed to provide automation applications
with easy access to industrial plant floor data. OPC means
initially OLE for Process Control. OLE has since been
restructured and renamed to ActiveX and then COM. The
goal of OPC is to define a standard interface based on COM
technology that allows greater interoperability between
automation and control applications; control devices; and
business and office applications.

Figure 12

Components architecture.

INDISS and CAPE-OPEN
Based on CO requirements, INDISS is a component based
multi layer client server architecture. As a result, INDISS is
extremely flexible and facilitates the integration of third party
components. The internal thermodynamic routines have been
separated from the core platform and have been made avail-
able as standalone components. A third party can easily plug
in its own thermodynamic or CO thermodynamic property
packages without going through heavy engineering when
coding is necessary (Fig. 12).

This increased flexibility is of extreme importance as it
primarily benefits the customer. At this present stage all the
tests to integrate and operate unit operations in a dynamic
mode are positive and promising and future developments
will further emphasize component technology and the use of
CO interfaces.

Conclusion on INDISS
The capability of INDISS to interact with other software was
a basis requirement. The middleware development has
increased this need by providing business components.
INDISS now provides an OPC link. RSI has tested the
CAPE-OPEN interface to include an external thermody-
namic server inside INDISS and is developing the CAPE-
OPEN interface for dynamic unit operations with other
CAPE software providers. It is expected that in the next
years, customers will be able to choose the software compo-
nents that best match their need.

4.3 SOAP and XML-Based Middleware

HTML-HTTP act as loosely-coupled middleware technol-
ogy between the web client (browser) and the business logic
layer (web server). HTTP can be viewed as a simplified RPC
middleware. Around the year 2000, Microsoft and IBM pro-
posed using the XML data format over the internet protocols:
HTTP—as transport layer—and XML—as encoding format
—now constitute the key underlying technologies for web
services. Web services are discussed in Section 5.4.

Many companies perform remote function calls by trans-
ferring XML messages on HTTP without standardized tech-
nology such as the XML-RPC specification from UserLand
(2004). XML-RPC is designed to be as simple as possible,
while allowing complex data structures to be transmitted,
processed and returned. A set of compatible XML-RPC
implementations that cover all operating systems and pro-
gramming languages for Perl, Python, Java, C/C++, PHP,
.NET, etc., are available. For example, Meerkat (2000)
extends its open API with XML-RPC, affording a XML-
based interface to its aggregated database.

However the technology resulting from XML-HTTP most
in vogue is currently SOAP (Simple Object Access Protocol)
from W3C. This promising protocol is for application inter-
operability (components and web services) and is not directly

CAPE-OPENExternal
components

SEFramework

RSISolver

UO manager

UnitOperation

UnitOperation

UnitOperation

MaterialObject

PropertyPackage

ThermoSystem

OPC server

MMI MaterialObject

MaterialTemplate

652

JP Belaud et al. / Information Technologies for Interoperability

related to an object-oriented view as its name could lead one
to believe. SOAP (currently in version 1.2) was delivered in
June 2003, as a lightweight protocol for exchange of infor-
mation in a decentralized and distributed environment. It is
an XML based protocol that consists in three parts: an enve-
lope that defines a framework for describing what is in a
message and how to process it, a set of encoding rules for
expressing instances of application-defined datatypes, and a
convention for representing remote procedure calls and
responses. SOAP can handle both the synchronous
request/response pattern of RPC architectures and the asyn-
chronous messages of messaging architectures. Figure 13
presents a SOAP request message in a synchronous manner
from Google Web APIs beta (2004). A SOAP request is sent
as a HTTP POST. The XML content consists in three main
parts (Glass, 2001):
– the envelope defines the namespaces used;
– the header is an optional element for handling supplemen-

tary information such as authentification, transactions, etc.;
– the body performs the RPC call, detailing the method

name, its arguments and service target. In the example
doGoogleSearch is the method name and key, q, start,
maxResults, etc. are the arguments.

Conclusion

Whereas CORBA, RMI, (D)COM and .NET Remoting try to
adapt to the web, SOAP middleware ensures a native connec-
tivity with it since it builds on HTTP, SMTP and FTP and

exploits the XML web-friendly data format. Reasons noted
for the success of SOAP are its native web architecture com-
pliancy, its modular design, its “simplicity”, its text-based
model (in contrast to binary and not self-describing CORBA,
RMI, (D)COM, .NET protocols), its error handling mecha-
nism, its suitability for being the common message handling
layer of web services, its standardization process and its sup-
port from major software editors.

5 PACKAGING TECHNOLOGY

Middleware components run within a controlled runtime
environment provided by the server editor. This packaging
technology deals with the creation, management and destruc-
tion of the business component. With this technology the
component developer no longer needs to write “technical”
code that handles transactional behavior, security, database
connection pooling, etc. because the architecture delegates
this task to the server supplier. These techniques are now
widely used in network solutions and this section describes
the different technologies.

5.1 EJB, Java Community Technology

5.1.1 Enterprise JavaBeans

Enterprise JavaBean (EJB) proposes a high-level approach
for building distributed systems. It allows application

653

…

<?xml version='1.0' encoding='UTF-8'?>

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsi="http://www.w3.org/1999/XMLSchema-instance"

xmlns:xsd="http://www.w3.org/1999/XMLSchema">

 <SOAP-ENV:Body>

 <ns1:doGoogleSearch xmlns:ns1="urn:GoogleSearch"

 SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

 <key xsi:type="xsd:string">00000000000000000000000000000000</key>

 <q xsi:type="xsd:string"> Oil & Gas Science and Technology </q>

 <start xsi:type="xsd:int">0</start>

 <maxResults xsi:type="xsd:int">10</maxResults>

 <filter xsi:type="xsd:boolean">true</filter>

 <restrict xsi:type="xsd:string"></restrict>

 <safeSearch xsi:type="xsd:boolean">false</safeSearch>

 <lr xsi:type="xsd:string"></lr>

 <ie xsi:type="xsd:string">latin1</ie>

 <oe xsi:type="xsd:string">latin1</oe>

 </ns1:doGoogleSearch>

 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

…

Figure 13

SOAP request messge sample.

Oil & Gas Science and Technology – Rev. IFP, Vol. 60 (2005), No. 4

developers to concentrate on programming only the business
logic, while removing the need to write all the common code
required for any multi-tier application development scenario.
For example, the EJB developer no longer needs to write
code that handles transactional behavior, security, connection
pooling or threading.

In essence, EJB is a server component model for Java and
is a specification for creating server-side, scalable, transac-
tional, multi-user, and secure enterprise-level applications.
EJB can be deployed on top of existing transaction process-
ing systems including traditional transaction processing mon-
itors, web servers, database servers, application servers.

5.1.2 EJB Architecture

EJB are based on three key concepts:
– Framework: a business component resides in a container

that provides a technical contract (naming, security, trans-
action, persistence, pooling, destruction, etc.). The EJB
should sign a contract with the container (implements an
interface) to take advantage of the container contract
(Fig. 14).

– Proxy: a client never accesses instances of the enterprise
bean’s classes directly. It uses the enterprise bean’s remote
interface. Remote call to the EJB services should be
encoded on the client side and decoded on the server side.
This is realized through stub and skeleton proxies.

– Factory: an enterprise bean’s instance cannot be created
and removed directly. These functions are devoted to a
factory called home interface.

5.1.3 Types of Enterprise Bean

Three types of enterprise bean are available, each corre-
sponding to a particular business logic.
– Stateless and stateful session beans: conversational

beans. They cannot persist and are not shared between
clients.

– Entity beans: represents legacy data. They persist in a
data store and can be shared by different clients.

Figure 14

EJB Container.

– Message-driven beans: they can send and receive mes-
sages asynchronously. Clients do not access to a message-
driven bean.

5.1.4 Benefits of Using EJB

In multi-tier architecture, it does not matter where the busi-
ness logic is. With EJB, business logic can reside on any
server, while adding additional tiers if necessary. The EJB’s
containing the business logic are platform-independent and
can be moved to a different, more scalable platform if neces-
sary. An EJB can move from one platform to the other with-
out “any” change in the business-logic code. A major high-
light of the EJB specification is the support for ready-made
components. This enables one to “plug and work” with off-
the-shelf EJB’s without having to develop or test them or to
have any knowledge of their inner workings.

5.1.5 EJB Communication

RMI is used as communication protocol for EJB clients.
However, EJB may provide CORBA/IIOP protocol for a
robust transport mechanism and pure CORBA clients can
access EJB as EJB clients. Currently, a highlight of OMG’s
CORBAServices is the wide range of features they provide
to an enterprise application developer. In the future, rather
than trying to rewrite these services, EJB server vendors may
simply wrap them with a simplified API, so EJB developers
can use them without being CORBA experts.

A complete description of EJB technology can be found in
Gopalan (2004).

5.1.6 Java 2 Platform, Enterprise Edition (J2EE)

The Java 2 Platform, Enterprise Edition (J2EE) is a set of
coordinated specifications and practices that together enable
solutions for developing, deploying, and managing multi-tier
server-centric applications. Building on the Java 2 Platform,
Standard Edition (J2SE) the J2EE platform adds the capabili-
ties necessary to provide a complete, stable, secure, and fast
Java platform to the enterprise level. It significantly reduces
the cost and complexity of developing and deploying multi-
tier solutions.

Enterprise Java Beans are part of the J2EE platform but
the platform provides also many other key technologies, for
example complete web services support.

5.2 .NET, Microsoft Technology

The Microsoft response to J2EE is called .NET, and provides
a set of standard components, languages, etc., aimed at the
development of business applications. The different elements
are:
– The CLR (Common Language Run-time) is the mecha-

nism that allows every compliant language to interoperate
closely (objects defined in one language can be used in

EJB

Container

EJB Server

Client view contract

C
lient

Container contract

654

JP Belaud et al. / Information Technologies for Interoperability

another one). Languages such as C#, VB.NET, can be
compiled “on the fly” into Intermediate Language (IL):
the resulting code is called managed code because the IL
provides services and concepts that help the execution of
such code (for instance, garbage collecting to prevent
memory leaks, sandboxing to prevent malicious code
being executed, etc.). On the other hand, CLR also enables
the execution of unmanaged code, letting the global secu-
rity policy of the virtual machine decide if it can be
allowed. The CLR is the equivalent of Java virtual
machine, the IL of the Java byte code.

– .NET common classes are a set of common classes that
are provided by the framework and that ease the enterprise
application development. These classes are dedicated to
management of files and should act as a replacement for
Microsoft foundation classes.

– ASP .NET provides classes used during Active Server
Pages (ASP) creation, enabling the execution of C# code
within HTML pages.

– WinForms is the technology used to create graphical
applications.

– .NET remoting is the .NET middleware technology that
handles the deployment of distributed applications in NET
(Browning, 2002). Holloway (2002) compares it to web
services.
The .NET and J2EE architectures are very similar, each

having its advantages, and its respective defaults. The key
technology is the programming language, i.e. C# for
Microsoft .NET and Java for EJB. These object oriented lan-
guages are similar in scope (simplified OO languages), run
on virtual machines and thus are naturally portable on differ-
ent architectures (Windows CE, XP for .NET, all Unix fla-
vors for Java). As a starting point, Farley (2000) proposes a
comparison of J2EE and .NET and TMC (2002) has revisited
the “famous” pet store benchmark that compares the SUN
J2EE Pet Store and the Microsoft .NET Pet Shop.

5.3 CCM, OMG Technology

CORBA Component Model (CCM) is a specification that
focuses on the strength of CORBA as a server-side object
model. It concentrates on issues that must be addressed to
provide a complete server side middleware component
model. It can be described as a cross-platform, cross-
language superset of EJB. The CCM gives developers the
ability to quickly build web-enabled enterprise scale applica-
tions while leveraging the industrial strength of CORBA.
Tight integration with EJB leverages CORBA’s cross-
platform and multiple-language capabilities.

The CCM is part of the CORBA 3.0 specification. It
extends the CORBA object model by defining features and
services in a standard environment that enable application
developers to implement, manage, configure and deploy

components that integrate with commonly used CORBA ser-
vices. These server-side services include transactions, secu-
rity, persistence and events. An open source implementation
of a CCM platform, OpenCCM, is developed by the
ObjectWeb consortium (2004).

5.4 Web Services, W3C Technology

Web technologies are more and more used for application-to-
application communication as explained in previous sections.
At first, software suppliers and IT experts promised this
interconnected world thanks to the technology of web ser-
vices. Web services propose a new paradigm for distributed
computing (Bloomberg, 2001) and are one of today’s most
advanced application integration solutions (Linthicum,
2003). They help business applications to contact a service
broker, to find and to integrate the service from the selected
service provider.

However, even if the idea of web services has generated
too many promises, web services should be viewed for now
as a part of a global enterprise software solution and not as a
global technical solution. In a project, web services can be
used within a general architecture relying on Java EJB or on
Microsoft’s .NET framework. Newcomer (2002) gives keys
for selecting between J2EE and .NET with respect to web
services support.

Many projects already utilize web services, sometimes
with non standard technologies, particularly for non critical
intranet applications. Even if web services lack advanced
functionalities, many advantages like lower integration costs,
the re-use of legacy applications, the associated standardisa-
tion processes and web connectivity can plead in favor of this
new concept for software interoperability and integration
(Manes, 2003).

5.4.1 Definition

A web service is a standardised concept of function invoca-
tion relying on web protocols, independent of any technolog-
ical platform (operating system, application server, program-
ming language, data base and component model).
BearingPoint et al. (2003) focus on the evolution from soft-
ware components to web services and write: “a web service
is an autonomous and modular application component,
whose interfaces can be published, sought and called through
Internet open standards”. We see the introduction of web ser-
vices as a move from component architectures towards
Internet awareness, this context implying the use of associ-
ated technologies i.e. HTTP and XML, and an e-business
economic model. Current component technology based on
EJB, .NET and CCM being not fully suitable, web services
provide a new component approach for providing functional-
ity anywhere, anytime and to any device.

655

Oil & Gas Science and Technology – Rev. IFP, Vol. 60 (2005), No. 4

Figure 15

Key principles of web services.

5.4.2 Key Principles

IBM and Microsofts’ initial view of web services, first pub-
lished in 2000, identified three kinds of roles (Fig. 15):
– a service provider publishes the availability of its services

and responds to requests to use its services;
– a service broker registers and categorizes published ser-

vice providers and offers search capabilities;
– a service requester uses service brokers to find a needed

service and then employs that service.
These three roles make use of proposed standard technolo-

gies: UDDI (Universal Description Discovery Integration)
from the OASIS consortium, WSDL (Web Services
Description Language) and SOAP (Simple Object Access
Protocol) from the W3C. UDDI acts as a directory of avail-
able services and service providers; WSDL is a XML vocab-
ulary to describe service interfaces (similar to IDL function).

Further domain specific technologies related to web ser-
vices are being developed, e.g. the following ones proposed
by the OASIS consortium, a consortium of companies inter-
ested in the development of e-business standards:
– ebXML is a global framework for e-business data

exchange;
– BPEL (formerly BPEL4WS) is a proposed standard for

the management and execution of business processes
based on web services;

– SAML aims at exchanging authentication and authoriza-
tion information;

– WS-Reliable Messaging is for ensuring reliable message
delivery for web services;

– WS-Security aims at forming the necessary technical
foundation for higher-level security services.
Additionally standards from RosettaNet and BPML

(Business Process Markup Language) from BPMI deal with
the management of business processes.

Simply stated, the interface of a web service is documented
in a file written in WSDL and the data transmission is carried

out through HTTP with SOAP. SOAP can also be used to
query UDDI for services. The functions defined within the
interface can be implemented with any programming lan-
guage and be deployed on any platform. In fact, any function
can become a web service if it can handle XML-based calls.
The interoperability of web services is “similar” to distrib-
uted architectures based on OO middleware such as CORBA,
RMI or (D)COM but web services offer a loose coupling, a
non intrusive link between the provider and the requester,
due to the loosely-coupled SOAP middleware. Bloomberg
(2001) compares these different architectures.

Oellermann (2002) discusses the creation of enterprise
web services with real business value. Basically he reminds
us that a web service must provide the user with a service and
needs to offer a business value. The technically faultless but
closed .NET “my services” project from Microsoft demon-
strates that is always challenging to convince final users.
With Google web APIs beta (2004), software developers can
query the Google search engine using the web services tech-
nology (search, cache and spelling services). Figure 16
shows the search service part from WSDL description and
Figure 17 illustrates the C# source code of service requester
application written for Microsoft .NET platform. In this
example, there is no interaction with a UDDI server.

With so many advantages for integration and interoper-
ability one could expect a massive adoption by software solu-
tions architects. However the deployment of web services
still remains limited. In addition to technical issues, three
main reasons can be noted:
– Web services are associated to SOAP, WSDL and UDDI.

The UDDI directory of web services launched in 2000 by
IBM, Microsoft, Ariba, HP, Oracle, BEA and SAP, was
operational at the end of 2001 with three functions (white,
yellow and green pages). However due to technical and
commercial reasons this worldwide repository that meets
an initial need (to allow occasional, interactive and direct
interoperability) founded on the euphoria of e-business
years does not match the requirements of enterprise sys-
tems. Entrusted to OASIS in 2002, UDDI version 3 pro-
poses improvements in particular for intranet applications.

– The simplicity and interoperability claimed by web ser-
vices are not so obvious. Different versions of SOAP and
incompatibilities of editors’ implementations are source of
difficulties, to such a degree that editors created the WS-I
consortium to check implementations of standards of web
services across platforms, applications, and programming
languages.

– The concept was initially supported by a small group of
editors (with Microsoft and IBM leading); now the “stan-
dards battle” (BEA, IBM and Microsoft from one side and
Iona, Oracle and Sun from the other side) and the multi-
plication of proposed standards are weakening the mes-
sage of web services (Koch, 2003).

Service
broker

Bind and
consume Service

requester
Service
provider

FindPublish

656

JP Belaud et al. / Information Technologies for Interoperability 657

Figure 16

WSDL sample.

Figure 17

Source code of service requester application.

Oil & Gas Science and Technology – Rev. IFP, Vol. 60 (2005), No. 4

5.4.3 SOA

In order to better integrate the concept of web services in enter-
prise systems, IT editors now propose the Service Oriented
Architecture (SOA) approach (Sprott and Wilkes, 2004).
Beyond the marketing hype, a consensus is established on the
concept of service as an autonomous process which communi-
cates by message within an architecture that identifies applica-
tions as services. This design is based on coarse-grained,
loosely coupled services interconnected by asynchronous or
synchronous communication and XML-based standards.

The definition and elements of SOA are not yet well
established. Sessions (2003) wonders whether a SOA is:
– a collection of components over the Internet;
– the next release of CORBA or;
– an architecture for publishing and finding services.

Finally he suggests that a SOA is “an architecture that
defines how autonomous systems interoperate with particular
focus on asynchronous communications, heterogeneous
transport channels, proof of identity, error management and
workflow coordination”.

A SOA is jusy an evolution of web distributed component
based architectures to make applications integration easier,
faster, cheaper and more flexible, improving return on invest-
ment. In fact the main innovations are in the massive adop-
tion of web services (even if a SOA does not imply the use of
a web services model and vice versa) by the industry and in
the use of the XML language to describe services, processes,
security and exchanges of messages, etc.This promises more
future-proof IT projects than in the past.

Despite limitations of web services in fields such as early
standards, security, orchestration, transactions, reliability,
performance, and the ethic and economic model, the technol-
ogy now appears to be complementary to solutions based on
a classic middleware bus, as well as to EAI/ERP solutions.
Its loose coupling brings increased flexibility and facilitates
the re-use of legacy systems. Moreover web services can be
used as low-cost connectors between distinct technological
platforms such as COM, .NET and EJB. The next release of
Microsoft’s Windows operating system will include Indigo, a
new interoperability technology based on web services, to
unify Microsoft’s proprietary communication mode. S.
Abitboul, research director at INRIA, estimates that web ser-
vices will represent, in the long run, the natural protocol for
accessing information systems. Thus it seems that we are
only at the start of web services and SOA.

6 BRIDGING TECHNOLOGY

Above we dealt with interoperability features within a particular
inner technology. Bridging technology allows one to extend
the aptitude of a system to interoperate between outer tech-
nologies. Two bridges are illustrated, given that SOAP and web
services, as noted previously, may play the role of connector.

6.1 COM and JAVA

The use of COM components from the Java platform is not
natural. Components of CORBA middleware can interact
without considering the source code language. This is not
obvious with COM and Java. Microsoft has proposed such
functionalities in its implementation of Java with JactiveX
tool, but this technology is abandoned because Microsoft
Java implementation was not compliant with the language
specification. One objective of the COGents project
(Braunschweig et al., 2002), is to perform interactions
between a multi-agent platform developed in Java and an
INDISS modeling platform using JACOB components.
JACOB is a Java-COM Bridge that allows COM Automation
components to be called from Java. It uses Java Native
Interface to make native calls into the COM and Win32
libraries. JACOB handles also COM events from a COM
server to the Java client. Agents written in JAVA can send
COM requests to the INDISS COM server. JACOB provides
JAVA objects like “VARIANT” to be able to express COM
calls. The JNI code of JACOB interacts with the COM server
interface pointers to forward the call with COM parameters
at the JNI level. This tool shows that the link between JAVA
and COM exists, but it was not fully developed and tested
because the code had to be corrected on switching from the
JAVA virtual machine 1.3 to 1.4.

6.2 EJB and .NET

With the growing popularity of .NET and the wide use of
EJB, many actors of the middleware software development
have tried to bridge the gap between these two technologies.
Among the different solutions available we can mention
Janeva from Borland, IIOP.NET from ELCA Informatique
(2004), Remoting.CORBA (2004) and DotNetJ from
ObjectWeb (2004). Peltzer (2003) examines the technical
issues arising from integrating J2EE and .NET and offers
practical solutions. Bonneau and Newcomer (2003) discuss
SOAP and web services’ promise to provide the best solution
for bridging .NET and J2EE-based applications.

Basically, the different solutions provide tools to generate
code from IDL and an IIOP engine used at run-time. They
also provide native data type conversions between .NET
built-in classes and J2EE classes or Java classes and vice-
versa. A clear description of Janeva can be found in
Natarajan (2003).

CONCLUSION

Enterprises are characterized by an organization networked
through their information system in which all the elements
have to interact. This results in an increasing dependence
with regard to information technologies for interoperability.
Corresponding multi-tier architecture information systems

658

JP Belaud et al. / Information Technologies for Interoperability

are today built over advanced EJB or .NET component
frameworks, themselves relying on middleware technologies
such as CORBA, RMI and (D)COM. Initially EJB technol-
ogy is multi-system and mono-language (Java) while .NET
technology is mono-system (Windows) and multi-language.
CCM aims at proposing a multi-system and multi-language
technology. Solutions exist to “unlock” EJB and .NET. For
example Common Language Infrastructure (CLI) and C#
programming language from .NET are now standardized by
Ecma and ISO. Implementations on e.g. Linux are available.

In addition, web services and SOAP can give many bene-
fits. Andrews (2004) predicts dramatic changes in the web
services market for 2006, and announces a new class of busi-
ness applications called “service-oriented business applica-
tions”. The merging of web standards, IT and object/compo-
nent technologies to form SOA and web services is
announced as the next stage of evolution for e-business
knowing that grid and autonomic computing should add their
contributions too. There is no doubt that the scientific field
will derive many benefits from this trend. The engineer
already benefits from information technologies for interoper-
ability, especially with XML, COM and CORBA using
domain standards from POSC, OPC Foundation, CO-LaN,
and domain applications such as OpenSpirit, INDISS. As
illustrated by Sama et al. (2003) and Westhaus (2004) for the
process engineering field, one can foresee many applications
of SOA and web services in oil and gas sciences.

REFERENCES

Andrews, W. (2004) Predicts 2004, Gartner’s Predictions.
http://www3.gartner.com/research/spotlight/asset_55117_895.jsp

Arrieux, Y. (2003) Éditeurs et constructeurs veulent accélérer
l’adoption des services web, dossier 01net : Electronic Business
Days 2003 : l’entreprise interconnectée passée en revue, January.
http://www.01net.com/article/200210.html

BearingPoint, SAP and Sun Microsystems (2003) Livre blanc,
Les services web, Pourquoi ?
http://www.bearingpoint.fr/content/library/138_731.htm

Belaud, J.P. (2001) Introduction to the CAPE-OPEN standard
and its related technology, CAPE-OPEN Update Journal,
October, 1. www.colan.org

Belaud, J.P. and Pons, M. (2002) Open software architecture for
process simulation. Computer-Aided Chemical Engineering, 10,
May 2002, Elsevier, 847-852, ISBN: 0-444-51109-1.

Bloomberg, J. (2001) Web services: A New Paradigm for
Distributed Computing, The Rational Edge , September.
http://www-106.ibm.com/developerworks/rational/library/
content/RationalEdge/archives/sep01.html

Birrel, A.D. and Nelson, B.J. (1984) Implementing Remote
Procedure Calls. ACM, Trans. on Computers Systems, 2,
February, 39-59.

Boehm B. (2000) Spiral Development: Experience, Principles,
and Refinements. Spiral Development Workshop, Ed. Wilfred J.
Hansen, February. www.sei.cmu.edu/cbs/spiral2000/SR08.pdf

Bonneau R. and Newcomer E. (2003) Integrate .NET and J2EE
with web services. Windows Server System Magazine, 3, 2.
http://www.ftponline.com/wss/2003_02/magazine/features/rbonn
eau/default.aspx

Booch, G., Rumbaugh, J. and Jacobson, I. (1998) Unified
Modeling Language User Guide, Addison Wesley, ISBN: 0-201-
57168-4.

Box, D. (1998) Essential COM, Addison Wesly.

Braunschweig, B.L., Fraga, E.S., Guessoum Z., Paen, D., Piñol
D. and Yang, A. (2002) COGents: a new IST-funded project on
CAPE-OPEN software agents. CAPE-OPEN Update Journal, 4,
17-21, November. www.colan.org

Brown, A.W. (1996) Component-Based Software Engineering:
Selected Papers from the Software Engineering Institute, Wiley-
IEEE Computer Society Press.

Browning, D. (2002) Integrate NET Remoting into the
Enterprise. Windows Server System Magazine , 2 ,10.
http://www.ftponline.com/wss/2002_11/magazine/features/dbrow
ning/default.aspx

Chan, R. (2003) Adopting RUP in a COTS implementation
project. The Rational Edge, May.

Eddon, G. and Eddon, H. (1998) Inside Distributed COM,
Microsoft Press.

ELCA Informatique (2004) http://iiop-net.sourceforge.net/

Farley, J. (2000) Microsoft .NET vs. J2EE: How Do They Stack
Up?January. http://java.oreilly.com/news/farley_0800.html

Fay, S. (2003) Standards and reuse. The Rational Edge, May.
http://www-106.ibm.com/developerworks/rational/library/2277.html

Glass, G. (2001) How SOAP Works. The Web Services
(R)evolution, Part 3.
http://www-106.ibm.com/developerworks/xml/library/ws-peer3/

Google Web APIs Beta (2004)
http://www.google.fr/apis/index.html

Gopalan, S.R. (2004) http://my.execpc.com/~gopalan/

Hofmeister, C., Nord, R. and Soni, D. (2000) Applied Software
Architecture, Addison-Wesley Longman, Reading, MA.

Holloway R. (2002) Compare .NET Remoting to web services,
Visual Studio magazine, Web services in the Enterprise, 12, 11.
http://www.ftponline.com/vsm/2002_09_14th/online/holloway/de
fault_pf.aspx

IBM developerWorks (2004) Web Services Category.
http://www-136.ibm.com/developerworks/webservices/

IBM Glossary (2004) Glossary of Computing Terms. http://www-
306.ibm.com/ibm/terminology/goc/gocmain.htm

Koch, C. (2003) The Battle for web services. CIO Magazine,
October. http://www.cio.com/archive/100103/standards.html

Linthicum, D.S. (2003) Next Generation Application Integration
- From Simple Information to Web Services, September, Addison
Wesley, ISBN: 0-201-84456-7.

Manes, A.T. (2003) Web Services A Manager’s Guide,
September, Addison Wesley, ISBN: 0-321-18577-3.

Meerkat (2000) O’Reilly Network’s Open Wire Service.
http://www.oreillynet.com/pub/a/rss/2000/11/14/meerkat_xmlrpc.
html

Natarajan, V. (2004) .NET and J2EE integration. Technical Talk,
January. http://www.theserverside.net/talks/index.aspx

Newcomer, E. (2002) Decide between J2EE and .NET web
services. Windows Server System Magazine, 2, 9.
http://www.ftponline.com/wss/2002_10/magazine/columns/
webservices/

ObjectWeb Consortium (2004) www.objectweb.org

Oellermann, W. (2002) Create web services with business value.
.NET Magazine, 2, 10.
http://www.ftponline.com/wss/2002_11/magazine/features/
wollermann/default.aspx

659

Oil & Gas Science and Technology – Rev. IFP, Vol. 60 (2005), No. 4

OpenSpirit (2004) http://www.openspirit.com

Peltzer D. (2003) .Net & J2EE Interoperability, November 2003,
Osborne, ISBN: 0-072-23054-1

Puder A. (2004) http://www.puder.org/

Remoting.Corba (2004) http://remoting-corba.sourceforge.net/

Sama, S., Piñol, D. and Serra M. (2003), Web-based process
engineering Petroleum Technology Quarterly, 2003.

Serain D. (2001) Entreprise Application Intégration -
L’architecture des solutions e-business, Avril 2001, Dunod,
ISBN: 2-10-005605-0

Sessions R. (2000) Objects and Components, ObjectWatch
newsletter number 28, June 2000,
http://www.objectwatch.com/issue_28.htm

Sessions R. (2003) What is a Service-Oriented Architecture
(SOA)? ObjectWatch newsletter number 45, October 2003,
http://www.objectwatch.com/issue_45.htm

Sprott D. and Wilkes L. (2004) Understanding Service Oriented
Architecture, Microsoft Architects Journal, EMEA Edition,
January 2004,
http://www.thearchitectjournal.com/Journal/issue1/article2.html

TMC (2002) The Petstore Revisited: J2EE vs .NET Application
Server Performance Benchmark, November 2002,
http://www.middleware-company.com/j2eedotnetbench/

UserLand (2004) http://www.xml-rpc.com/

Wassermann A.I. (1990) Tool Integration in Software
Engineering Environments, Software Engineering Environments,
F. Long, Springer-Verlag, Berlin, 138-150.

Westhaus U. (2004) DETHERM…on the WEB, an online service
from DECHEMA: http://i-systems.dechema.de/detherm/

XMLFAQ (2004) The XML FAQ,
http://www.ucc.ie:8080/cocoon/xmlfaq

Final manuscript received in October 2004

660

Copyright © 2005 Institut français du pétrole
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made
or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this
work owned by others than IFP must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute
to lists, requires prior specific permission and/or a fee: Request permission from Documentation, Institut français du pétrole, fax. +33 1 47 52 70 78,
or revueogst@ifp.fr.

