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Résumé — Détermination de paramètres géostatistiques par l’utilisation des données d’essais de
puits — Des études de réservoirs de plus en plus nombreuses font appel à une description probabiliste
du réservoir. Ceci permet de quantifier les incertitudes sur les prévisions de production, à condition de
disposer d’un modèle géostatistique convenablement paramétré. Les paramètres les plus courants sont
la (ou les) longueur(s) de corrélation et la variance de la perméabilité. Ces paramètres sont déterminés à
l’aide de considérations géologiques, auxquelles on ajoute éventuellement des mesures pétrophysiques
sur carottes à l’échelle du laboratoire. Il serait toutefois intéressant de disposer d’une technique de
mesure directe de ces paramètres, en utilisant des données investigant des échelles plus importantes du
réservoir considéré. Dans cet article, nous examinons l’apport des essais de puits, qui ont l’avantage
d’être disponibles au début de l’exploitation du gisement, et dont on peut montrer qu’ils “moyennent” la
perméabilité du réservoir sur une zone correspondant à leur rayon d’investigation. La méthode proposée
consiste à chercher les paramètres géostatistiques rendant le test de puits effectivement obtenu sur
le terrain le plus probable possible. La technique utilisée repose sur des techniques de changement
d’échelle, combinées à des approches de calage bayésien et des méthodes d’optimisation. Les résultats
obtenus sur cas synthétiques montrent une bonne détermination des ordres de grandeur des paramètres
estimés.

Abstract — Determination of Geostatistical Parameters Using Well Test Data — In this paper we
describe a new method to obtain estimations of the geostatistical parameters (GPs) such as the
correlation length, lc and the permeability variance, σ2

ln from well test data. In practical studies,
the GPs are estimated using geological and petrophysical data, but often, these data are too scarce to
give precise results. The proposed method uses the Bayesian inversion theory, in conjunction with a
fast evaluation of well tests that implies upscaling techniques. The method was tested using synthetic
well-test data performed on some training images, and estimations of the underlying correlation length,
lc and permeability variance, σ2

ln were recovered. These estimations give a correct order of magnitude
of the actual values, but as noticed in similar methods, the uncertainties are high. Once the GPs are
estimated, other well established techniques can be used to get well-test matched reservoir images
consistent with the geostatistical model. We will see that excellent well test data are needed, and that
the method could be improved using multiple well test data.

http://ogst.ifp.fr/
http://www.ifp.fr/
http://ogst.ifp.fr/index.php?option=toc&url=/articles/ogst/abs/2004/02/contents/contents.html
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NOMENCLATURE

Mathematical notations

δ (r) Dirac delta-function
Y (t) Heaviside function Y (t) = 0 if t < 0

and Y (t) = 1 if t ≥ 0
IN N × N Identity matrix
At Transpose of the matrix A
|A| Determinant of the matrix A
Tr A Trace of the matrix A
[x] = x Mean of the random variable x
p (H1) Probability density function of H1

p (H1|H2) Probability density function of H1 if H2

is known

Other notations

ct Total compressibility of rock + fluids (bar−1)

C Covariance matrix of the parameters
d Observation vector (di) = 1/kapp (ti) (mD−1)

G (r, t) Weighting kernel for ring permeabilities
G2D and G Represent the 2D well test simulator

and his fast approximation
h Depth of the reservoir (m)
J Jacobian matrix of G (mD−1)(
kj

)
j=1...Nr

Ring permeabilities (mD)
keff Effective permeability (mD)
kg Geometric mean of the permeabilities (mD)
kw Wellbore permeability (mD)
k̂ (t) Estimation of the apparent permeability

at time t (mD)
kapp (t) Apparent permeability at time t (mD)
L (Θ) Negative of the log-likelihood function
lc Correlation length (m)
M Fisher information matrix (approximation

of the Hessian of L
Nt Number of observations (ie. number of time

steps)
Nr Number of parameters (ie. number of rings)
Nx,Ny Number of gridblocks in x and y directions
P (r, t) Pressure at the point r and at time t ( bar)
Q Well rate (m3/s)(
rj
)

j=1...Nr
Ring radius (m)

R Covariance matrix of the observations (mD−2)

Rapp (t) Radius of investigation at time t (m)
Rmin,Rmax Radius control parameter to choose the number

of observations used in the optimization
procedure (m)

y Parameter vector
(
yj = log

(
kj

))

∆x,∆y Gridblock dimensions in x and y dimensions
(m)

λ Parameter computed to improve the
convergence rate of the optimization algorithm

φ Rock porosity

µ Fluid viscosity (cp)
ρ (h) Correlation function related with the variogram

γln in the considered cases by
γln (h) = σ2

ln − ρ (h)
σ2

ln Variance of the log-permeability
σ2

c Control parameter which represent our
knowledge of kw

σ2
w Control parameter for the observation matrix(

R = σ2
wINt

)

Σ Covariance matrix for the observation pdf
p (d|Θ)

Θ Geostatistical parameter vector(
Θ = [

σ2
ln lc

]t
)

Ξ Hessian of L (Θ)

INTRODUCTION

The use of geostatistical models to improve production fore-
casts is becoming more and more popular among reservoir
engineers. In order to reduce the forecasting uncertainties,
an important challenge is to history match production data,
using the information provided by geostatistics in a consist-
ent manner. This problem was investigated by many authors,
using various optimization techniques and the Bayesian
paradigm [1–8]. In general, the underlying geostatistical
model, as well as the geostatistical parameters (GPs) such as
the correlation length, lc and the log-permeability variance,
σ2

ln are supposed to be fixed.
Most often, in practical studies, the GPs are estimated

using geological information and statistical analysis of the
available petrophysical data [9,10]. In a lot of cases, these
data are too scarce to give precise results, and more particu-
larly if the typical interwell spacing is very large compared to
the correlation length. This problem received some attention
in the oil-oriented technical literature. Yadavalli et al. [11,
12] using Sagar [6] and Feitosa’ s [13] approach were able
to get estimations of the GPs from a single well test. Nev-
ertheless, in their approach, they derived the variogram of
a two-dimensional permeability field from the computation
of the variogram of a radial one-dimensional equivalent per-
meability field that leads to the correct well test. Their main
assumption is that the two variograms are equivalent. We will
show that this is not the case in general and that the relation
between the two variograms is rather complex (Eq. (25)).
It is therefore not obvious to give an interpretation of their
results. Yortsos [14] proposed an alternative technique that
works when a lot of independent well test data are available.

The determination of the GPs from head measurement
data received considerable attention in the hydrogeology
literature (see [15–17] and references therein). The authors,
in these studies, used a Bayesian framework that formalized
the history matching process using least square optimiza-
tion techniques. In the present paper, we will adapt this
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general framework to the particular case of well test data.
The main idea is to evaluate the joint probability density
of having any given reservoir image and any given set of
dynamic data measurements, for fixed GPs. The GPs estim-
ation is done using the maximum likelihood principle which
states that among the GPs, the probability density to get the
actual dynamic data must be maximum. The method was
tested using synthetic well-test data on some training images,
and estimations of the underlying correlation length, lc and
permeability variance, σ2

ln were found. As noticed in the
litterature dealing with the geostatistical approach of inverse
problems [18,17,19,20], we will find that the estimates give
the good order of magnitude of the actual values but the
uncertainties are high. Once the GPs are estimated, one
can thus obtain well-test matched reservoir images consist-
ent with the geostatistical model using standard inversion
methods.

1 WELL TESTS AND APPARENT PERMEABILITY

Well tests are commonly used in reservoir engineering for
better understanding the structure of the reservoir. Typically
the investigated scale is hectometric, and important proper-
ties such as the average permeability, the reservoir boundary
positions, skin and wellbore storage effects can be estimated
from a well test interpretation.

Thanks to the improvement of pressure gauges, modern
well test interpretation techniques make an intensive use
of the pressure derivative curve. This tool, as well as the
associated concept of instantaneous apparent permeability
are very powerful techniques to interpret well tests in a
geostatistical context. In a first part, we present our main
assumptions and introduce the apparent permeability as well
as its main properties.

1.1 The Diffusivity Equation

Hereinafter, we will work with the following assumptions:
– the reservoir is 2D and of infinite dimension
– the flow is single-phase
– the porosity, φ and the viscosity µ are constant
– the fluids and the rock are considered slightly compress-

ible and the total compressibility ct is constant
– skin and wellbore storage effects are negligible

Within this framework, considering that a well located at
the origin is pumping at a constant rate Q from t = 0, the
pressure variation P (r, t) and the permeability map, k (r) are
related by the diffusivity Equation [21–23]:

φµct
∂

∂t
P (r, t) = ∇ • (k (r)∇P (r, t))+ µQ

h
δ (r)Y (t) (1)

h denotes the reservoir thickness and the second term of the
right hand side is a source term. It is the product of a spatial
Dirac function δ (r) by a Heaviside function Y (t) (which is

equal to 0 if t < 0 and 1 if t ≥ 0). This approximation
(known as the line source approximation) holds if the well
radius is infinitesimally small with respect to the typical scale
of the reservoir.

To get a well defined problem, we must fix some bound-
ary conditions. Initially, the pressure variation is uniformly
equal to 0 (i.e.∀r,P (r, t = 0) = 0) and the pressure variation
vanishes far from the well (i.e.∀t,P (r→∞, t = 0) = 0).

1.2 The Apparent Permeability

This diffusivity Equation can be solved analytically for a
constant permeability, k0 [22,23]. Typically, the product
k0h can be derived from the bottomhole pressure P0 (t) =
P0 (r→ 0, t):

k0h = µQ

4π
dP0 (t)

d log t

(2)

This relation is the basis of the derivative technique in well
test interpretation. Additional physical phenomena such as
skin, wellbore storage, and practical constraints transform
well test interpretation into a full speciality. An important
technical literature exists on the subject, with intensive use
of type-curve analysis and numerical optimization methods
[21,22,24].

Equation (2) can be generalized in the heterogeneous case
defining the apparent permeability concept:

kapp (t) = µQ

4πh
dP (t)

d log t

(3)

Of course, for a homogeneous reservoir, kapp (t) is inde-
pendent of time and is equal to the constant permeability,
k0. We need also an estimation of the radius of investigation
which corresponds to the range investigated by the well test:

Rapp (t) = C

√
kapp (t) t

φµct
(4)

Here, the dimensionless constant C, the order of mag-
nitude of wich is unity, depends on which definition is used
[24]. For the sake of simplicity, we will set C = 1 throughout
the paper.

In a geostatistical context, the relation between kapp (t)
and the permeability field k (r) is very complex and a gridded
reservoir simulator is needed. Hereinafter we will consider
that k (r) is a random variable (1), and that the actual per-
meability field is only a particular realization of k (r).

In this statistical framework, some important asymptotic
results can be derived using perturbation methods [26] that
can be extended in a systematic manner using a Feynman

(1) Gelhar [25], in the introduction of his book (§ 1.3), mentions some
key points for working with random variables and stochastic processes.
This approach can formally handle the uncertainties due to the lack of
measurements of porous media characteristic parameters.
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diagram approach [27]. For short times, the apparent per-
meability tends to the wellbore area permeability, kw:

lim
t→0

kapp (t) = kw (5)

and for long times, the apparent permeability tends to the
effective permeability keff corresponding to the upscaled
reservoir permeability :

lim
t→∞ kapp (t) = keff (6)

It can be shown that the typical time to reach this last limit
is such that Rapp (t) = lc, when the radius of investigation
is in the order of magnitude of the permeability correlation
length. This means that the well test is performing a homo-
genization of the reservoir permeability. This is the physical
basis of the proposed method where the geostatistical para-
meters will be estimated from well tests.

2 FAST EVALUATION OF WELL TESTS

Since we will use an optimization method to evaluate the geo-
statistical parameters and, therefore, an important amount of
simulations will be required, a fast approximation of well
tests is needed. The approximation we will use was first
proposed by Oliver [4] for low permeability contrasts where
a first order expansion of the diffusivity Equation (1) was
considered. This approach was further extended by Sagar
[6] and Feitosa [13] for high permeability contrasts. They
found that the apparent permeability can be considered as
an averaging process over volumes of increasing size with
respect to time. More precisely, the approximation of the
apparent permeability k̂ (t) is a weighted sum of a “homogen-
ized permeability field” that contains Nr ring permeabilities
kj, j = 1 · · ·Nr (Fig. 1):

1

k̂ (ti)
=

Nr∑

j=0

Gij · 1

kj
(7)

The weights Gij depend on a kernel function G (r, t) (2):

Gij =

∫ ρi,j+1

ρi,j

z dz G

(
z2

2

)

∫ ∞

0
z dz G

(
z2

2

) (8)

with
ρi,j = rj

Rapp (ti)
(9)

(2) G (r, t) = 1

2
ze−z

(
2K1 (z)

(
1− 1

z

)
+ K1 (z)+ K2 (z)

)
where K0,

K1, K2 represent the zero, one and two order modified Bessel functions

and z = 1

2

(
r

Rapp (t)

)2

←  r
7
 = ∞

←  r
6

←  r
5

←  r
4←  r

3←  r
2←  r
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Figure 1

Definition of ring permeabilities and ring radii for a homogen-
ized field containing 6 rings.
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Permeability weighting kernel
√

zG (z) vs. z = r2/t.

We have plotted in Figure 2 the function
√

zG (z)
vs. z = r2/t which appears in Equation (9). The maximum
of this function is for r = 0.92Rapp (t) and 99% of the
whole contribution comes from the area contained between
the two radii rmin = 0.12Rapp (t) and rmax = 2.34Rapp (t).
Furthermore, we have a normalization condition:

∞∫

0

dz G (z) = 1 (10)
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and, assuming that r1 = 0 and rNr = ∞:

Nr∑

j=1

Gij = 1 (11)

The next step is to relate the ring permeabilities kj to the
original 2D permeability map. Feitosa [13] used different
averaging formulae (arithmetic, harmonic and geometric) to
compute kj from a 2D lognormal permeability field. He
compared the resulting estimations with some reference res-
ults obtained using a complete finite difference well test
simulation. He found that the best match of the apparent
permeability is obtained when the geometric mean is used.
This result is consistent with the general properties of the
apparent permeability given by Equation (6). For short times,
independently of the averaging rule, k̂ (t) will tend to the
wellbore permeability. For long times, using (6), k̂ (t) has to
converge to the effective permeability which is precisely the
permeability geometric mean in the 2D lognormal case [28].
Since, in the following, we will only consider lognormal
permeability fields, the ring permeabilities are the geometric
mean of the fine scale permeabilities contained in the ring:

Yj = log
(
kj

) =
∑

l∈Ωj

ωl log (Kl) (12)

where Kl denotes the Cartesian permeabilities, Ωj are the
indices of the gridblocks overlapping the ring j and ωl is
a factor that represents the fraction of the gridblock’s area
contained in the ring.

3 GEOSTATISTICAL PARAMETER ESTIMATION USING
WELL TEST DATA

Kitanidis and Vomvoris [19] estimate geostatistical para-
meters using steady-state pressure and permeability meas-
urements for a 1D flow problem. Our present goal is to
generalize the method for transient flow. Now, the data
considered are measurements of apparent permeability val-
ues. Nevertheless, the same formalism can be applied. The
interested reader can refer to different papers [19,18,17] and
to the references therein.

Let us now present the geostatistical approach and some
notations. We will consider that we have Nt apparent per-
meability measurements and a permeability map described
by the value of the permeability at the centers of Nm gridb-
locks.

We define an observation space and a parameter space
where:
– Y is a Nm parameter vector containing the parameters of

the problems, which are, in our case, the permeability
logarithm map.

Yj = log
(
Kj

)
, j = 1 · · ·Nm (13)

The parameter mean 〈Y〉 = Y is considered as known.
The (Nm × Nm) covariance matrix

C2D (Θ) =
〈(

Y− Y
) (

Y− Y
)t
〉

(14)

is a known function of a few geostatistical parameters
contained in a vector Θ (variance, correlation length,
nugget effect, etc). The variogram shape is assumed to be
known.

– d is a Nt vector containing all the observations which,
in this case, are the inverse of the apparent permeability
values for a set of time steps.

di = 1

kapp (ti)
, i = 1 · · ·Nt (15)

Calling G2D the transfer function (the simulator) that maps
the parameter space into the observation space, we obtain
the following relation:

d = G2D (Y)+ v (16)

v is an random error vector. We suppose that 〈v〉 = 0 (the
estimation is non-biased) and that the error covariance
matrix R2D = 〈

vvt
〉

does not depend on Θ.
We denote p (d, y|Θ), the probability density function

PDF of the model parameters and of the observations,
p (d|y,Θ), the PDF of the observations assuming that the
model parameters are known and, p (y|Θ), the PDF of the
model parameters assuming that the geostatistical parameters
are known. Using Bayes theorem, we obtain

p (d,Y|Θ) = p (d|Y,Θ) p (Y|Θ) (17)

We define the marginal PDF of the observations as the sum
over all possible configurations of the model parameters of
p(d, y|Θ):

p (d|Θ) =
∫

dNm Y p (d,Y|Θ) (18)

The sum is taken over Nm dimensions. Kitanidis [17]
shows that geostatistical parameter estimation can be derived
from two different methods:
– the Maximum A Posteriori (MAP) method: Θ estimation

is obtained by maximizing p (d,Y|Θ)with respect to both
Y and Θ.

– the Geostatistical Approach (GA) method: the estimation
of Θ is obtained by maximizing p (d|Θ) with respect to
Θ. This method was widely used in the literature [19,18,
20,29,30].
Therefore two different estimations are obtained: Θ̃MAP

and Θ̃GA. Kitanidis [17], by studying asymptotic results,
showed that Θ̃MAP is a biased estimation whereas Θ̃GA is not.
Moreover, he demonstrates, using an illustrative example,
that the bias is highly dependent on the model discretization.
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Therefore, we shall focus on the GA method. We assume
that the two PDFs p (d|Y,Θ) and p (Y|Θ) are both Gaussian:

p (d|Y,Θ) = 1

(2π)n/2
∣∣R2D

∣∣1/2 exp
(
−1

2

(
d−G2D (Y)

)t

× (
R2D

)−1 (
d−G2D (Y)

))
(19)

p (Y|Θ) = 1

(2π)m/2
∣∣C2D

∣∣1/2

× exp
(
−1

2

(
Y− Y

)t (
C2D

)−1 (
Y− Y

))

(20)

The second assumption is true since we consider lognor-
mal permeability fields. In order to make notations easier, we
assume implicitly the dependence of C on Θ. Equation (18)
becomes:

p (d|Θ) ∝ 1
∣∣R2D

∣∣1/2 ∣∣C2D
∣∣1/2

∫
dYNm eI(Y) (21)

with

I (Y) = −1

2

[(
Y− Y

)t (
C2D

)−1 (
Y− Y

)

+ (
d−G2D (Y)

)t (
R2D

)−1 (
d−G2D (Y)

)]
(22)

The GA approach involves the maximization of (21) to
estimate the GPs. Here we have to point out that the sum
is taken over Nm dimensions which implies typically 106

gridblocks. In practice, it is impossible to evaluate such an
integral. Furthermore, the GA method involves an optimiz-
ation step, and consequently many flow simulations which
are very CPU time consuming. Therefore, we will have
to simplify the problem: we will use the fast evaluation of
the apparent permeability described in the previous section.
Considering that the estimation is close to the simulation
results, Gautier [31] shows that we have:

p (d|Θ) =
∫

dYNm p (d,Y|Θ) =
∫

dyNr p (d, y|Θ)
(23)

y is the vector containing Nr radial permeabilities defined by
(12). Its mean and covariance matrix are derived from the
2D permeability field:

yj =
∑

l∈Ωj

ωl 〈Yl〉 (24)

Cij =
〈(

yi − yi

) (
yj − yj

)〉

=
∑

k∈Ωi

∑

l∈Ωj

ωlωk
〈(

Yk − Yk
) (

Yl − Y l
)〉

=
∑

k∈Ωi

∑

l∈Ωj

ωlωkρ (dkl) (25)

ρ represents the correlation function. The computation of
the matrix C is expensive since it involves a large number
of products. Nevertheless, if matrices are stored, it has to
be done only once for a configuration of ring and for a
particular variogram shape. From (7), the observations and
the parameters are now related by:

d = G (y) = G e−y (26)

G is the matrix containing the weights of the kernel function
Gij defined by (8). The simplified problem involves the
maximization of p (d|Θ) that can be written in the new
parameter space:

p (d|Θ) ∝ 1

|R|1/2 |C|1/2
∫

dyNr eI(y) (27)

with

I (y) = −1

2

[
(d−G (y))t R−1 (d−G (y))

+ (y− y)t C−1 (y− y)
]

(28)

Usually, instead of maximizing the observation PDF with
respect to the GPs, we minimize the negative log-likelihood
function L (Θ), which is defined by:

L (Θ) = − log (p (d|Θ)) (29)

If the relation G (y) between the model parameters and the
observation is linear, the summation in (27) can be handled
analytically using Gaussian integration formula. When the
relation is non-linear, we use an approximate method known
as the Laplace method or in hydrology as the quasi linear
geostatistical approximation [18]: it assumes that I (y) is a
peaked function, and that the near peak area represents the
main contribution to the integral. The method can be divided
into four steps:
1. Choose a first guess for the GPs, Θk=0

2. First optimization.
Θk is fixed. Find ỹ which maximizes I (y) using a Gauss-
Newton method:

I
(
ỹ
) = max

y
(I (y)) (30)

3. Computation of the negative log-likelihood for Θk.
Compute L (Θk) analytically by linearizing I (y) near ỹ
(Using Laplace Method)

4. Second optimization.
Computation of the gradients (∂L (Θ) /∂Θ) and of the
Hessian matrix Ξ evaluated at Θk:

Θk+1 = Θk −Ξ−1
k

(
∂L (Θ)

∂Θ

)

Θk

(31)

Go back to step 2 until convergence is reached. More
mathematical details can be found in Appendix A.
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4 NUMERICAL SIMULATION

4.1 Well Test Example

In this part, we will briefly describe some numerical res-
ults. Reference well test simulations are performed using
SIMTEST, a 3D finite volume simulator developed at the IFP
[32]. First the diffusivity Equation (1) is solved. Then, using
the bottomhole pressure measurements, we can compute the
apparent permeability for a set of times.

kapp (ti) = µQ

4πh

[
dP (t)

d log t

]

i

(32)

Since time increases geometrically the pressure log-
derivative is computed using [22]:

[
dP (t)

d log t

]

i

≈ log (ti/ti−1)Pi+1

log (ti+1ti−1) log (ti+1/ti)

+ log
(
ti+1ti−1/t2

i

)
Pi

log (ti+1/ti−1) log (ti/ti)

− log (ti+1/ti)Pi−1

log (ti/ti−1) log (ti+1/ti−1)
(33)

Figure 3 displays a zoom of a permeability field real-
ization around the well (50 gridblocks in each direction).

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

Figure 3

Map of a particular realization of a permeability field (in log-
scale) with σ2

ln = 1, lc = 6 gridblocks, kw = kg = 100 mD.

TABLE 1

Properties of the grid, of the well and of the fluid and rock.

Grid properties

Number of gridblocks Nx × Ny = 799× 799

Gridblock dimensions ∆x ×∆y = 10m× 10m

Well location (Nxw,Nyw) = (300, 300)

Well properties and boundary conditions

Well radius rw = 8 · 10−2m

Well rate Q = 1.157 · 10−3m3/s

BC on the reservoir border no flux

Fluid and rock properties

Porosity φ = 0.1

Fluid viscosity µ = 1cp

Total compressibility ct = 10−4bar

The grid and the flow properties are found in the Table 1.
The permeability field has been generated by a sequential
Gaussian simulation provided by the GSLIB library [9]. It
has a lognormal distribution with a variance, σ2

ln = 1 and a
correlation length, lc = 6 gridblocks. The well permeability
and its geometric mean are kw = kg = 100 mD. A well test
has been performed for 100 days. Figure 4 represents the
apparent permeability with respect to time. We can see that
the well test can be divided in four main periods:

1. The well test is only sensitive to the wellbore area and the
apparent permeability is equal to the well permeability.

2. The well test is in a transient period and the fluctuations
are more important. Actually, the well test performs a
permeability average over volumes increasing with time.
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Apparent permeability kapp (t) vs. time in days (log-scale for
the time axis).
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Figure 5

kapp (t) and k̂ (t) vs. time for two realizations of a permeability field with lc = 30 m and σ2
ln = 1. The radius of investigation Rapp (t) is also

plotted.

This averaging property pointed out by Oliver [4] has
been discussed in the second Section (cf. Eq. (7)).

3. When the investigated volume is large enough, the appar-
ent permeability tends to the geometric mean which is the
effective permeability for a 2D lognormal permeability
field [28].

4. During the last period, the apparent permeability
decreases sharply since the boundary conditions start to
influence the well test. The corresponding time is typ-
ically dependent on a maximum radius of investigation
[31] the value of which is equal to one third of the well-
boundary distance:

Rmax = ∆x × Nx

6
(34)

This value is in agreement with Oliver’s approximation
[4] (Indeed we have seen in the second Section that the
kernel G (r, t) performs a permeability average within the
range

[
0.12Rapp (t) , 2.34Rapp (t)

]
)

Here, we pointed out the averaging process performed by
the well test. Other effects, such as the influence of the
permeability variability or of the correlation length can be
found in Gautier [31].

4.2 Fast Evaluation of Well Tests

The fast evaluation of well tests is performed by first trans-
forming the cartesian permeability grid into a homogeneous
radial permeability field defined by a set of rings defined

by (12). Using (7) we are then able to compute an estim-
ation of the apparent permeability. In Figure 5, we show
two examples. The permeability field description can be
found in the Table 1 and the 50 ring radii used for the
estimation are in geometrical progression with a minimum
and a maximum radius, equal to ∆x/2 and Nx∆x/2 respect-
ively. We can see that for both cases the difference between
the apparent permeability and its estimation is small and
fluctuates more for intermediate values of the investigated
radius.

To check the global accuracy of the fast estimation, we
computed the average of the estimation errors for well tests
performed on 70 realizations of two permeability fields with
σ2

ln = 1 and lc = 50, 100 m (Fig. 6 and 7). The bold line
represents the errors (in %) and the thin line, the averaged
radius of investigation. Globally, the errors remain less
that 10%, and are smaller for short and long times. Both
estimation errors have a small peak at the beginning. This
peak appearing for an averaged radius of investigation close
to half the size of a gridblock is due to simulator numerical
errors and is independent of the permeability field properties.
Of more importance is the second peak which is located at a
distance from the well close to the correlation length. This is
in accordance with the homogenization process performed
by the well test. For short times (short radius of investiga-
tion), we have seen that both the apparent permeability and
the estimation are close to the wellbore area permeability.
For long times, if the reservoir is large enough, the appar-
ent permeability tends to the effective permeability. The
estimation tends to the permeability of the last ring which is
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Figure 6

Estimation errors averaging (in %) vs. time for a sample of 70
realizations of a permeability field

(
lc = 50 m, σ2

ln = 1
)
. The

“average” radius of investigation is represented by the thin line.
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Estimation errors averaging (in %) vs. time for a sample of 70
realizations of a permeability field

(
lc = 100 m, σ2

ln = 1
)
. The

“average” radius of investigation is represented by the thin line.

basically equal to the geometric mean if the last ring contains
a sufficient amount of gridblocks. Therefore, the peak at the
correlation length means that the apparent permeability is no
longer sensitive to the well permeability and that it is not yet
sensitive to the homogenization process. The fluctuations are
bigger during this period and the approximation is slightly
worse.

4.3 Geostatistical Parameter Estimation

We will now describe the GPs estimation using well test data.
First we have to make some assumptions. As pointed out
in the former section, the fluid flow simulator is not precise
for short times (typically for Rapp (t) < ∆x/2). For long
times, the well test is sensitive to the boundary conditions
which are independent of the permeability field structure.
The last time step used in the optimization process will have
a corresponding radius of investigation close to Rmax defined
in (34). Therefore the set of time steps (ti)i=1...Nt will be
selected such that:

Rmin ← ∆x

2
< Rapp (ti) <

∆x × Nx

6
→ Rmax (35)

We will consider that the observation error matrix is the
identity matrix multiplied by a proportionality factor σ2

w. We
will consider hereinafter that σ2

w = (10%)2. 10% represent
the tolerance of the discrepancies between the observation
data and the estimations. Therefore R in (27) is defined by:

R = σ2
wINt (36)

Finally, we also include a parameter σ2
c which adds an

information (obtained by other measurements): our know-
ledge of the well permeability (3). We will also consider that
this parameter is fixed and that σ2

c = (10%)2.
Let us consider an example of a well test performed on a

799× 799 permeability field (the other data are in Table 1).
The variance and the correlation length of the variogram
are σ2

ln = 1 and lc = 50 m respectively. Figure 8 repres-
ents the apparent permeability with respect to the radius of
investigation.

For this particular example, we have made a complete
exploration of the GPs space and we have computed for
each value of the GPs the negative log-likelihood function
L

(
σ2

ln, lc
)
. The L contour plot is represented in Figure 9.

We can see that the minimum is for values of the GPs
close to σ2

ln = 1, lc = 40. The minimum of L is more
precisely determined in Figure 10 where we used the optim-
ization algorithm with different first guesses. We see that,
in all the cases, the algorithm converges to a same point(
σ2

ln = 1, lc = 42
)

in 5-10 iterations.
The next two figures (11(a) and 11(b)) represent the GPs

estimation for well tests performed over two other realiz-
ations of the same permeability field and show us that the
estimation depends on the realization. A statistical analysis
of the estimation is therefore necessary.

Figure 12 represents the histograms of the correlation
length and of the variance estimation based on well tests
performed on 70 realizations of the permeability field that
we have already considered. Statistical data are presented

(3) The developments of the optimization formalism considering this new
information are straightforward but not presented here. The interested
reader can refer to Chapter 5 of Gautier’s Thesis [31]
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Well test performed on a realization of a 799×799 permeability
field
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lc = 50 m, σ2

ln = 1
)
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for the well test
plotted on Figure 8.

in the fourth row of Tables 2 and 3. For this particular
example, we found that the averages of the variance and of
the correlation length estimations (resp 0.85 and 73 m) gives
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Figure 10

Minimization of the negative log-likelihood function L
(
σ2

ln, lc
)

for the well test plotted on Figure 8 and for different first
guesses.

a good order of magnitude of the theoretical values (resp. 1
and 50 m).

We performed the same study for other permeability
fields, with σ2

ln = 1, 2, 4 and lc = 30, 50, 100 m. In order to
make comparisons between the results, we have plotted in
Figures 13 and 14 the histograms of l̃c/lc and σ̃2

ln/σ
2
ln (̃lc and

σ̃2
ln represent the estimations). The statistics are presented in

Tables 2 and 3. The main characteristics of these statistics
are as follows:

– The mean of the correlation length estimation overestim-
ates the theoretical value. The difference lies between
20 − 30 m. The standard deviation is quite high (more
that half of the mean value).

– The mean of the variance estimation is close to its theor-
etical value. Nevertheless, the uncertainty remains high
and is close to the mean value.

It is not clear if this overestimation is due to the estim-
ation method or if it is simply due to an artifact which
depends on the numerical scheme used to solve the well
test Equation. In fact, the harmonic mean has been used
to compute the transmissivity between two adjacent grid-
blocks. The well test performs a moving average of the
transmissivities which are a function of the permeabilit-
ies. Therefore, to a certain extent, the apparent permeab-
ility reflects the statistical properties of the transmissivities
[33]. A theoretical study would be necessary to relate
the statistical properties of the transmissivities and of the
permeabilities.
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Figure 11

Minimization of the negative log-likelihood function L
(
σ2

ln, lc
)

based on a well test performed on a permeability field with
(
σ2

ln = 1, lc = 50 m
)
.
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Figure 12

Histograms of lc estimation (left) and of σ2
ln estimation (right) from well tests performed on 70 realizations of a permeability field with(

σ2
ln = 1, lc = 50

)
.

We have also studied the influence of the control paramet-
ers (σ2

w, σ
2
c,Rmin,Rmax), and the evolution of the estimation

statistics with respect to the number of tests [31]. For this
latter effect, it has been shown, that, typically, 5-10 estima-
tions of the GPs are needed to obtain a mean value close to
the stable one.

CONCLUSIONS

Using a general Bayesian formalism, we built a method to
estimate the dominant geostatistical parameters, lc and σ2

ln,
using well test data. The proposed method is rigorous, and

general. To get practical results, we had to couple up-scaling
techniques and inversion procedures.

Due to the rather low dependency of the well test on
these GPs, the obtained estimations have important fluctu-
ations. Accurate well test data are needed, and the results
are improved when a lot of independent well test data are
available.

The proposed technique was implemented in the lognor-
mal case, and it would need to be generalized to discontinu-
ous permeability distributions that occur often in practice. It
could also be adapted to account for other fluid-flow data,
such as interference tests, and multiphase flow which are
likely to contain more information.



178 Oil & Gas Science and Technology – Rev. IFP, Vol. 59 (2004), No. 2

0 1 2 3
 0.00

 0.07

 0.14

 0.21

 0.29

 0.36

l
c
=  30   σ

ln
2 =   1 

[l
c
]
opt

/[l
c
]
theo

fr
eq

ue
nc

y

0 1 2 3
 0.00

 0.07

 0.14

 0.22

 0.29

l
c
=  30   σ

ln
2 =   2 

[l
c
]
opt

/[l
c
]
theo

fr
eq

ue
nc

y

0 1 2 3
 0.00

 0.08

 0.15

 0.23

 0.31

l
c
=  30   σ

ln
2 =   4 

[l
c
]
opt

/[l
c
]
theo

fr
eq

ue
nc

y

0 1 2 3
 0.00

 0.07

 0.14

 0.21

 0.29

l
c
=  50   σ

ln
2 =   1 

[l
c
]
opt

/[l
c
]
theo

fr
eq

ue
nc

y

0 1 2 3
 0.00

 0.07

 0.14

 0.22

 0.29

l
c
=  50   σ

ln
2 =   2 

[l
c
]
opt

/[l
c
]
theo

fr
eq

ue
nc

y

0 1 2 3
 0.00

 0.07

 0.15

 0.22

 0.29

l
c
=  50   σ

ln
2 =   4 

[l
c
]
opt

/[l
c
]
theo

fr
eq

ue
nc

y

0 1 2 3
 0.00

 0.07

 0.14

 0.22

 0.29

 0.36

l
c
= 100   σ

ln
2 =   1 

[l
c
]
opt

/[l
c
]
theo

fr
eq

ue
nc

y

0 1 2 3
 0.00

 0.07

 0.15

 0.22

 0.29

 0.37

l
c
= 100   σ

ln
2 =   2 

[l
c
]
opt

/[l
c
]
theo

fr
eq

ue
nc

y

0 1 2 3
 0.00

 0.15

 0.30

 0.45

 0.60

l
c
= 100   σ

ln
2 =   4 

[l
c
]
opt

/[l
c
]
theo

fr
eq

ue
nc

y

Figure 13

Histograms of l̃c/lc from well tests performed on 70 realizations of 9 permeability fields with σ2
ln = 1, 2, 4 and lc = 30, 50, 100.
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Figure 14

Histograms of σ̃2
ln/σ

2
ln from well tests performed on 70 realizations of 9 permeability fields with σ2

ln = 1, 2, 4 and lc = 30, 50, 100.
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TABLE 2

Statistics for the estimation of the correlation length for 70 realizations
of nine permeability fields. The theoretical correlation length values are

lc = 30, 50, 100 m and the log variance values are σ2
ln = 1, 2, 4.

lc σ2
ln lc lc quartiles

Theo Theo Mean SD 25% 50% 100%

σ2
ln = 1 50 38 25 35 65

lc = 30 m σ2
ln = 2 54 39 27 45 65

σ2
ln = 4 60 44 30 48 72

σ2
ln = 1 73 56 35 60 95

lc = 50 m σ2
ln = 2 77 57 39 60 96

σ2
ln = 4 89 61 48 70 115

σ2
ln = 1 124 76 75 110 110

lc = 100 m σ2
ln = 2 126 80 75 120 120

σ2
ln = 4 119 61 85 110 110

TABLE 3

Statistics for the estimation of σ2
ln for 70 realizations of nine permeability

fields. The theoretical correlation length values are σ2
ln = 30, 50, 100 m

and the log variance values are σ2
ln = 1, 2, 4.

Theoretical Theoretical Mean of σ2
ln Standard deviation

lc σ2
ln estimation of σ2

ln estimation

σ2
ln = 1 0.77 0.92

lc = 30 m σ2
ln = 2 2.27 2.09

σ2
ln = 4 4.63 3.97

σ2
ln = 1 0.85 0.78

lc = 50 m σ2
ln = 2 2.09 2.23

σ2
ln = 4 4.84 4.17

σ2
ln = 1 0.78 0.60

lc = 100 m σ2
ln = 2 1.87 1.69

σ2
ln = 4 4.05 3.43
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APPENDIX A

Detailed Derivations of the Optimization Algorithm

Here, we will describe the different steps of the optimization
algorithm. An important part of these results is based on
the research of Kitanidis [17]. The first step is equivalent
to minimizing −2 I (y) defined in (28) and appears in many
papers. One can refer to Tarantola [34] for a thorough review.
We use an iterative Gauss-Newton method:

yn+1 = yn −H−1
yn

(
∂I (y)
∂y

)

yn

(37)

The (Nr × Nr) matrix, Hyn , is the Hessian of I (y) com-
puted at the point yn:

Hyn =
(
∂2I (y)
∂y2

)

yn

(38)

Exact computation of the Hessian requires the second order
derivatives of I (y). But in the Gauss-Newton method, it
is not necessary to have a very accurate evaluation of the
Hessian, which is computed by differentiating twice Equa-
tion (28), ignoring second-order terms:

Hyn = Jt
yn

R−1 Jyn + C−1 (39)

where Jyn is the (Nt × Nr) Jacobian matrix of G (y) evalu-
ated at yn (see its expression in Appendix B). By deriving
Equation (28):
[
∂I (y)
∂y

]

yn

= −JynR−1 (d−G (yn))+ C−1 (yn − y) (40)

Therefore, including Equations (39) and (40) in Equa-
tion (37), we obtain:

yn+1 = yn +
(
Jt

yn
R−1 Jyn + C−1

)−1

× (
Jt

yn
R−1 (d−G (yn))+ C−1 (yn − y)

)
(41)

Or using two classical relations (4) and a some matrix algebra:

yn+1 = y+ CJt
yn

(
R+ Jyn C Jt

yn

)−1

× (
(d−G (yn))+ Jyn (yn − y)

)
(42)

We will use hereinafter this formula which involves only
one computation of the inverse of a matrix. After conver-
gence, when the value ỹ has been determined, a first order
development of G (y) can be handled in the vicinity of ỹ:

G (y) = G
(
ỹ
)+ Jỹ

(
y− ỹ

)
(43)

(4)
(

Jt
yn R−1 Jyn + C−1

)−1 = C− CJt
yn

(
R+ Jyn C Jt

yn

)−1
Jyn C

(
Jt

yn R−1 Jyn + C−1
)

Jt
yn R−1 = CJt

yn

(
R+ Jyn C Jt

yn

)−1

Replacing G (y) by its value near ỹ in Equation (27), one
obtains after some computing, using classical Gaussian func-
tion integration [34]:

p (d|Θ) = 1

(2π)n/2 |Σ|1/2 e−
1
2 (d−d)

t
Σ−1 (d−d) (44)

with:

d = 〈d〉 = G
(
ỹ
)+ Jỹ

(
y− ỹ

)
(45)

Σ = R+ Jỹ C Jt
ỹ (46)

Now, we have to maximize p (d|Θ) with respect to Θ,
and therefore to minimize the opposite of the negative log-
likelihood function L (Θ) defined by:

L (Θ) = −2 log (p (d|Θ))
= |Σ| + (

d− d
)t

Σ−1
(
d− d

)
(47)

This minimization is performed using a second Gauss-
Newton algorithm. Assuming that an estimation Θn has
been computed, we have:

Θn+1 = Θn − λnΞ
−1
n

(
∂L (Θ)

∂Θ

)

Θn

(48)

where λn is a scalar parameter which can be chosen to
improve the convergence rate of the algorithm, (∂L (Θ)/∂Θ)
and Ξ are the gradient and the Hessian of L with respect
to Θ. The gradient is computed using matrix derivation
formulae (5)

∂L (Θ)

∂Θ
= Tr

(
Σ−1 ∂Σ

∂Θ

)

− (
d− d

)t
(

Σ−1 ∂Σ

∂Θ
Σ−1

) (
d− d

)

+2
(
d− d

)t
Σ−1 ∂d

∂Θ
(49)

When observations are sufficiently numerous, the Hessian
can be well approximated by the information Fisher matrix
[35] which is defined as:

Mn =
〈(
∂L (Θ)

∂Θ

)(
∂L (Θ)

∂Θ

)t〉

Θn

(50)

or, equivalently:

Mn =
〈(
∂2L (Θ)

∂Θ2

)〉

Θn

(51)

(5) Assuming that the inverse and the derivatives (with respect to Θ) of a
matrix A exist, we have the following equations:

∂ |A|
∂Θ
= Tr

(
A−1 ∂A

∂Θ

)

∂A−1

∂Θ
= −A−1 ∂A

∂Θ
A−1
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Therefore the Hessian matrix Ξn can be asymptotically
estimated by its mean value given by the information Fisher
matrix. After calculation:

Mn = Tr

(
Σ−1 ∂ Σ

∂ Θ
Σ−1 ∂ Σ

∂ Θ

)
+ ∂d
∂Θ

Σ−1 ∂d
∂Θ

(52)

and finally to update Θn, we use the following equation:

Θn+1 = Θn − λnM−1
n

(
∂L (Θ)

∂Θ

)

Θn

(53)

Expressions of the Jacobian matrix of G (y), and of the Fisher
matrix can be found in Appendix B.

APPENDIX B

Derivation of the Jacobian and the Fisher Matrices

Expression of the Jacobian Matrix

J = ∂G(y)
∂y

=




∂G1 (y)
∂y1

∂G1 (y)
∂y2

. . .
∂G1 (y)
∂yNr

∂G2 (y)
∂y1

∂G2 (y)
∂y2

. . .
∂G2 (y)
∂yNr

...
...

. . .
...

∂GNt (y)
∂y1

∂GNt (y)
∂y2

. . .
∂GNt (y)
∂yNr




(54)

using Equations (7) and (26), and performing the differenti-
ations:

J = −




G11e−y1 G12e−y2 . . . G1Nr e
−yNr

G11e−y1 G12e−y2 . . . G1Nr e
−yNr

...
...

. . .
...

GNt1e−y1 GNt2e−y2 . . . GNtNr e
−yNr




(55)

which is the expression of the Jacobian of G (y).

Expression of the Fisher Matrix

To compute the Fisher matrix (52) we have to find the deriv-
atives of Σ and d with respect to Θ. Using (45) and (46), we
have:

∂d
∂Θ
= Jỹ

∂y
∂Θ

(56)

and
∂Σ

∂Θ
= Jỹ

∂C
∂Θ

Jt
ỹ (57)

To compute the covariance matrix derivative with respect
to the GPs, we decompose the sums in (25) into two different
contributions:

Cij =
∑

(k∈Ωi),(l∈Ωj),k 6=l

ωkωlρ (dkl)

+
∑

(k∈Ωi),(l∈Ωj),k=l

ωkωlρ (0) (58)

Let’s assume that the correlation function is exponential
with a variance, σ2

ln and a correlation length lc, ie ρ (r) =
σ2

lne−r/lc . Therefore Θ = [
σ2

ln lc
]t

and:

∂Cij

∂σ2
ln

= Cij

σ2
ln

(59)

and
∂Cij

∂lc
= 1

l2c
Dij (60)

with
Dij =

∑

(k∈Ωi),(l∈Ωj),k 6=l

ωlωk dkl ρ (dkl) (61)

The derivative components of y defined by (24) with respect
to the GPs, are:

∂yj

∂θi
=

∑

l∈Ωj

ωl
∂ 〈Yl〉
∂θi

(62)

Since we assume in all our applications that the mean of the
permeability field is constant:

∂y
∂Θ
= 0 (63)
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