
HAL Id: hal-02017228
https://ifp.hal.science/hal-02017228

Submitted on 13 Feb 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Software Interoperability for Petroleum Applications
B. Braunschweig

To cite this version:
B. Braunschweig. Software Interoperability for Petroleum Applications. Oil & Gas Science and
Technology - Revue d’IFP Energies nouvelles, 2005, 60 (4), pp.587-596. �10.2516/ogst:2005041�. �hal-
02017228�

https://ifp.hal.science/hal-02017228
https://hal.archives-ouvertes.fr


Oil & Gas Science and Technology – Rev. IFP, Vol. 60 (2005), No. 4, pp. 587-596
Copyright © 2005, Institut français du pétrole

Software Interoperability
for Petroleum Applications

B. Braunschweig1

1 Institut français du pétrole, 1 et 4, avenue de Bois-Préau, 92852 Rueil-Malmaison Cedex - France
e-mail: bertrand.braunschweig@ifp.fr

Résumé — Interopérabilité logicielle : les applications dans l’industrie pétrolière — Dans cette
introduction au dossier sur l’interopérabilité logicielle, nous soulignons le rôle principal du logiciel pour
l’industrie pétrolière, et nous présentons les motivations, aussi bien de marché que techniques,
concernant l’interopérabilité. Ceci est suivi d’un rapide survol des technologies utilisées dans la
recherche de l’interopérabilité, puis par les résumés des cinq contributions techniques qui constituent le
cœur de ce dossier. Nous concluons en fournissant quelques idées sur les futurs défis d’interopérabilité
dans notre industrie.

Abstract — Software Interoperability for Petroleum Applications — In this introduction to the
thematic dossier on software interoperability, we emphasise the key role of software for the petroleum
industry, and we give market and technical motivations for interoperability. This is followed by a brief
overview of the technologies used in the search for interoperability and by a summary of the five
technical contributions which constitute the core material in this issue. We conclude by providing some
views on the future interoperability challenges in our industry. 

Software Interoperability for Petroleum Applications
Interopérabilité logicielle : les applications dans l’industrie pétrolière

D o s s i e r

http://ogst.ifp.fr/
http://www.ifp.fr/
http://ogst.ifp.fr/index.php?option=toc&url=/articles/ogst/abs/2005/04/contents/contents.html


Oil & Gas Science and Technology – Rev. IFP, Vol. 60 (2005), No. 4

1 THE KEY ROLE OF MODERN SOFTWARE
TECHNOLOGIES FOR THE PETROLEUM INDUSTRY 

There is little need to emphasize the key role of computers
and software for the oil and gas industries. Since the early
days of computing, information technologies have been used
by petroleum companies for every aspect of their business.
Modelling and simulation have been central tools for
technical and economical evaluation of assets such as
exploration prospects, reservoirs, offshore equipment and
transportation systems, refineries and petrochemical plants.
The President of a large R&D company for the petroleum
industry wrote in 2001 that information technology (IT)
“plays a major transverse role for us. In R&D, most
research projects make use of modelling technologies and
lead to new software. IT is a central element of our business,
and contributes to establishing links between various
sectors” (translated from Mandil, 2000).

In the following, we emphasise a few characteristics of
contemporary IT that must be taken into account when
developing technical software for the petroleum industry.

1.1 Increasing Complexity

An important aspect of software in the oil and gas industry
lies in its ever-increasing complexity. It is now well known
that software artefacts are among the most complex technical
systems built by mankind. Operating a refining complex,
processing 3D seismic data, assessing the economic interest
of an oil reservoir, all these tasks involve the combination of
dozens of different software tools each of them providing

only a part of the global functionality required. As an
example, the Figure 1 shows the main technical components
of a process modelling environment, as defined by the
CAPE-OPEN standard (see article by Banks et al., this
issue). Such an environment involves many technical
functions, e.g. flowsheet management, management and
calculation of physical properties, equation solving, opti-
misation etc., not counting the many user-oriented functions
such as GUI1, session management, saving and restoring data
etc. The same can be said for other application environments
i.e. reservoir simulators, drilling planners, etc.

1.2 Networks, the Internet and Mobility

Nowadays computer systems are networked, distributed, and
mobile. Beyond the old paradigm of central computing
systems, and beyond the more recent paradigm of personal
computing, our current systems heavily rely on the avail-
ability of networked resources such as databases, work-
stations, supercomputing facilities, clusters, and of course the
internet. The mobile oil and gas industry worker expects to
find these resources at his/her fingertips, accessible from
anywhere in the world, in the office, at home, on a rig, or in
an airport waiting for a flight.

1.3 Evolution of Technologies

The software industry has developed new technologies at a
very fast pace. Far from the initial monolithic systems of the

(1) Graphical User Interface.

588

Other services

Planning & scheduling

Operations & control

Flowsheet

Graph partitioning

Unit operations

Numerical solvers

Parameter estimation
& data reconciliation

Optimisation

Partial diffential algebraic

Linear, non linear
differential algebraic

Common services

Parameters

Types and undefined values

Collections Persistence

Error handling Identification Utilities

Physical properties

Thermodynamic and
physical properties

Physical properties
data bases

Process modelling
environment

Chemical reactions

Figure 1

Architecture of a process modelling environment.



B Braunschweig / Software Interoperability for Petroleum Applications

1950’s and 1960’s, software technologies reached a degree of
sophistication in order to deliver the functions required by
these complex distributed applications. Among these, object
orientation, component technologies, web services and meta-
object approaches are those which contribute most to
software interoperability challenges, our the subject for this
issue of Oil & Gas Science and Technology - Revue de l’IFP.
With these tools, it becomes possible to compose a software
system by assembling heterogeneous components, infor-
mation and data.

1.4 The Need for Interoperability

Bluntly stated, no single software suite can do it all. Even the
leading and larger worldwide software companies cannot
supply the functions needed by all potential users of their
tools and packages. Application needs are too numerous and
too diverse, and sometimes unpredictable at the time when
the software is developed. In a recent communication, Roger
Sessions (Sessions, 2004), wrote about the motivations for
interoperability in IT: 

“The challenge today is not building enterprise software
systems. Enterprise software systems are essentially com-
modity technologies. The challenge is building enterprise
systems that can work together in innovative ways to create
and exploit business opportunities. The key challenge today
is interoperability.

Interoperability has a direct impact on profitability.
Interoperability lowers costs by minimizing vendor depen-
dencies, controlling failures, and reducing the cost of
replacing antiquated systems. Interoperability increases
revenue by allowing system synergies to be exploited, more
cost effective technologies to be utilized, and expensive
human resources to be maximized. 

Enterprises that fail to embrace interoperability will
simply cease to be competitive.

Systems interoperability starts at the highest levels of
management where the value proposition for interoperability
must be understood, analyzed, and embraced. This becomes
the foundation for a corporate culture of collaboration that
eventually pervades every aspect of corporate software
development.”

Although this text was written with corporate IT systems
in mind, we believe that the same applies quite well to
scientific and technical software applications for the oil and
gas industries. These industries have triggered major
software and data interoperability initiatives such as POSC or
CAPE-OPEN in the last ten or fifteen years, spending
millions of euros and US dollars to establish a technical basis
for successful exchange of functionality and data at runtime. 

The benefits of interoperability relying on standards for
data and function exchange have been mentioned by several
authors e.g. by OpenSpirit’s chief technology officer, Clay

Harter (Harter, 2004): “With application integration middle-
ware transparently connecting end users to the data that they
need, and in the appropriate formats, valuable time and
resources are shifting from data manipulation tasks to
analysis and decision-making tasks—a shift that has
compelling business benefits”. Another significant example
—and a sign of industrial interest—is the US Federal Trade
Commission proposed consent order regarding the divestiture
of Hyprotech simulation software from Aspen Technology,
asking the latter to maintain compliance with open standards
for several years in order to ensure a non-monopolistic
situation in the process simulation market (FTC, 2004).

More concretely, the main benefits expected from
software interoperability in our industry are:

– Easy, cost-efficient and error-free data transfer between
applications; both in upstream and downstream appli-
cations, professionals need to transfer complex data
structures from one application to another. Interoperability
standards provide the mechanisms for fully automated
data sharing and transfer between software from different
suppliers. Errors are eliminated and productivity is
significantly increased. Examples are: transfer of data
from basin software to reservoir simulation systems, well
engineering tools, etc., transfer of process flowsheets from
process design systems to online optimisation and
monitoring packages.

– Easy addition of functionality in application suites; open
standards for runtime functional interoperability allow the
seamless integration of external modules in software
suites, in a plug-in fashion called “plug-and-play”.
Applications can then immediately benefit from these
external functions as easily as using the same spelling
checker in most popular office tools. Examples are:
introduction of a specialised well steering algorithm in an
interactive drilling application; introduction of specific
thermodynamic calculations in process simulation
packages.

– Avoidance of “vendor lock-in”. Companies want to be
able to move from one vendor to another while keeping
and reusing their valuable assets in the form of data and
models. Interoperability standards facilitate the process by
giving vendor independence to the data and models.

– Trigger for innovation; when every single software
company needs to provide every possible functionality to
the user, a high amount of very valuable technical
resources are lost in developing well-know systems that
could be simply taken from others. With interoperability
standards, these resources are employed for their best
usage, that is, providing the special and innovative
functionality that others can’t provide. One example is
that a process licensing company would just develop its
proprietary reactor models, while relying on other
companies’ models for conventional unit operations.

589



Oil & Gas Science and Technology – Rev. IFP, Vol. 60 (2005), No. 4

– Support to quality assurance (QA) processes. When it
comes to quality assurance, there is an obvious need to
master all stages involved in a technical workflow. When
some stages (i.e. data transfer) are automated thanks to
software interoperability, QA can concentrate on the rest
of the workflow without needing to worry about the
possible mistakes made by human operators. Moreover,
the utilisation of the same technical module (e.g. a
corporate physical properties calculation package) in
many environments is a key quality factor as it ensures
consistency between applications and repeatability of
numerical experiments.
We hope that the series of articles in this issue will show

these benefits, and will present the breadth and relevance of
interoperability projects and the potential of underlying
technologies employed for their purpose.

1.5 A Market of Significant Size

The market of scientific and technical software in the
petroleum industry is constantly monitored by consulting
firms, therefore good estimates are available. There is data
for upstream (i.e. geology, geophysics, reservoir engineering,
drilling, production facilities) and for downstream (i.e.
process design, operation, optimisation, monitoring and
control, and operators training) applications.

In upstream applications, the worldwide market for
scientific and technical software is generally estimated to be
over 800 M€ and growing, with more than 50 000 work-
stations utilised by exploration and production (E&P)
professionals equally distributed between geology, geo-
physics, reservoir engineering and drilling engineering.

In downstream applications, the overall worldwide market
size is of the same order of magnitude, with around 300 M€

for offline process simulation and optimisation, and approx-
imately 500 M€ for online systems and operators training.

Such markets have generated a reasonably sized software
industry, with several large vendors providing integrated
series of tools addressing a significant part of the scope.
Both in E&P and in refining, a small number of major
companies (e.g. Schlumberger, Landmark, Aspen Technol-
ogy, Honeywell, Invensys) share more than two thirds of the
market, whereas a large number of small-sized vendors
provide other software suites with similar or additional
functionality. There are also many niche vendors bringing
added-value complements to the existing software base for
specific applications.

1.6 Co-Opetition as a New Economic Framework

Software supply has been traditionally viewed as any other
supply, subject to the market laws of competition. A typical
customer would look at different options, do some kind of
comparison based on technical and economical criteria, and

decide to buy one tool or suite of tools from a single supplier.
However, this approach, which has the advantage of being
simple, becomes less and less relevant when it comes to
setting up complex software suites made of interoperable
components, since the final system will be composed of
several pieces acquired from various sources. Economists
have developed a new model for this “economy of inter-
operability”, namely the “theory of co-opetition” as defined
by Brandenburger and Nalebuff (Brandenburger and
Nalebuff, 1996): “Business is co-operation when it comes to
creating a pie and competition when it comes to dividing it
up. In other words, business is War and Peace. But it’s not
Tolstoy-endless cycles of war followed by peace followed by
war. It’s simultaneously war and peace. As Ray Noorda,
founder of the networking software company Novell,
explains: ‘You have to compete and co-operate at the same
time’. The combination makes for a more dynamic relation-
ship than the words “competition” and “co-operation”
suggest individually.” 

In the petroleum industry, as for other industries, and
following the trends of co-opetition, plug-and-play inter-
operability will stimulate the market and create new
opportunities that could never have happened before. New
value nets will be created with one supplier being another
supplier’s competitor, and at the same time the supplier’s
complementor, as assembling components from these two
sources will provide more than just summing up the two
parts by operating them separately. 

2 A BREADTH OF SOFTWARE PARADIGMS
AND TECHNIQUES

The first software developed in the sixties and seventies were
large monolithic systems. Developed in FORTRAN, they
were designed as large multipurpose programs sharing data
through COMMON declarations and using internal or
external subroutines. Modular programming helped in
facilitating maintenance and debugging, so it was quickly
adopted. At the core of these systems is the idea that they are
self-standing, can solve by themselves all the problems, and
will be extended by modifying source code, recompiling and
deployment of the newly generated versions toward its users.
Functional interoperability (i.e. the exchange of functionality
between software at runtime) was just not an issue, since
there was no practical way to implement it. Data inter-
operability (i.e. sharing of data between applications) was
obtained by agreeing on common data structures and
formats, and by passing one program’s formatted output as
input to another program.

Figure 2 illustrates a simple monolithic system for
displaying a graph chart on a monitor: all modules depend on
the shared memory area containing common definitions and
variables i.e. colours, scales, data values, etc.

590



B Braunschweig / Software Interoperability for Petroleum Applications

Figure 2

Monolithic system.

Object oriented (“OO”) programming was introduced in
the eighties and was progressively adopted since it
constituted a better way to design, develop and maintain
complex codes. In an object oriented system, software
objects are instances of carefully designed classes; these
classes define the generic behaviour of their instances
through private and public properties and methods, and they
exchange information and data through messages. This
approach brings valuable properties such as:
– generalisation, a way to minimise software development

by implementing functionality at the most appropriate
level;

– encapsulation, a way to control access to the internals of
an entity by authorising only predefined calls;

– polymorphism, a way to dynamically adapt the behaviour
of an entity based on its characteristics, on its belonging to
a specific class within the class hierarchy.
Figure 3 shows the same graph displaying modules in an

object oriented fashion, where the axis, cure and grid objects
expose their functionality to others through public methods
while keeping their internal details in the private part, and
communicate using messages.

The object oriented approach was widely adopted by the
IT systems community because of its obvious benefits;
however it took many years to develop in the scientific and 

Figure 3

Object oriented software.

technological software arena, as is was felt too complicated
for inexperienced programmers, and less efficient in terms of
performance. We can state that the OO approach was really
adopted by the oil and gas industry in the nineties, with major
projects undertaken by providers and users, thanks to the
availability of good quality development and execution
environments for C++ and FORTRAN 90. Good quality OO
methodologies and formalisms such as UML (Object
Management Group, 2004) were also key to the success of
the OO approaches. These were only made available recently
i.e. in the second part of the 1990’s. 

Object orientation is one possible technical solution to
interoperability because of the way it forces to structure
things. However, it is quite possible to develop un-
interoperable object-oriented programs, and it is also possible
—although less common—to develop interoperable software
without an OO approach. But interoperating “conventional”
OO systems still implies some access to the source code for
adding or modifying functionality, or linking to other
systems. Component technology provides the technical
solution for interoperation without access to source code.

There is no commonly agreed definition of software
components. Webopedia (www.webopedia.com) defines a
software component as “a small binary object or program
that performs a specific function and is designed in such
a way to easily operate with other components and
applications”. Microsoft presents its component model,
COM, as “the most widely used component software model
in the world. It provides the richest set of integrated services,
the widest choice of easy-to-use tools, and the largest set of
available applications. In addition, it provides the only
currently viable market for reusable, off-the-shelf, client and
server components” (www.microsoft.com/com/about.asp).
The Object Management Group (OMG) presents CORBA as
“OMG’s open, vendor-independent architecture and infra-
structure that computer applications use to work together
over networks. Using the standard protocol IIOP, a
CORBA-based program from any vendor, on almost any
computer, operating system, programming language, and
network, can interoperate with a CORBA-based program
from the same or another vendor, on almost any other
computer, operating system, programming language, and
network” (www.omg.org/gettingstarted/corbafaq.htm). Sun
Corp. presents its Enterprise JavaBeans (EJB) component
technology as “the server-side component architecture for
the Java 2 Platform, Enterprise Edition (J2EE) platform.
EJB technology enables rapid and simplified development of
distributed, transactional, secure and portable applications
based on Java technology”. 

Common to all these approaches is the notion of
interfaces. Software components expose their functionality
through published lists of methods and arguments, grouped
in interfaces, that other software can use. These can also
be seen as contracts between a software client and a

Axis

Public part

inc add

set remget

Private
part

Grid

Public part

inc add

set remget

Private
part

Public part

inc add

set remget

Private
part

Curve

M
es

sa
ge

s

Messages

Messages

Messages

Axis
module

Curve
module

Grid
module

Common memory area
colours, values, scales definitions...

Etc. Etc.

591



Oil & Gas Science and Technology – Rev. IFP, Vol. 60 (2005), No. 4

Figure 4

Graph drawing component.

server component providing a service. Figure 4 shows a
graph drawing component exposing its functionality through
interfaces.

Component technology allows programs to interoperate
independently of their implementation. Source code access is
not needed anymore, thanks to the contract-based behaviour
provided by the set of interfaces. However, interoperating
networked components developed in different languages,
running on different hardware and operating systems implies
the use of an intermediate software layer called middleware.
Figure 5 shows the role of middleware between a graph
drawing component operating on a PC, and a properties
calculation components running on another computer and
making calls to the graph drawing component for using its
services.

Middleware comes in different flavours… unfortunately
the software industry has not yet reached an agreement on
this matter and many middleware solutions exist for
interoperating distributed software components. We list some
of the solutions here, noting that much more material is given
in Belaud et al.’s article in this issue.

This issue contains examples of use of middleware for
interoperability in upstream and downstream oil and gas
applications. The content is presented below.

Graph drawing
component

100

0
1 2 3 4 A

C
Title

X-Y graph

Bar chart

592

TABLE 1

Examples of middleware technologies

Middleware name What it is, what it does

COM, DCOM, COM+, OLE, ActiveX, DNA Microsoft’s original middleware and architecture for Windows-based software

components. Now superseded by .NET. 

CORBA (Common Object Request Broker Architecture) Object Management Group (OMG) middleware and architecture for distributed objects,

using the IIOP standard protocol. Now integrated in OMG’s CORBA Component

Model.

XML (eXtensible Markup Language) A metalanguage for designing specific markup languages for different types of

documents and data. XML is used in several interoperability architectures.

.NET Microsoft’s current web-enabled development platform and interoperability framework,

based on XML, SOAP and Web Services.

RMI (Remote Method Invocation) Sun’s technology allowing Java objects running on different Java Virtual Machines to

interoperate.

EJB (Enterprise Java Beans) Sun’s architecture for interoperable distributed enterprise-level applications; usually

dedicated to Java-based objects and components.

MOM (Message-Oriented Middleware) A client-server infrastructure allowing distributed heterogeneous applications to

interoperate thanks to publish-and-subscribe messaging mechanisms.

SOAP, UDDI and Web services A wealth of XML-based technologies for interoperating software services over the

Internet, based on SOAP as a communication protocol and on UDDI directories (yellow

pages, etc.).

GRID middleware (e.g. Globus) Technologies enabling the sharing of computer power and databases over the internet.

The Globus Alliance provides the most popular middleware for this purpose.

FIPA (Foundation for Intelligent Physical Agents) Non-profit organisation producing standards for the interoperation of heterogeneous

software agents. FIPA provides several technologies including the Agent Com-

munication Language (FIPA ACL).



B Braunschweig / Software Interoperability for Petroleum Applications

3 CONTENTS OF THIS ISSUE

This issue contains five technical articles. The first four show
various aspects of software interoperability in five upstream
and downstream technical application domains. The last
article gives an overview of the software technologies used
for interoperability and can be read last, first, or even by
small sections when needed e.g. when the reader needs to
understand the underlying technological aspects of a
particular interoperability framework presented in the other
articles.
– The paper by Rainaud gives a synthetic view of several

interoperability projects dealing with underground aspects
(geology, geophysics, reservoir). The oil and gas
profession started to address underground data inter-
operability problems back in the 1990’s with the well-
known POSC consortium, which led to the reference
Epicentre model. Since those days, many projects were
undertaken, dealing with all sorts of applications (data
exchange, software interoperability, workflow modelling,
etc.) and using all sorts of technologies, from conventional
database technologies to more advanced semantic models
on top of XML. Rainaud’s article will help the reader find
his/her way among the POSC, Epicentre, RESCUE,
OpenSpirit, EpiSEM, etc., projects for this key application
domain. This view is complemented by looking at the
very specific need of geo-referencing, that is, referencing
objects of interest with geographical information. Born
around ten years ago, the Open GIS consortium describes
its vision as “a world in which everyone benefits from
geographic information and services made available

across any network, application, or platform”. For this
purpose, Open GIS supports open interface specification
for spatial data, allowing interoperability of such spatial
information. The article shows what these specifications
are and what benefits they bring to our profession.

– The article by Banks et al. presents the most advanced
interoperability standard in the process simulation field,
that is, the CAPE-OPEN standard, the result of two
successive EU-funded research projects gathering users,
software providers and researchers in the domain of
Computer-Aided Process Engineering (CAPE). The
CAPE-OPEN technology has been extensively presented
elsewhere (Braunschweig, 2002; Braunschweig et al.,
1999; Braunschweig and Gani, 2002; Braunschweig et al.,
2001), and is fully described on CAPE-OPEN Laboratory
Network’s (CO-LaN) web site (Co-LaN, 2002), therefore
Banks and his colleagues essentially present a users view
showing the main benefits that can be gained from
interoperability of process modelling software. The reader
interested in knowing more technical details should
download reference articles from the CO-LaN’s website.

– The next article, by Leal, shows a different view of inter-
operability standards as it is concerned with the seamless
exchange of complex process/product data between
process engineering applications. The need to exchange
such process and product data has been identified a long
time ago. The lifecycle of a plant or of a process imposes
transfering complex data (material, fluid, equipment,
operating conditions, etc.) along many phases i.e.
conceptual design, detailed design, construction, start-up

593

Graph drawing
component

100

0
1 2 3 4 A

C
Title

X-Y graph

Bar chart

Initialise

Compute

Results

Properties

calculation

component

M

I

D

D

L

E

W

A

R

E

∫
n

i = 1
[θ(i)dθ]

Figure 5

The role of middleware.



Oil & Gas Science and Technology – Rev. IFP, Vol. 60 (2005), No. 4

and commissioning, operation, maintenance and demo-
lition. Initially powered by the STEP file standard,
several projects have addressed this need, leading to the
current implementations which take advantage of the
XML format.

– The last application based article, by Matania, presents two
complementary technologies for sharing application
functionality online and in real time in refineries and
petrochemical plants:
• the well known OPC (OLE for Process Control)

standard, developed on top of Microsoft’s COM
middleware, which allows interoperation of process
control applications from several DCS manufacturers;

• a framework for exchanging sophisticated process
monitoring and supervision functionality (trends
analysis, alarms processing, planning and scheduling,
etc.) developed in the EU-funded CHEM project is
presented.

This framework makes use of publish and subscribe
mechanisms with message-oriented middleware, and a
first implementation was done using Gensym’s G2
software, a commercial platform supporting knowledge-
based process surveillance applications.

– The article by Belaud et al. presents the software
technologies needed for interoperability: middleware such
as Microsoft’s COM and .NET, Object Management
Group’s CORBA, Sun System’s Enterprise Java Beans,
the widely accepted UML language for object-oriented
modelling, plus other important technologies such as web
services and Service-Oriented Architectures, etc. It
provides a useful packed introduction to the domain, and
pointers for those readers interested to know more about it.

Let us now conclude by providing some perspectives
on further interoperability technologies making use of
semantics.

4 PERSPECTIVES: SEMANTIC INTEROPERABILITY,
SEMANTIC WEB SERVICES

We believe, as many others do, that the next stage of
software interoperability will rely on semantic web tech-
nology using domain ontologies and web services
frameworks. The current worldwide web is very rich in terms
of content, but is essentially syntactic or even lexical.
Looking for information on the web, using search engines, is
done by finding groups of terms in the pages and in the
documents, without taking consideration of the meaning of
those terms.

For example, using the most popular search engine,
Google™, to look for information about deep wells, brings
the following results on the first page (Fig. 6).

The results page mixes information about 1) drinks, 2)
phenomena in quantum mechanics, 3) oil well injection, and
(4) electronic components. One might wish to go to the
“advanced search” page and specify that only websites about
oil wells should be returned. This is not possible, since
Google™ doesn’t allow this restriction. As a matter of fact,
none of the most popular search engines currently used could
restrict search to a category of pages, as the semantics of the
pages are unknown to them.

Supported by the W3C of which it is a priority action,
many projects aim at developing the semantic level, where
information is annotated by its meaning. A necessary stage is

594

Deep Well
<http://pages.britishlibrary.net/edjason/deep/> 
Find a Well Drink Deeply. Subscribe to Deep_Well. Powered by groups.yahoo.com.

Infinitely Deep Well Java Applet
<http://www.nhn.ou.edu/~mason/quantum/deepwellmain.html>
This applet illustrates the infinitely deep (square) potential well in
nonrelativistic quantum mechanics. 

Deep Well Injection
<http://www.frtr.gov/matrix2/section4/4-54.html> 
Deep Well Injection (GW Containment Remediation Technology).

Deep Well Replicator Starter Kit
<http://www.vp-scientific.com/96_deep_well_replicator_starter_kit.htm> -
Two Deep Well Grooved Pin Replicator. VP OK9A - Starter Kit.

Figure 6

The need for semantics.



B Braunschweig / Software Interoperability for Petroleum Applications

to define consensual representations of the terms and objects
used in the applications, these consensual representations are
called ontologies. These ontologies will be expressed in OWL
(Ontology Web Language) which itself is based XML and
RDF (Resource Description Language, a specialisation of
XML). Programs the world over support this movement
towards the semantisation of information. In Europe, the EC
provides strong support through the Information Society
Technologies (IST) programme. A few ontology development
projects have taken oil and gas industries as their application
domain. A good definition of ontologies is provided in the
“Web Ontology Language Use Cases and Requirements”
document published by W3C (2004): “…ontology defines the
terms used to describe and represent an area of knowledge.
Ontologies are used by people, databases, and applications
that need to share domain information (…) Ontologies
include computer-usable definitions of basic concepts in the
domain and the relationships among them. They encode
knowledge in a domain and also knowledge that spans
domains. In this way, they make that knowledge reusable.

The word ontology has been used to describe artefacts
with different degrees of structure. These range from simple
taxonomies to metadata schemes, to logical theories. The
Semantic Web needs ontologies with a significant degree
of structure. These need to specify descriptions for the
following kinds of concepts:

– classes (general things) in the many domains of interest;

– the relationships that can exist among things;

– the properties (or attributes) those things may have”.

The definition of ontologies is a multidisciplinary work,
which requires competence:
– in the application area: geographical information, sub-

surface objects, facilities, transportation, processes,
chemistry, environment, etc.;

– in the modelling of knowledge into a form exploitable by
machines.

It is also an important stake for the actors of the field, who
will use the standards defined to annotate and index their
documents, their data, their codes, in order to facilitate the
semantic retrieval.

Thanks to shared ontologies, future interoperability will
involve the dynamic discovery and use of software services
based on metadata such as supplier, price, performance,
quality of service, semantically enabled input-output
descriptions, and possibly on standard representations of the
software’s internal processes. We see already such elements
in web services technologies as shown in the article by
Belaud et al. in this issue, and in Leal’s article with the use of
RDF and OWL. Ongoing IT projects such as DAML-S, an
ontology of services for software agents (Ankolenkar
et al., 2002), and SWWS, Semantic Web Enabled Web
Services (Swws, 2004), are stepping stones on the path to
semantic interoperability.

Challenges in Interoperability

Software interoperability poses several challenges to the
profession. In order to harvest the maximum benefits from
the opportunities given by mixing and matching software
components from different sources, users and vendors need
to work together and address a number of issues before
moving into full production.
– Quality of Service (QoS): suites of interoperating software

components need to provide a QoS matching those of
conventional software suites. This implies not only
working on the quality of individual software pieces, but
also being able to assess the quality of software assem-
blies, which is still an open issue in the general case.

– Debugging facility: it should be easy to identify the source
of a problem when things go wrong. When a software is a
combination of tens or hundreds of components, tracing
errors from symptoms presented to users to root causes
might not be easy. 

– Performance: interoperability relies on layers of middle-
ware implying a usually moderate overload; in addition,
combinations of components which have not been
designed together could be less efficient than combination
of native components from the same supplier. This issue
can be a serious drawback in demanding applications.

– Responsibility: when acquiring software from distinct
sources, a user will still expect the same level of support
in case of problems. However a single vendor would not
guarantee someone else’s component in most cases. This
is an opportunity window for systems integrators who
could build interoperating software suites for customers
and provide the needed support.
When solutions will be provided to the above-mentioned

challenges, engineers and technicians in the oil and gas
industries will enjoy the many benefits of interoperability.
We hope that the current issue of Oil & Gas Science and
Technology - Revue de l’IFP contributes to these exciting
developments.

REFERENCES

Ankolenkar, A., Burstein, M., Hobbs, J.R., Lassila, O., Martin,
D.L., McDermott, D., McIlraith, S.A., Narayanan, S., Paolucci,
M., Payne, T.R. and Sycara, K. (2002) Daml-s: Web Service
Description for the Semantic Web. First International Semantic
Web Conference (ISWC), Sardinia, Italy.

Brandenburger, A. and Nalebuff, B. (1996) Co-Opetition,
Currency Doubleday, New York.

Braunschweig, B., Pantelides, C.C., Britt, H. and Sama, S. (1999)
Open Software Architectures for Process Modelling: Current
Status and Future Perspectives. FOCAPD’99 Conference,
Breckenridge, Colorado.

Braunschweig, B. (2002) The Cape-Open 1.0 standard, March
2002, www.colan.org.

Braunschweig, B., Irons, K., Köller, J., Kuckelberg, A. and Pons,
M. (2001) Cape-Open (CO) Standards: Implementation and

595



Oil & Gas Science and Technology – Rev. IFP, Vol. 60 (2005), No. 4

Maintenance, Proceedings of 2nd IEEE Conference on
Standardization and Innovation in Information Technology,
Boulder, Co, 335-338.

Braunschweig, B. and Gani, R. (2002) Software Architectures and
Tools for Computer-Aided Process Engineering, Computer-Aided
Chemical Engineering, 11, Gani, R. (ed.), Elsevier, Amsterdam.

CO-LaN (2002) Cape-Open Laboratories Network Web Portal,
www.colan.org.

FTC (2004) United States Federal Trade Commission Decision
and Order (public record version), Docket 9310 Aspen
Technology Inc., July 2004, www.ftc.gov.

Harter, C. (2004) Herding Cats - the Challenge of Data and
Application Integration, First Break, 22, 57-61.

Mandil, C. (2000) Personnal Communication.

Object Management Group (2004) Uml, Unified Modeling Lan-
guage. http://www.uml.org/

Sessions, R. (2004) The Road to Interoperability. Object Watch
Newsletter, www.objectwatch.com

SWWS (2004) Semantic Web Enabled Web Services,
http://swws.semanticweb.org

W3C (2004) Web Ontology Language Use Cases and Requi-
rements, http://www.w3.org/TR/webont-req/

Final manuscript received in May 2005

596

Copyright © 2005, Institut français du pétrole
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made
or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this
work owned by others than IFP must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute
to lists, requires prior specific permission and/or a fee: Request permission from Documentation, Institut français du pétrole, fax. +33 1 47 52 70 78, 
or revueogst@ifp.fr.


