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Résumé — Description multiéchelle des écoulements dans les réservoirs souterrains — Les
formations géologiques sont des objets naturels complexes, sièges d’innombrables processus géologiques,
mécaniques, physico-chimiques se déroulant sur des échelles d’espace et de temps extrêmement larges.
Ainsi, des propriétés de mouillabilité directement issues de phénomènes moléculaires influencent
directement les déplacements eau-huile, et donc évidemment la récupération finale du pétrole. De même,
les hétérogénéités du réservoir, couplées aux non-linéarités de la mécanique des fluides, jouent un rôle
essentiel pour localiser les écoulements dans des chenaux préférentiels.

De façon à gérer cette complexité, et à hiérarchiser au mieux l’influence des nombreux phénomènes et
paramètres, il est essentiel de disposer d’une description multiéchelle du transport de fluides dans ces
milieux. Ceci permet aux ingénieurs en géosciences de travailler un modèle de terre partagé, réceptacle
du savoir géologique, géophysique, ainsi que des données de gisement permettant l’intégration des divers
métiers. On peut ainsi se concentrer sur les principaux phénomènes contrôlant l’écoulement de l’huile, et
donc, sa récupération. Ceci aide les ingénieurs à intégrer les données issues de mesures de natures
diverses à des échelles différentes et à diminuer les incertitudes, permettant ainsi la prise de meilleures
décisions économiques.

Dans cet article, nous présentons la philosophie globale des techniques de changement d’échelle, en y
incluant la description des concepts les plus récents d’approches multiéchelles.

Abstract — Multiscale Description and Upscaling of Fluid Flow in Subsurface Reservoirs — Natural
geological formations are complex objects, involving geological, mechanical, physico-chemical
processes occurring over very wide length scales and time scales. Phenomena ranging from the
molecular scale to several hundred of kilometers may influence the overall behaviour of fluid transport in
a geological formation. For example, wettability properties, themselves due to molecular effects, have a
very strong impact on the water/oil displacements in oil reservoirs. Analogously, reservoir
heterogeneities that cover a large range of spatial scales play an essential role to channel fluid-flows,
especially when they are coupled with non linearities inherent to fluid dynamics.

In order to face this complexity, and to be able to hierarchize the influence of the various relevant
geological and physico-chemical phenomena, it is thus essential to handle a multiscale description of
fluid transport in these reservoirs. This is an essential tool to help reservoir engineers to focus on the
crucial phenomena that control the flow. This helps them to integrate data, and this results in a lowering
of the uncertainties of the reservoir description that enhances economical decisions.

In this paper, we present classical upscaling approaches, as well as more recent multiscale concepts.

Upscaling of Fluid Flow in Oil Reservoirs
Mise à l’échelle des écoulements dans des réservoirs pétroliers
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NOMENCLATURE

Roman symbols

ct Total compressibility value (bar–1)
c(r, t) Local tracer concentration (mole m–3)
C(r) Log permeability covariance function eval-

uated at lag r
C(q) Fourier transform of C(r) at wave vector q

(mD)
CΓ(r) Filtered log permeability covariance function
D Flow dimension (D = 1, 2 or 3)
d(u) Dispersivity tensor (m)
dobs Observed data
f(r, t) Local source term (m)
J(k) Objective function to be minimised
k(r) Permeability value at point r (m2)
kv/kh Vertical to horizontal permeability anisotropy

ratio
Keff Effective permeability value (m2)
Kg Geometric mean of permeability (m2)
KgΓ Renormalised geometric mean of permeability

(m2)
kri(S) Relative permeability value for fluid i (i = 1, 2)
lc Permeability correlation length (m)
lh/lv Vertical to horizontal correlation length ratio
lij Distance between fine grid blocks (m)
L Overall size of the porous medium
p(r) Pressure value at point r (bar)
q Wave vector (m–1)
r Refining ratio
R(t) Investigation radius of a well test (m)
sij Surface between fine grid blocks (m2)
S Water saturation
u(r) Local fluid velocity at point r (m/s)
tij Transmissivity value between fine grid blocks

i and j
TIJ Transmissivity value between coarse grid

blocks I and J
Y(r) Logarithm of permeability.

Greek symbols

α = (kv/kh)
1/2 lh/lv Global anisotropy ratio

δx Fine grid size (m)
∆X Coarse grid size (m)
ρ(r, t) Local mass density (kg m–3)
φ(S) Fractional flow function
Γ Wave vector permeability cutoff (m–1)
λ (S) Total mobility function
σ2 = C(r = 0) Log permeability variance
σmeas

2 Measurements errors variance

σmod
2 Numerical modelling errors variance

Σ(r, t) Diffusion kernel
µ Fluid viscosity
µi i th fluid viscosity
ω(α) Permeability averaging exponent.

INTRODUCTION

In this paper, we show the importance of having a multiple
scale description of fluid flow in subsurface reservoirs. In the
upstream oil industry (or when managing aquifers), the basic
goal of reservoir simulation is to provide tools allowing
engineers to perform accurate sensitivity studies, in order to
optimise an oil recovery scenario, taking into account all the
available data (Alabert, 1989; Deutsch and Journel, 1992;
Blanc et al., 1996; Galli et al., 1990; Guérillot et al., 1991;
Gorell and Basset, 2001). The data can be either of geo-
logical, geophysical nature, or coming from the reservoir
exploitation itself such as a pressure variation, watercut or
even repeated seismic acquisition indicating subsurface fluid
displacements (Kretz et al., 2002; Pianelo et al., 2000).
Ideally, the engineer wants to obtain production forecasts
manipulating only the geological model, and changing the
exploitation scenario, numerical aspects being managed by
the simulator itself.

Even with all these data, the engineer wants to manage
the remaining uncertainties inherent to any geoscience
modelling. He is thus led to perform extensive sensitivity
studies or even Monte-Carlo simulations of several (in
practice up to 100, in theory several thousands) reservoir
realisations. To reach this goal, engineers must first
transform the original 3D geological map into a numerical
model well suited for solving the discrete equations arising
from any numerical treatment of multiphase fluid flow
equations. A basic issue is simply to be able to perform these
calculations in an acceptable CPU time and accuracy. The
simplest approach is thus to try to reduce the number of grid
blocks and of unknowns to get a tractable problem. This is
the classical issue of upscaling, or pseudoisation in the
multiphase case, that is the subject of a huge amount of
literature (see Ahmadi et al., 1993, 1996; Artus et al., 2003
and Renard and de Marsily, 1997 for a review). The basic
question is thus to be able to take into account the small scale
disorder of the medium (or “subgrid” effects in the language
of people involved in Computational Fluid Dynamics, CFD
see e.g. Lesieur and Métais, 1996) at this coarser scale.
Depending on the academic background of the authors, the
focus is on mathematical asymptotic theories of homoge-
nisation and more recently on stochastic Partial Differential
Equations (PDE) (Jikov et al., 1994). People having a more
physical and fluid mechanic background will adopt methods
arising from mechanics or physics such as volume averaging
(Cherblanc, 1999; Quintard and Whitaker, 1994), effective
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medium (Dagan, 1989), percolation theory (Stauffer, 1985).
Some perturbation methods, originally devised to treat
questions arising from quantum mechanics, next adapted to
study turbulent transport and including renormalisation group
approaches, are also employed in the stochastic context
(Avellaneda, 1996; Christakos et al., 1993, 1995; King, 1989;
Nœtinger, 1994; Glimm et al., 1992; Zhang, 1992;
Stepanayants and Teodorovitch, 2003). More recently, very
interesting purely numerical techniques based on new finite
elements approaches proposing a fully multiscale treatment
were proposed (see e.g. Guérillot and Verdière, 1995; Gautier
et al., 1999; Arbogast and Bryant, 2001; Hou and Wu, 1997,
1999). Analogous treatments can be found in the vast domain
of CFD, where the Large Eddy Simulation (LES) technique of
turbulent flows is very close in spirit to present considerations
(Germano, 1996). We must also mention the considerable
amount of applied reservoir engineering or hydrology
literature proposing practical solutions that can be justified a
posteriori using rigorous approaches. We defer the reader to
specialised texbooks (Dagan, 1989 and references therein).

Another important topic is that these modern approaches
of reservoir characterisation imply manipulating data that are
intrinsically defined and measured over rather different
support size, such as core plug permeability measurements of
some cm or well tests interpretation at a 100 m scale. So one
of the major concerns of reservoir engineers is integration of
different data obtained by different measurement processes at
different scales (Pianelo et al., 2000; Schaaf and Mezghani,
2002). A major issue is to be able to reconcile the geological
model to various available dynamic data that give additional
information about the considered reservoir. This generally
implies solving inverse problems using optimisation
procedures that need a great number of forward modelling
evaluations. As we will see, to model flow in an oil reservoir
is basically a formidable task: starting from physical laws
that remain still under investigation at the pore scale (this is
itself the first Darcy scale upscaling problem!), one must
build a large scale model using data that are essentially
measured at the wells. This corresponds to a negligible
portion of the reservoir, so we are led to model a quasi
unknown object with quasi unknown laws! Happily, this
discouraging picture becomes more beautiful thanks to
interesting features of many diffusive transport phenomena,
called the self averaging property, whose direct consequence
is that a complex system like an oil reservoir can sometimes
be described at large scale by a rather small number of
parameters (Goldenfeld, 1992; Koslov, 1993). Among those
parameters, some are clearly related to small scale data, and
others appear as the result of a complex combination of
coupled effects of small scale physics with large scale
heterogeneities. A typical example is the coupling of viscous
instabilities of Saffman-Taylor type with preferential
permeability streaks (Saffman and Taylor, 1958). This
coupling can give rise to non trivial large scale behaviour that

may be described by equations that are qualitatively different
than the small scale Darcy equations (Langlo and Espedal,
1994; Lenormand and Thiele, 1994; Artus et al., 2003). One
of the more important and difficult task is to predict and
identify the occurrence of such phenomena that may be
dominant when dealing with uncertainties. We also see that
within this point of view, a multiscale description defines
implicitly a theory of data measurement: what do we
measure exactly in the laboratory when we perform a single
phase permeability measurement or a two phase displace-
ment: a local property or an averaged one? This question is
essential for well tests interpretation and most reservoir scale
measurements. In particular, how do data correlations such as
Willi or Gassmann’s, (Boyer and Mari, 1994) that are
calibrated in the laboratory scale survive to upscaling? This
major conceptual and practical issue was first recognized
by Cushman (1985) and is very close in spirit to modern
renormalisation group point of view (Goldenfeld, 1992). We
will see that this kind of consideration has deep conse-
quences even on the numerical simulations.

Another important debate is stochastic versus deterministic
descriptions (Dagan, 1989). A more and more popular
approach to take into account the fact that our knowledge of
the subsurface is intrinsically incomplete is to view the actual
reservoir map as being one realisation of a random process.
This means that in addition to the uncertainty of our
measurements, we model uncertainties that are related to our
doubts about the geological description of the reservoir.
In that case, reservoir simulation becomes intrinsically
probabilistic: we are not interested by getting a very accurate
result about one single reservoir image that is likely to be
wrong, but to predict a mean and variance of the production
forecasts. A direct consequence is that considering these
uncertainties can help to justify upscaling in practice: if
the errors due to upscaling are lower that those due to
uncertainties; one can safely use upscaled models (Glimm et
al., 2001; Gorell and Basset, 2001; Schaaf et al., 2002).

The goal of this series of papers is to provide the reader
with up to date approaches of the multiscale representation of
heterogeneous reservoirs. The goal of this first paper is more
to present a general philosophy rather than detailed results
that will be presented in the companion papers. To simplify,
we will not discuss the specific case of fractured reservoirs
although most of the presented considerations remain valid in
this specific case. The sequence of papers is organised as
follows.

In this first paper, we will focus on the general context, as
well as introducing some notations and basic concepts.

The second paper of Lin Ying Hu will present the most
recent trends in geostatistical representation of heterogeneous
reservoirs, and its increasingly frequent coupling with fluid
flow modelling.

Next, we will consider in Yann Gautier’s contribution
single phase problems related to the upscaling of the
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permeability occurring during well tests. We will show the
relation between the permeability provided from well test
interpretation, and the underlying permeability map. An
attempt to determine directly geostatistical properties from
well tests will be presented.

The next paper of Vincent Artus and Benoît Nœtinger will
focus about the up scaling of transport phenomena, dealing
with immiscible two phase flow, and by addressing the
coupling between flow and heterogeneities.

The important practical problem of upscaling flow close
to wells will be addressed by Didier Yu Ding.

1 BASIC PROBLEMS, EQUATIONS AND GOALS
OF MODERN RESERVOIR ENGINEERING

In the whole sequence of papers, we will consider flows in a
heterogeneous reservoir that is a 2D or 3D domain denoted
by Ω of boundary ∂Ω. To describe single-phase flow, we
assume that Darcy’s law holds (Marle, 1981):

(1)

Here, r denotes the position vector, k(r) the permeability
tensor value at point r, µ the fluid viscosity, ρ(r, t) the local
mass density and f(r, t) a source term (generally Dirac like
functions whose support coincide with the position of the
wells). The global mass balance equation reads:

(2)

Finally, to get a well posed problem, one must relate the
variations of the local density ρ(r, t) to the pressure p(r, t)
using thermodynamic relations. In particular, after some
classical assumptions the standard diffusion equation
governing pressure depletion may be derived:

(3)

Here, φ(r) denotes the local porosity, and ct the total
compressibility (Daviau, 1986). 

The transport of a passive tracer of local concentration
c (r, t), is described by means of the classical convection
diffusion equation:

(4)

Here, u(r, t) and c(r, t) are uncoupled, d(u) is the local
dispersivity tensor that is supposed to depend on u(r, t). This
tensor comes itself from an averaging of the small scale
(grain size) heterogeneities of the porous medium. The
corresponding dispersivity tensor is in practice considerably
greater than the tracer molecular diffusion.

In the case of two phase flow, we will consider the
simplest case where capillary pressure as well as gravity
effects are neglected:

(5)

(6)

(7)

(8)

(9)

In general, the basic goal of reservoir engineering is to be
able to predict the overall production forecasts of the
considered reservoir as a function of both available reservoir
and fluid “natural” data, whose set is denoted collectively by
{x}, and exploitation data such as the position and orientation
of any kind of wells, a water or gas injection scheme, etc.,
denoted collectively by {y}. The production forecast that
consists in general in some oil gas and water rates measured
at different times and well locations is denoted collectively
by F({x}, {y}). F is thus a vector of high dimensionality. The
final goal is to recover the most oil at the lowest technical
price with minimum risk. Reservoir engineers must provide
oil company managers with these data, as well as the related
uncertainties. Thus, development decisions can be taken
depending on the strategy of the asset managers. 

In more formal terms, one wants to estimate the average
forecast < F({x}, {y}) >{x} = < F>{x} ({y}), where the {x}
average <…>{x} is taken with respect to the whole set of
parameters {x} describing the reservoir. The remaining
dependence is over the man-controlled exploitation
parameters {y}. Estimations of the forecast uncertainties
< δF2({x}, {y}) >{x} = < F2 ({x}, {y}) >{x} –< F >{x}

2 ({y})
are also needed. The optimal exploitation scheme {y}* is thus
the solution of an optimisation problem: {y}* = arg min.
{J{y}}, where J{y} is a prescribed oil company dependant
function of the mean estimation, < F >{x} ({y}), and of its
uncertainty < δF2({x}, {y}) > {x}. The oil company strategy
specifies J{y}. Different economical scenarii may compared
by varying the analytical form of J{y}.

So far, to compute the optimum {y}* is a formidable task,
because we must face at least the following difficulties:
– The parameterisation {x} is a vector of very high

dimensionality N. N of order several millions can
currently be attained e.g. if {x} represents the whole set of
permeability values of a high resolution geological
representation of the reservoir.
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– The evaluation of F({x}, {y}) is expensive: it is the task
of the reservoir simulator. It displays generally highly
nonlinear variations with respect to both set of variables
{x} and {y}.

– The set of parameters {y} is also huge. Having from 10 to
100 control parameters is realistic, so to map directly the
variations of J{y} is itself impossible.
The engineer is thus led to find a compromise between

simulation time, accuracy and predictability. Evidently, the
first idea is to restrict the parameterisation {x}, using any
field measured data to add information: this is the purpose of
reservoir characterisation studies whose ultimate goal is to
restrict {x} to regions where both geological, seismic and
well test and even multiphase dynamic data are fulfilled. In
the language of reservoir engineers, this corresponds to the
History Matching (HM) procedure.

2 FROM THE GEOLOGICAL MODEL
TO THE RESERVOIR MODEL.
DETERMINISTIC VERSUS STOCHASTIC

In the beginning of reservoir modelling, we need a geological
description allowing a parameterisation {x} to be set up in a
suitable and meaningful form. These choices are mainly
provided by the geologist expertise, seismic data, analogous
outcrop studies and well data if any. In the early 1970’s, most
reservoir models were geometrically deterministic: a typical
choice was the layer-cake model. Here, the {x} parameters
were thus the permeability/porosity of each layer and some
geometrical data. Recognising that these models were too
rough to represent the reservoir internal heterogeneities, the
stochastic approach was followed from the 80’ to now
(Eschard et al., 1991; Galli et al., 1990; Guérillot et al.,
1991). The idea is to recognise that {x} is basically unknown
and inaccessible, and to use a probabilistic description: this is
the period of great progresses in “2 points” (the meaning of
this locution will be precised later) geostatistics and
stochastic modelling (Galli et al., 1991; Deutch and Journel,
1992). A lot of software packages that encapsulates in a
rather convivial fashion these geostatistical concepts are
available, and most major oil companies use them. A great
progress came in the 1990’s (Tarantola, 1997) when it was
recognised that current practices of history matching could be
embedded in a probabilistic framework using the Bayesian
approach of conditional probabilities. 

In the same time, the increasing progress of computers
as well as a deeper understanding of the deposition
sedimentation process helped geologists to build more and
more complex and realistic small scale reservoir images
(Grangeon et al., 1997, 1998; Mallet, 1997). This additional
information must be used in the actual stochastic approaches:
a possible approach is to use “multiple point” geostatistics
that is well suited to model complex image characterised by

nontrivial high order correlations. This aspect of the question
is the purpose of the paper of Lin Ying Hu.

3 THE BASIC UPSCALING PROBLEM

To fix the ideas, in the following sections, we will consider
the case of a constant porosity reservoir whose isotropic
permeability tensor is supposed to be specified. The reservoir
is discretised by means of N Cartesian cubic grid blocks of
size δx. The parameter set {x} will thus be identified to the
n-uplet values {k1, k2, … kn} of the grid block permeabilities
of the reservoir.

The standard way of solving the diffusivity equation is to
use a finite volume formulation: for each generic gridblock
i =1, n, integrate the diffusivity equation, and integrate by
parts to get:

Here, pi(t) is the average pressure of block i, and ∂ij
denotes the boundary between blocks i and j. To get a well
posed problem, we must firstly relate the mean flux between
two neighbouring grid blocks i and j to the mean pressures
pi(t) and pj(t). A classical method is to suppose that in fact
block i corresponds to a homogenous block whose perme-
ability ki would be uniformly equal to ki, and similarly for
block j with kj. Writing thus the flux continuity, and
eliminating the intermediate pressure pij+1/2 we get finally the
standard scheme that reads:

After that, any time discretization scheme can be chosen
to solve numerically this set of differential equations, and
boundary conditions must be accounted for. 

Notice that in practice, the righ hand side, rhs, of the
equation contains both information about the grid block
averaged source term, and also source terms arising from the
Dirichlet or Neuman boundary conditions. 

Now, consider the classical up scaling problem, as
sketched on Figure 1: one wants to solve the same problem
as before, using a coarse grid that is supposed to be also
Cartesian with N grid blocks VI, I = 1, N of size ∆X. 

Now, as a matter of convenience, capital letters will
denote up scaled quantities while lower case represent small
scale data. If the medium was homogeneous, one would get
discrete equations under the form:

(10)φc V
P t
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Figure 1

Typical applied upscaling problem. The fine grid of the left
must be coarsened to get the grid on the right. Here, each
coarse block is made of 3 × 3 fine grid blocks. The basic
problem is to define the permeability of the coarse block as a
function of the fine grid block permeabilities.

In the heterogeneous case, we suppose that we are using a
simulator solving equations written under the same form.

Here the TIJ, given by will be related to

the high resolution permeability map via the values of KI and
KJ, which in turn depend on the small scale permeability
map. The quantity VI is its volume. Let us introduce the large
scale averaged pressure defined by:

(11)

The basic upscaling problem is thus to find a set of N
coarse scale permeability tensors KI such that the PI(t)
solution of (10) will be “as close as possible” to the mean
coarse block pressure P

–
I (t) that could be computed having

the fine grid simulation. The norm denoted by ||…|| is for
example written in the form:

This means that we expect that the solution of the coarse
scale pressure equations must be as close as possible to the
volume averaged pressures. If one is more interested by
having a good accuracy on the local rates, k∇ p, this can be
accounted for by choosing a more suitable norm involving
this quantity. Notice that so far, we have not specified if we
were following a stochastic or a deterministic approach. At
this stage, this formulation of up scaling does not need this
information. Some comments have to be given, because
some hidden assumptions have already been retained. 
– We have assumed that Darcy’s law remains valid at

coarse scale. this is the most severe assumption. So far, we

only know that we must respect the linearity of the
underlying equations. We will discuss this point in more
details in Section 5.

– Working at the level of the numerical scheme, what is
needed are the coarse scale transmissibilities TIJ. It could
be possible to compute directly these quantities avoiding
the intermediate permeability upscaling step. Notice that
we can work directly at the level of transmissibilities TIJ
without relying to any intermediate coarse permeabilities.
Such an approach was employed to improve the accuracy
of upscaling by Romeu and Nœtinger (1994), or to
incorporate near well effects by Ding (1997), or to up-
scale complex Corner Point type grids having complex
shapes by Urgelli (1998). This will be discussed in
Section 6, and in Ding paper.

– Even starting from isotropic permeability maps, the
resulting permeability should be an anisotropic tensor,
because it incorporates information about the geometry.

– Upscaled permeabilities KI should depend on the whole
set of small scale values {k1, k2, … kn}. In practice, one
seeks a formula such that KI = KI({k}i ∈ i (I)}, so the
dependence of KI is restricted to the small scale values
pertaining to the coarse grid block itself. This corresponds
to the standard procedure when one considers the coarse
block I as being isolated and devise a procedure to define
the so called “equivalent permeability tensor” of the
block. Some attempts were proposed to overcome this
limitation by incorporating immediate neighbouring
blocks. No definitive improvement was attained, so we
will not pursue this discussion, keeping in mind the
traditional approach.

– Finally, the criterion involving the norm ||…|| cannot be
fulfilled for every kind of flows. The standard practice
implies considering some typical families of flows that
occur frequently in oil reservoirs: the linear or the radial
case corresponding to the flow toward a well. This will be
presented in next section.

The immediate practical interest of this set of assumptions
is that exactly the same simulator can be used at both scales.
It avoids any specific developments and the user has to
concentrate only on the choice of the “upscaling function”
KI({ki} ∈ i(I)}. 

4 ABOUT THE CHOICE OF THE UPSCALING
FUNCTION

We are now led to find a “best estimation” of the upscaling
function KI({k} i ∈ i(I)} that for simplicity will be denoted
with obvious notation K(k). To discuss this point, several
points of view can be adopted. Notice that in practice, we can
restrict ourselves to several class of flows: steady state quasi
linear and steady state radial flows. Radial flows will be
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considered in the paper by Ding. Here, we will consider the
linear flow case by looking at the following problem: 

(12)

with p = 0 at infinity. The vector < ∇ p > models a forcing
term that corresponds to an imposed overall pressure
gradient. After discretisation, on a rectangular domain, we
get, for i = 1, n:

(13)

where nij is the outward normal of ∂ij. Boundary conditions
(imposed pressure and no flow boundaries, periodic, etc.)
must be specified to have a well defined problem having a
unique solution. The large scale problem reads:

(14)

The basic goal of upscaling is to provide a simple way of
computing the TIJ in order that the computed pressures PI and
inter coarse grid blocks fluxes ΦIJ = TIJ (PI – PJ) are “as close
as possible” to the reference ones. To reach this goal, several
different approaches may be followed.

Approach A

The simplest idea is to consider that KI is the value of the
permeability evaluated at the coarse grid block center. So, we
have KI = kiI, where iI is the small scale index labelling the
fine grid block that contains the center of the coarse one. This
choice is likely to be correct if the small scale permeability is
rather smooth at the coarse scale. On the contrary, if it is very
heterogeneous, this value may not be representative of the
underlying distribution and another approach must be
followed. In particular, if the coarse grid block size becomes
very much larger than the correlation length, one can observe
that the variability of these values should not change at all,
because the permeability histogram will not change: the
homogenisation effect is completely missed.

Approach B

A classical approach is to compute the so-called equivalent
permeability of each coarse grid block. The idea is to view
the coarse grid block as a plug whose permeability in the D
space directions, may be measured in the laboratory using
standard methods. It yields the permeability of the
homogeneous medium that displays the same relation
between mean flux and pressure drop. It may be shown that
this approach leads to a permeability or even to a perme-
ability tensor that is close in spirit to the solution of the so
called “closure problem” that arises when following a more
mathematical homogenisation approach, or large scale
averaging (Jikov et al., 1995; Quintard and Whitaker, 1994
and references therein) that can be shown to yield equivalent

results (Bourgeat et al., 1988). In particular, if the grid size
∆X is very large when compared to the typical size of the
permeability heterogeneity, homogenisation theorems (Jikov
et al., 1994) show that the equivalent permeability reaches a
limit called the effective permeability tensor Keff of the
medium. In consequence, we have Ki = Keff. At this scale,
the medium behaves as if it was homogeneous, and the effect
of the small scale disorder enters only on the value of the
mean permeability. The effective permeability tensor xx
component Keff, xx can be computed solving the following
problem that is local in that sense that one must solve bound-
ary value problems only on the considered coarse block:

(15)

λ = ∆P/L. The resulting permeability tensor can be shown
to fulfil also symmetry and energy requirements. In that case,
it is obvious that Approach A would provide completely
different results as no any “smoothing” effect can be
expected. If the grid size remains small, Approach B would
give results close to Approach A. 

We will not discuss here some computational details of
Approach B: in practice, the boundary conditions can be pe-
riodic or linear, etc. If the averaging volume size is sufficient-
ly large, all choices yield the same tensor. A very detailed
review may be found in Renard and de Marsily (1997).

Approach C

This is the opposite of approach A. We consider that ki is a
random permeability map. It is thus possible to perform a
Monte-Carlo Study (MCS) to compute average pressures,
rates etc and even probability densities. The matching
criterion becomes that the well rates on the large scale
simulation should be equal to the Monte-Carlo average and
also their variance, or even the whole density.

In particular, in 2D lognormal case, a well known and
very beautiful exact result of Matheron (1967) shows that the
equivalent permeability Keff is given by the ensemble
geometric mean of the permeability: Keff = Kg = exp < ln k >.
This result is obtained mainly without any calculation and
uses specific “duality” properties of 2D problems defined by
conservation laws.

The practical signification is that KI may be directly
replaced by Kg. This approach is not completely satisfying,
because all the underlying variability of the small scale
realisation is definitively lost, as now KI and ki. are not
related at all. In particular, the grid block permeability is no
longer random, because it is equal to Kg.
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An intermediate choice that accounts for the homoge-
nisation effect, and that allows to keep the underlying
variability is to replace the ensemble averaged Kg by any
empirical estimation having the same average, e.g.:

(16)

We have obviously < ln KI > = ln Kg. The underlying idea
is that performing MCS simulations using fine and coarse
grids should provide correct estimates of both the mean and
variance. Replacing KI by Kg provides a correct mean but the
variance is missed (it becomes 0). It is in that sense that it
is the complete opposite of Approach A which misses
completely the homogenisation effect, and transfers the
variability independently on the computational grid, which is
rather unphysical. Replacing by KI = exp 1/NI Σ ln ki is a quite
reasonable choice, whose quality can only be tested by
extensive (and expansive) MCS, before having a complete
stochastic theory. Such Monte-Carlo simulations were
performed by Gautier and Nœtinger (1997), who compared
the effective permeability obtained using Approach B and the
result of Equation (16): an excellent correlation was found in
the investigated cases: it is only in the case of non log normal
at all permeability distributions that significant difference
may be observed. In some sense, Approach C can be
interpreted as being a simplification in the stochastic
framework of Approach B.

In most stochastic hydrology literature, this approach is
the current practice. One develops stochastic approaches to
get an estimator of the average flow, and after, one replaces
the resulting answer by empirical estimates to keep the
variability. Such an approach was generalised for anisotropic
cases (Dagan 1989; Duquerroix et al., 1993), and the
problem of facing categorial models remains open.

The main conclusion of this section is that depending on
the matching criterion, one can find rather different upscaling
functions. Due to the current computing speed, Approach B
is actually the more robust and flexible choice that is now
recommended, and we can expect to reproduce also the
variability of the mean flow. Point C is important as it
introduces the stochastic point of view, and helps under-
standing that the primary goal of upscaling is not always to
be exact, but to provide accurate uncertainty estimations.

5 ABOUT PRESSURE TRANSIENTS:
THE SELF AVERAGING PROPERTY

To go further in our investigation of a multiscale description
of the flow, let us consider a well test in a 2D heterogeneous
reservoir, whose no flow boundaries are supposed to be at
infinity. We consider a drawdown well test where the flow
rate is equal to Q after t = 0. The well is supposed to be
located at the origin of coordinates. The pressure derivative

is shown to obey the following equation 

(de Marsily, 1981):

(17)

in other words, p′ (r, t) is the Green’s function of the diffusion
problem. In well test, see Daviau (1986), it is common to
compute the logarithmic time derivative of the pressure
measured at the well that is given by:

(18)

The last equality is valid in the homogeneous case, and it is
the basis of well test interpretation providing an estimation of
the reservoir permeability. In the heterogeneous case, Equa-
tion (18) can be used to define an “instantaneous apparent
permeability” k (t) that will depend on time (Feitosa, 1993).

The heterogeneous reservoir will be supposed to be a
single realisation of a lognormal process of correlation
length lc.

The permeability map k(r) = exp Y(r) is supposed to be a
stationary lognormal (i.e. it logarithm has a multi-Gaussian
distribution) random field having the following properties:

The symbol < … > represents the average of the quantity
under brackets with respect to all the possible permeability
maps. Kg is the geometric mean, C(r) is the log permeability
correlation function.

Let us consider the quantity < P > (r, t) which is the
average of the local pressure that could be obtained by
Monte-Carlo simulations. Using perturbation methods arising
from statistical physics, it is possible to show that the
following equation governs the evolution of the average
pressure < p′ > (r, t):

(19)

This linear equation has the structure of an integro
differential equation, and was derived independently by
Indelman (1996), and Nœtinger and Gautier (1998) who used
a Feynman graph approach. The memory kernel Σ(r, t) (a
second order symmetric tensor) depends explicitly only on
the correlation functions of the permeability of arbitrary
order. A study of an expansion of Σ(r, t) in a power series of
the permeability variance σ can be performed using Feynman
graphs techniques that provide a systematic method to
compute any order term of perturbation theory, and to reorder
terms in a physically appealing way (Nœtinger and Gautier,
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1998). Starting from an explicit expression of the average
pressure < p(r, t) >, these techniques allow to find explicitly
the form of the Equation (19) that governs the evolution of
the average pressure < p (r, t) >. In particular, the kernel
Σ(r, t) that is called the “mass operator” in other areas of
physics can be computed at any desired order as being the
sum of all the corresponding “irreducible graphs”. It shows
that the average pressure is driven by an equation that has
essentially a Darcy structure. It may be shown that up to
second order (the “one loop” approximation):

(20)

where P0(r’, t’) denotes the Green’s function of the diffusion
operator. It shows that this kernel has a typical spatial range
equal to lc, and a time range of lc

2/D which is the typical
diffusion time over lc(D = < k > /φµct). Equation (19) can be
written under a conservation equation form when introducing
a local velocity V(r, t) as:

(21)

(22)

Indelman (1996) showed that this velocity V (r, t) is
exactly the average of the local Darcy flux defined by
V(r, t) = < – k/µ ∇ p(r, t) >. This means that the average local
rate at point r is a weighted average of the pressure gradients
into the “correlation” zone of r. In the Fourier-Laplace
domain, defined by 
it is possible to generalise the concept of effective perme-
ability by introducing a wave vector dependant effective
permeability tensor Keff,(q, s). Using the (q, s) variables, the
complex Relation (22) becomes very simple, taking the form
of a simple product involving a wave vector dependant
Darcy’s law, with Keff,(q, s) = < k > + µΣ(q, s). The limit of
Keff,(q, s) for low wave vector, long times (q, s) ➝ (0, 0) can
be identified to Keff, the steady state effective permeability
tensor. This can be justified heuristically, because for long
time, we can expect that < p′ >(r, t) varies quite smoothly in
both r and t domains, so we can replace it under the integral
sign of (19) or (22) by a constant over the correlation
volume. So we can write:

(23)

This result in an effective Darcy’s law, with:

(24)
which is well equal to Keff,(q = 0, s = 0).

It can also be shown that considering a well test in one
realisation, at short time the well test will provide an
estimation of the permeability at the well location, at long
time the effective permeability Keff of the reservoir
(Nœtinger and Gautier, 1998). In between, in can be shown
that at first order the apparent permeability is a weighted
average of the local permeabilities with a kernel whose
support size R(t) ≅ {2D t}1/2, that corresponds to the so-called
investigation radius (Blanc et al., 1996) of the well test, is
continuously increasing with time (Oliver, 1988; Feitosa et
al. 1993; Gautier and Nœtinger, 1998). At long times, we are
thus led naturally to measure the average of a great number
of independent events. Central limit theorems can be invoked
and we can expect that the apparent permeability will
converge “almost surely” to the steady state value
(Goldenfeld, 1992; Jikov et al., 1994). It is exactly what
happens in practice. 

Nœtinger and Gautier (1998) showed that the apparent
permeability k (t) defined by Equation (18), which is a
random function depending on time, has the following
statistical properties:

This means at long time t, the apparent permeability is
“almost surely” equal to Keff . In practice, a well test simula-
tion on a sufficiently large single realisation is quite equiva-
lent to perform a Monte-Carlo averaging, at least for large
scale phenomena. This is what is called the self averaging
property. This result may be qualitatively explained as
follows. Considering that the apparent permeability k(t) is a
weighed average of the small scale permeabilities over the
disk of radius R(t) ≅ {2D t}1/2 around the well (Oliver, 1988).
For large t, there are a number N(t) ≈ πR(t)2 / lc

2 = 2D t / lc
2

of independant permeability units in this disk. Central limit
theorem shows thus that the variance of k(t) will vary like
1/N(t) ≈ 1/t: this corresponds to the prediction of the detailed
calculation of Nœtinger and Gautier (1998). We also under-
stand how the measurement support size may influence the
determination of permeability distributions.

Feitosa et al. (1993) and Haas and Nœtinger (1995, 1996),
used this way of reasoning to elaborate a method allowing to
get reservoir images constrained by observed well test. The
idea was to replace the well test simulation by computation
of simple averages, yielding a more easy to handle inverse
problem.

These results are illustrated in Figure 2, where the results
of well test simulations over 5 independent realisations are
plotted. We see that after a transient period, all the well tests
provide an equivalent permeability. If we were considering
an infinite medium, this will be a well defined quantity
depending only on the geostatistical structure of perme-
ability, so in the present case its mean and covariance. We
can observe some equivalent permeability fluctuations that 
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Figure 2

Five “instantaneous apparent permeability” curves corre-
sponding to five well test simulations performed over five
independent realisations of a 3D lognormal permeability
Kg = 10 mD, σ2 = 1. The curves are interpreted using Equa-
tion (18). The stabilisation of the well test corresponding to
the emergence of an homogeneous equivalent medium can be
observed after t = 100 000 s. The rather low ratio between the
size of the reservoir and the correlation length explains the
fact that stabilisation of the well test provide realisation
dependant equivalent permeabilities.

reflects the finite size of the considered medium. This depen-
dence of well tests on the geostatistical structure of perme-
ability led Gautier and Nœtinger (1998) to try to determine
geostatistical parameters such as permeability variance and
correlation length using single well test data. These results
seemed to be quite difficult to exploit in practice, due to the
rather smooth dependence of well test on permeability.

6 ABOUT NUMERICAL DETERMINATIONS
OF THE UPSCALED PARAMETERS

This issue is quite important because numerical artefacts can
provide strongly biased results. Let us come back to the
numerical computation of the equivalent permeability of an
heterogeneous porous medium. Using a standard approach,
and e.g. periodic boundary conditions, we are led to solve
a problem having the following structure, to compute the
Keff, xx component of the effective permeability tensor:

Analogous formula can be given for Kyy, Kxy and Kyx
components (see Durlovsky, 1991; Romeu, 1994; Gautier
and Nœtinger, 1997). The numerical discretisation of these
equation leads to the solution of the following linear system:

(25)

Romeu and Nœtinger (1995) studied numerically and
theoretically the preceding formulations on log normal
uncorrelated media (i.e. in the present case, situations where
the permeabilities of two distinct grid blocks are inde-
pendent). In all the cases, they observed a systematic
difference between the prediction of Matheron (1967), and
their numerical results. Lachassagne (1989) was the first to
observe this effect, and he called it the systematic bias of
numerical simulation. He also observed that a finite element
formulation produces an opposite bias: an over estimation of
the equivalent permeability. The explanation and quanti-
fication of these effects are quite subtle and was the subject
of Romeu’s PhD thesis. The basic idea is to recognise that
when considering an “uncorrelated” medium, we are quite
far from the ideal situation enjoyed by applied mathe-
maticians: the simulation result converges towards the exact
solution of the PDE when the grid block size tends to zero. In
particular, considering the harmonic weighting rule:

(26)

low permeability values are systematically advantaged. More
generally, Lassachagne (1989) proposed to consider more
general weighing formulas written under the form of a power
averaging:  

(27)

The basic goal is thus to be able to use a “refined” grid in
order to fulfil mathematical convergence conditions. The
simplest idea was implemented in Romeu and Nœtinger
(1995), i.e. dividing each original grid block into r2 equal
square grid blocks of size δx/r having equal permeabilities,
as sketched in Figure 3. Notice that this choice is quite
arbitrary: we want to model an uncorrelated medium.
Following the proposed approach we are implicitly adding
information about the short lengthscales (or the high
frequencies in the Fourier domain) behaviour of the
permeability. This means that we are in fact creating artificial
permeability correlations at short lengthscales, so we add
information. Another philosophy could be: any refinement
scheme such that the equivalent permeability of any 
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Figure 3

Refining procedure of an “uncorrelated medium”. Each
original grid block is subdivided into r × r small grid blocks,
whose permeability value is given by the corresponding
coarse grid block value.

considered grid block is recovered is correct, it corresponds
only to different assumptions about the unknown short
distance structure of the medium. In other words, the
“uncorrelated medium” is right now mathematically mean-
ingless: we have only a medium whose permeability
measurements performed at a given resolution scale did not
exhibit any apparent correlation. We will come back on this
discussion later.

Figure 4

Variations of the large scale permeability normalised by its
expected value with the inverse refining index r, for a log-
normal 3D medium. Each different curve corresponds to
different permeability weighing schemes. Here, the variance is
small and the agreement between the analytical computation
and the numerical experiment is excellent. A 30% error can be
easily attained using a non refined at all calculation (r = 1). It
can be observed that using harmonically averaged perme-
abilities and r = 1 provides that geometric mean for 3D, a
wrong result.

In the same paper, we have shown by means of a rather
heavy calculation that when r ➝ ∞, the correct result is
recovered. In a next step, we performed a systematic study of
these effects using a second order power series expansion of
the results of the numerical model as a function of the log
permeability variance. In 3D and 2D, both theoretical and
numerical results are summarised in the following curves
(Figs. 4, 5 and 6). 

Figure 5

Similar to Figure 4, but this time the log permeability variance
is equal to 1. Variations of the large scale permeability
normalised by its expected value with the inverse refining
index r, for a lognormal 3D medium. Each different curve
corresponds to different permeability weighing schemes. A
30% error can be easily attained using a nonrefined at all
calculation (r = 1).

Figure 6

Similar to Figure 5, but this time we consider 2D permeability
maps. Variations of the large scale permeability normalised by
the geometric mean, its expected value with the inverse refining
index r. Each different curve corresponds to different perme-
ability weighing schemes. We see that a 30% error can be easily
performed using a non refined at all calculation (r = 1).
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The same calculation performed in 3D shows that when
r = 1, the resulting equivalent permeability is close to the
geometric average, rather than to the expected < k1/3 > 3. This
confirms the observation of Warren and Price (1961) that
claimed on the basis of numerical simulations that the
geometric mean is the correct answer in 3D. Considering
correlated random fields, with a correlation length lc, shows
that it is evidently the discretisation ratio δx/lc that must be
accounted for.

Finally, we must remember that in order to fulfil accuracy
requirements, at least three grid blocks per correlation length
are needed to get correct accuracy. If this is not possible, it
can be advantageous to use a very coarse grid, where
homogenisation effects will play their smoothing role.

7 ANOTHER POINT OF VIEW: DIRECT UPSCALING
OF GEOSTATISTICS, THE FILTERING APPROACH

7.1 Background

We want to come back to our original goal, which is to
estimate uncertainties. At this stage, we have replaced the
costly Monte-Carlo approach by the solution of a more
complex equation whose numerical solution should be
simpler. We are close in spirit to our previously presented
Approach C which was shown to miss variability. If our goal
is to estimate also uncertainties, we would like to combine
both Approaches B and C. In last section, we showed that
one must be careful in practice when up scaling grids.

A possible solution is the filtering approach, that is very
close in spirit to the LES numerical approach used to model
very large Reynolds number fluid dynamics (Germano,
1992; Lesieur and Métais, 1996) or renormalisation group
theory in statistical physics (King, 1989; Goldenfeld, 1992;
Jaekel and Vereecken, 1997). Consider a stationary log-
normal permeability distribution of geometric mean Kg0, and
of covariance function C (r). For sake of simplicity, we
consider an isotropic situation where both permeability
tensors and geometric properties are statistically isotropic. A
very efficient way of generating realisations Y(r) = ln k(r) is
as follows: consider the Fourier transform of Y(r); denoted
by Y(q) defined by Y (q) = ∫ dre–iq.r Y (r), where dr denote
the natural integration measure and the summation runs
over the whole space. One has the Fourier inversion formula

It can be show that for a sta-

tionary multi-Gaussian process Y(r), Y(q) is also a multi-
Gaussian process which has the following properties:

< Y(q) > = 0, < Y(q) Y ⊥ (q′′) > = (2π)D C (q) δ(q′′ – q) (28)

Here δ(q′′ – q) is a D dimensional Dirac delta function,
C(q) is the Fourier transform of the covariance function C(r)

and Y is the complex conjugate of Y. In other words, this
means that the Fourier transform diagonalises the covariance
matrix. This property remains exact when considering a
discretised representation of Y on a regular Cartesian grid. So
by taking e.g. Y (q) = C (q)1/2 z (q) where z(q) is a multi-
Gaussian vector whose covariance matrix is the identity
matrix. Coming back to real space by means of an inverse
Fourier transform, one can get:

(29)

This is the basis of the very efficient FFT MA (Fast
Fourier Transform Moving Average) method developed at
IFP that combines the advantages of real space and Fourier
transform methods accelerated by FFT techniques (Le
Ravalec et al., 2000).

7.2 Filtering Method

Let us now introduce a cutoff scale Γ (m–1). We can compute
a new random vector denoted YΓ (q) by means of the
following definition:

(30)

where the integration is restricted to wave vectors whose
modulus are smaller than Γ (Fig. 7).

So, once z(q) is given, a complete family of YΓ(q) can be
obtained depending on the value of the cutoff Γ. This cutoff
plays the role of a filtering parameter: in real space, the
proposed operation will correspond to a convolution by a
Bessel function whose typical support size would be 

Figure 7

Fourier transform of the covariance function of the Γ filtered
realisations. Each Fourier mode of wave vector > Γ is
smoothed out. 
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L ≅ 2π/Γ. In other words, we are filtering out permeability
fluctuations whose frequencies are larger than Γ. If Γ goes to
infinity, we recover the original Y.

Figure 8 displays the permeability maps corresponding
to this process for different values of the cutoff Γ. The
smoothing effect is clear, and corresponds to the intuitive
idea of upscaling.

Applications

The filtering approach could have a broad range of practical
applications.

The first application is upscaling and grid coarsening
itself. Notice that when high frequencies components are
filtered out, the resulting map remains still described by the
same number of grid blocks. But, as the filtered realisation is
smoother than the original one, it is appealing to coarsen the
grid using a typical grid size ∆X < 1/Γ. As the permeability

map is quite smooth, the upscaling process can be simplified
using e.g. the value at the coarse grid block center. This
can be observed in Figure 9 where we have added an
hypothetical coarse grid, refined close to a well.

In particular, if one wants to set a permeability attribute to
an irregular grid, one could attribute to a grid block of
characteristic size 1/Γ, the permeability provided by kΓ (r)
evaluated at the grid block center.

Once the small scale z (r) map of Gaussian deviates is
generated, the evaluation of kΓ(r) can be obtained for any Γ. 

Now let us come back to the permeability map by
introducing kΓ(r) = KgΓ exp YΓ(r). Notice that we introduce a
geometric mean KgΓ(r) depending on the cutoff parameter Γ.
How can we fix KgΓ?

A simple idea is as follows, Figure 10: consider that we
want to compute the equivalent permeability of a large
realisation of Y (so Γ = ∞) using for example a numerical 
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Figure 8

Filtered realisations: due to the basic principle of the FFTMA algorithm, the same set of random numbers is used to generate these different
images. These four images differs as Fourier modes of wave vector > Γ has been cutoff. The first image is without filtering, and we have
Γ2 > Γ3 > Γ4.

Figure 9

Using the filtering approach to use simultaneously fine and coarse grid data. The upscaling and downscaling aspects are managed
simultaneously.
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Figure 10

Equivalence criterion between filtered and nonfiltered
realisations. The retained criterion is that when computing the
average large scale effective permeability Keff, one should
recover equal values. A possible solution is renormalising the
mean permeability Kg, KgΓ. 

simulation, we obtain thus Keff, that we will call Keff(Γ = ∞)
= Keff ∞. Consider now a corresponding filtered realisation
with cutoff Γ: let us compute now the equivalent permeability
of the filtered realisation. It will be proportional to KgΓ, so we
can adjust the geometric mean in order to get hydraulically
equivalent realisations providing the same large scale
effective permeability. In particular, if we consider the limit
of Γ tending to zero, as most of the heterogeneities are
smoothed out, we will obtain KgΓ ==> 0 = Keff ∞. In other
words, the geometric mean of these completely filtered
realisations will be equal to the effective permeability of the
medium, and as we have smoothed out most of the perme-
ability fluctuations, the variance will be equal to zero. In other
words, we will recover the equivalent homogeneous medium. 

To summarise, using kΓ(r) is equivalent to considering a
lognormal random map such that < ln kΓ(r) > = ln KgΓ:

(31)

This provides a useful alternative interpretation of our
filtering approach: it can be viewed as a direct upscaling of
geostatistics itself. 

Depending on the considered support scale, we compute
directly the associated geostatistical properties. It can be
remarked that when filtering most frequencies (Γ << 1/lc), we
have by a direct evaluation of (31):

where VD is the volume of the sphere of unit radius in D
dimensions. This result is another manifestation of the
already discussed self-averaging property. To illustrate what
happens, let us consider the case of a Gaussian covariance
function C(r) = C(r = 0) exp – (r/lc)

2. After an explicit cal-
culation, one gets σ2 ln (kΓ) ~ C (r = 0) (Γ lc)

D = C (r = 0)/n.
So, when Γ goes to zero, the variance tends to zero. This ex-
pression has a simple interpretation: the quantity n = (Γ lc)

–D

corresponds to the number of “statistical units”, i.e. the
number of really independent degrees of freedom that
are present in a volume of typical size L =1/Γ. It is very
appealing from the theoretical point of view, as this quantity
is intrinsic, involving only physical quantities. In particular, it
does not depend at all on the chosen discretisation. This
result is closely related to the central limit theorem and it
highlights the homogenisation or smoothing effect.

Concerning the renormalised average permeability, KgΓ in
2D, Matheron’s theorem shows that KgΓ is constant and
remains equal to the input geometric mean Kg of the
distribution. 

We can go farther, following an approach that was
proposed by Jaekel and Vereecken (1997), to model scale
effects on the upscaling of dispersion coefficients. Using
again perturbation theory, and a mean-field approximation, it
is possible to derive the following differential equation
(Nœtinger, 2000): 

(32)

with SD equal to the surface of the unit sphere in D
dimensions. The mean field approximation consists in the
process of considering that fluctuations of permeability of
wave vector between Γ and Γ + dΓ interact via an effective
homogeneous medium of permeability equal to KgΓ, rather
than an homogenous medium at Kg. Integrating this ordinary
differential equation yields:

In particular, when Γ = 0 (i.e. all permeability fluctuations
are averaged out), one gets:

We recognize here the Landau-Lifschitz (1960) Matheron’s
LLM conjecture, which appears as a mean field approx-
imation. It may be written under the equivalent more
suggestive form: 

Keff = < k (1–2/D) > 1/(1–2/D) = < kω> 1/ω
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with ω = – 1 in 1D (harmonic mean), ω = 0 in 2D (geometric
mean), ω= 1/3 in 3D.

Another very interesting point of view is to interpret this
renormalised geostatistics as corresponding to measurements
performed on a support whose typical size is 1/Γ. For
example, we start from a high resolution permeability map
and we consider the observed statistical properties of the
permeability of plugs of size 1/Γ >> δx. Let us study the
geostatistical properties of these data measured on these
plugs. Due to homogenisation effect; we expect to observe a
reduced variance. It is likely to be close to the proposed ones,
because first and second moments are exact. Further tests are
needed to check the evolution of geostatistical distributions
with the measurement scale. Preliminary tests show that a
lognormal medium remains lognormal (a not at all trivial
result). 

It should be stressed that this point of view is very close to
the renormalisation-group approach of quantum field theories
(Goldenfeld, 1992), were it is explicitly recognised that it
is more important to quantify the evolutions with the
measurement scale of the apparent parameters that describes
elementary particle (like electrons) and fields (like the
electromagnetic field) fundamental interactions rather than
the infinite resolution value that is completely inaccessible.
This remark can help us to give a precise meaning to the
notion of an “uncorrelated” medium i.e. a medium whose
correlation length tends to zero discussed in the preceding
section. A simple dimensional reasoning shows that the large
scale effective permeability Keff should not depend on lc,
because the dimensionless ratio Keff/Kg cannot depend on a
single lengthscale (this can be verified by changing the
variable in the steady state diffusion equation). We need
another reference lengthscale, that can only be the mea-
surement scale lmes. Considering that lc is smaller than lmes
means only that the measured permeability is uncorrelated
at lmes. 

In the preceding section, we have shown that this point
presented some difficulties even in simulations, when the
issue is to “refine” the grid representing an uncorrelated
medium. The only way to do this correctly is to refine the
grid blocks by attributing for example the same permeability
to the refined grid blocks. This choice is arbitrary, and
probably any refinement procedure such that the overall
equivalent permeability of the considered grid block is
preserved should be equally acceptable (Romeu and
Nœtinger, 1994). So the quantity that is fixed is the apparent
ln(k) variance σ2 ln (kΓ) ~ C(r = 0) (Γ lc)

D with (Γ = 1/lmes).
This means that letting lc tend to zero is correct if the
observed variance at the reference scale is kept fixed. The
only solution is to assume that the product C(r = 0) (lc)

D must
remain constant, so C(r = 0) varies as 1/lc

D. This result means
simply that due to homogenisation effects, an uncorrelated
medium should exhibit heterogeneous behaviour at a finite
scale only if the variance is infinite. We recognise here a

description of the so called “nugget” effect of geostatisticians
(Dagan, 1989). In theoretical physics, this strategy cor-
responds to the renormalisation procedure of the coupling
constants describing the partition function of liquids at the
critical point. The basic idea is that completely local values
are not measurable in practice (Cushman, 1984). Our
measurements are in essence an upscaling process, so what is
important is to recover the observed parameters, by adjusting
the local values in order to match the observed ones. It is
probably in that sense that the famous LLM conjecture
becomes exact.

This conjecture has a quite long story. Its simplicity and
elegance motivated a great deal of theoretical works. On the
more practical point of view, Neumann and Orr (1993)
obtained a very good agreement with numerical results even
for relatively large log permeability variance (up to 7), and
Nœtinger and Jacquin (1991) tested the formula with real
data and they got also an excellent agreement.

In the theoretical point of view, it can easily be shown that
this conjecture is exact for D = 1, for 2D it was proven by
Matheron (1967). In the general case, it is exact up to second
order in a series expansion in powers of C(r = 0) (see
Neumann and Orr (1993) and references therein). Ababou
(1994) showed that it was exact for D = 1 at all order using
perturbation theory. Using the general perturbation series,
Nœtinger (1994) showed that a partial summation of a whole
perturbation subseries provides LLM result, and he claimed
that the formula could be valid for a “vanishing correlation
length” case, without giving a precise meaning to this
locution. 

On the other hand, de Witt (1995) and later independently
Indelman and Abramovich (1996), have shown by explicit
calculations that are both mathematical tours de force that
LLM conjecture is correct up to the next term involving
C(r = 0)2, but that it is incorrect at next order. More precisely,
both authors computed explicitly the third order term in
C (r = 0)3 involving interactions between 6 permeability
fluctuations. They also show that this term depends explicitly
on the whole shape of the covariance function C(r), and not
only on the local value C(r = 0). At first sight, this fact has a
more severe consequence: it implies that a single purely local
averaging formula like LLM cannot exist at all, because non
local correlation effects must be accounted for Stepanayants
and Teodorovitch (2003) gave similar conclusions.

A important conceptual progress could be attained if it
was possible to reconcile these results by giving an
hydrodynamic sense to the so called “nugget effect” of
geostatisticians. There could be a relation between LLM
conjecture, and the definition of the so called vanishing
correlation length medium discussed in Section 6. Our
filtering approach is a first step towards this goal. A rather
analogeous philosophy was followed by Koslov (1993) using
homogenisation theory. He found a result similar to LLM for
multiscaled permeability maps. This is an indication that
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LLM formula has some importance, and reflects some
hidden properties. We think that LLM could be justified
asymptotically using the preceding procedure to let lc tending
to zero. 

We are currently generalising this approach in two
directions: anisotropic cases, when the local permeability
is an anisotropic tensor, or in the case of geometrical
anisotropies. In that case, kΓ (r) will become a full tensor
kΓ (r). A first result was to obtain an expression of the
averaging exponent ω as a function of the global anisotropy
ratio α = (kv/kh)

1/2 lh/lv, ω(α). Using second order pertur-
bation theory, we were able to get an analytical determination
of ω(α), in very close agreement with results of numerical
simulations (Duquerroix et al., 1991) (Fig. 11). This result is
close to estimations provided by other authors using
analogous approaches (see e.g. Dagan, 1989):

(34)

Transposing the filtering approach to anisotropic media
leads to solving a set of integro differential equations
involving the whole permeability tensor having the a form
close to (32). This work is still in progress.

The other important case is to transpose this approach to
categorial models. Suppose that we have two different rock
types characterised by two permeabilities k1 and k2.
Geostatistical methods provide techniques allowing such
maps to be generated. These maps are not lognormal at all,
but is it possible to up scale directly geostatistics? Consider
now the equivalent permeability probability distribution at a
prescribed scale L = 1/Γ. Such data could be obtained by
means of numerical simulations. If L is very small when

Figure 11

Variations of the averaging exponent ω(α) as a function
of the global anisotropy ratio α . A good agreement is
obtained between different set of curves and the theoretical
prediction.

compared to lc, we recover the original bimodal distribution.
When L ~ lc, we can expect to get intermediate values
bounded by the two permeabilities, depending on the
heterogeneity pattern of the considered medium. For L very
large, once again an homogenisation process should occur,
and the equivalent permeability probability density
distribution should become continuous with a mean tending
to Keff, and a vanishing variance. Such a study could be
interesting, mainly to know if there exists a limiting
(lognormal?) distribution, and at which scale the discrete
character of the original distribution is lost. This would
provide some more quantitative insigths about the
characteristic size of the so-called “representative elementary
volume” whose knowledge is important to predict
fluctuations. In addition, the interesting case of a large
contrast k1/k2 ➝ 0 would display interesting and non trivial
universal critical effects at a percolation threshold depending
on the correlation structure of the medium (Stauffer, 1985).

8 APPLICATIONS TO MULTISCALE HISTORY
MATCHING AND MONTE-CARLO STUDIES:
TOWARDS AN INTEGRATED DETERMINATION
OF UNCERTAINTIES

Most modern approaches of computer-aided history match-
ing uses the Bayesian paradigm (Tarantola, 1997; Hu et al.,
1999; Le Ravalec, 1999). Let us consider that we have
observed data denoted collectively by the vector dobs(k). The
vector k represents the unknowns (these can be either
permeabilities or log permeabilities, porosities, etc.). We
suppose that we have a numerical simulator allowing an
approximation d(k) to be computed. To history match a
model is equivalent to search for k* = arg min. J (k), the
objective function J(k) being given by:

(35)

In the Bayesian framework σd
2 is the variance of

measurements + physical and numerical modelling errors,
σd

2 = σmeas
2+ σmod

2. The Cij
–1 matrix is the inverse of

the covariance matrix of k, whose elements are given by
Cij = C(rj – ri) = < (ki – < ki >)(kj-< kj >) > where ri is the
position vector of the center of grid block i. In the Gaussian
case, and considering that d(k) is linear, the vector kprior can
be the a priori average < k >, in that case the resulting k* will
be the mean of the posterior distribution, or it can be any
kprior sampling the prior distribution: in that case k* will
sample the posterior distribution (Oliver et al., 1996).

The practical difficulty is to minimise J(k) because k is
generally of high dimensions, and the model d(k) represents
the reservoir simulator with all the associated complexities.
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In addition, due to nonlinearities of d(k), J(k) can display
many local minima. Finally, when dealing with multimodal
variable, the minimisation process becomes more severe. 

Let us see how our filtering approach could help to
improve the minimisation of J (k). Let us consider now
minimisation of J using filtering. We define a renormalised
functional JΓ(k) defined by:

(36)

Here, CΓij = CΓ (rj – ri) is the covariance matrix of the
filtered permeabilities introduced in last section. The idea is
to filter out the high frequencies of k, and to minimise J(k)
from coarse scales to smaller and smaller scales. Here,
kprior(Γ) represents the renormalised average permeability
depending on the filtering parameter Γ. It can be remarked
that working directly with the Fourier components of k,
minimising JΓ(k) with respect to k is in fact a minimisation
with respect to the low frequency components. This means
that we are lowering the dimensionality of the problem in the
Fourier domain: it is physically appealing to think that the
intrinsic number of unknowns is not the number of grid
blocks, but the number of uncorrelated regions that are
contained in the reservoir volume, so a ratio (L/lc)

D, where L
is a typical lengthscale of the reservoir. This number is
proportional to the number of wave vectors q for which the
correlation matrix C(q) is not equal to zero.

So far, we have not performed any explicit upscaling of
the numerical model, we have only simplified the problem
parameterisation. The numerical model remains the same,
and what is needed is a drastic reduction in the number of
minimisation parameters. As we remarked before, since our
model is now smoother, grid coarsening becomes easier. We
can thus implement it to get the following problem: minimise
with respect to k, J′Γ (k) defined by:

(37)

Here, dup(k) represents the simulator working with a
coarsened grid, σD

2(Γ) = σmeas
2 + σmod

2(Γ), where σmod
2(Γ)

represents now the variance of the numerical model
including now upscaling errors. We have now completed the
process: we have a restricted parameterisation in the practical
real domain, as well as an upscaled reservoir model. Notice
that in this presentation, both processes remain quite
uncoupled.

Some improvements could be added to this method: e.g.
starting with a quite low cutoff Γ, and once the minimisation

is performed, increasing Γ in order to add new degrees of
freedom representing a more detailed reservoir description
and so on, as illustrated on Figure 12.

So far, we have restricted our analysis to Gaussian
quantities: how could these ideas be adapted to treat bimodal
or multimodal distributions?

This approach may be followed to study uncertainties, by
studying carefully the posterior distributions.

Another interesting option that was followed by Schaaf
et al. (2002) is to work with dup(k) but keeping the fine
description for the geological part of the objective function. 

Figure 12

Idea of the multiscale history matching. Each curve display
typical variations of the objective function with any degree of
freedom. Using strong filtering implies a very smooth curve
that can be easily minimised. Details can thus be added if
desired by varying the filtering parameter Γ.

9 UPSCALING OF TRANSPORT EQUATIONS

Let us consider now the case of transport equations. We
consider the convection-dispersion equation governing the
time evolution of the concentration c (r, t) of a spike of
passive tracer (see Marle, 1981 or de Marsily, 1981):

(38)

The small scale disorder is modelled through the
fluctuations of the local velocity u(r, t) = < u >(r, t) + δu(r, t).
The local dispersion tensor d(u) is supposed to be known
explicitly. The Peclet number comparing the relative impor-
tance of transport by convection and dispersion is defined by
Pe = Ulc/d(u).

These velocity fluctuations may in turn be due to the
underlying permeability disorder. The question is to find the
form of the equation governing large scale volume averaged
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concentration C(r, t) or the ensemble average < c(r, t) >. It is
possible to derive the following equation, even if the local
dispersion tensor d(u) is equal to zero, corresponding to the
purely convective limit at infinite Peclet number:

(39)

The difficulty is to relate the large scale macrodispersivity
tensor D(< u >) to the statistical properties of the underlying
disorder, and to know at which scale this representation is
valid. More detailed studies, using series expansion in a
power series of the disorder magnitude, and Feynman graphs
reorganisation of the series show that D (< u >) may be
replaced by a memory kernel. A great number of authors,
among which major contributions come from Gehlar (1993)
and references therein, Dagan (1989) computed D (< u >)
from the covariance structure of permeability. Both obtained
a formula on the form D(< u >) ~ a lcσ

2 u< û > < û > + b lcσ
2

u (1 – < û > < û >), where < û > < û > denotes the dyadic
tensor build on the average normalised velocity < û > and a
and b are constant of order unity depending on the precise
shape of the covariance function. Using a renormalisation
technique close to the one presented in Section 7, Jaekel and
Vereecken (1997) proposed a numerical method allowing to
account for heterogeneities covering multiple leng scales.
This method allows to compute a dispersivity tensor D(< u >,
L) depending explicitly on the considered averaging scale L,
and was able to explain quantitatively the observed variations
of the apparent dispersivity with the considered lengthscale.
More complex heterogeneous reservoirs including multi-
fractal cases were treated by Furtado et al., (1991), Glimm et
al. (1992) and Zhang (1992). In that case, anomalous
diffusion may arise: the large scale driving equation can have
a different form than (39).

Note that when considering miscible flows, where the
viscosity of the mixture does vary with concentration, the
retroaction between transport equation and the velocity field
may induce viscous fingering phenomena. These fascinating
phenomena are still the subject of considerable experimental
numerical modelling and theoretical efforts. The paper of
Vincent Artus will review some of the most important
aspects of these efforts in the multiphase case, that remains a
major issue for the near future.

CONCLUSIONS AND OPEN PROBLEMS

In this paper, we have shown that reservoir engineers can
gain invaluable information using promising techniques
arising from multiple scale approaches, where the entire set
of lengthscales characterising the reservoir are treated as a
whole. Very practical questions such as history matching
the geological model to various data, and uncertainty

management can be embedded within a beautiful and useful
unifying stochastic framework. Due to the intrinsically
complex nature of the real data, change of scale questions are
at the heart of this problematic. In particular, the choice of
objective functions, and of the optimal parameterisation is
closely related to upscaling questions. These upscaling
problems may be treated using several different approaches
which are mainly equivalent. Numerical methods are now
preferred in practice, because in addition to their robustness,
they provide directly the link to corresponding down scaling
methods, and sensitivity coefficients computations that are
needed when dealing with inverse problems provided by
history matching questions. Studying the errors associated
with upscaling is also an essential issue, as these errors play
an explicit role in the objective functions (Eq. 36), to be
minimised when solving inverse problems, and also in the
uncertainty evaluation.

Many difficult problems are still open concerning
upscaling of transport equations, such as tracer or multiphase
flow involving highly non linear physical processes. A large
effort of classification of equations allowing to devise a
“phase diagram” helping the engineer to anticipate the overall
flow regime, and the influence of small scale disorder will be
an essential step. Of particular interest, are the study of the
interaction between heterogeneity and stability consider-
ations. Direct methods using stochastic partial differential
equations theory allowing to avoid costly Monte-Carlo
simulation would be of considerable interest. Next, specific
methods remain to be developed to give practical solutions to
these problems, especially for problems involving huge data
treatments such as 4D seismic data interpretation.

ACKNOWLEDGEMENTS

The authors thanks the permission of IFP to publish these
works. Some works were funded by a joint contract with Elf
Aquitaine (TOTAL) and Bernard Corre and André Haas
are acknowledged. The authors are indebted to many IFP
colleagues. 

REFERENCES

Ababou, R. (1994) Solutions of Stochastic Groundwater Flow by
Infinite Series, and Convergence of the One-dimensional
Expansion. Stochastic. Hydrology and Hydraulics, 8, 139-155. 

Ahmadi, A., Labastie, A. and Quintard, M. (1993) Large Scale
Properties for Flow Through a Stratified Medium Various
Approaches. SPE RE, August, 214-220.

Ahmadi, A. and Quintard, M. (1996) Large Scale Properties
for Two Phase Flow in Random Porous Media. Journal of
Hydrology, 183, 69-99.

Ahmadi, A. and Nœtinger, B. (1994) A Practical and Operational
Method for the Calculation of Effective Dispersion Coefficients
in Heterogeneous Porous Media. ECMOR IV, 4th European

φ
∂

∂
+ ∇ ⋅ = ∇ ⋅ ⋅ ∇

c t

t
c t u t D u c t

( , )
( ( , ) ( , )) ( ( ) ( , ))

r
r r r

136



B Nœtinger and G Zargar / Multiscale Description and Upscaling of Fluid Flow in Subsurface Reservoirs

Conference on the Mathematics of Oil Recovery, Röros, Norway,
7-10 June.

Alabert, F.G. (1989) Constraining Description of Randomly
Heterogeneous Reservoirs to Pressure Test Data: A Monte-Carlo
Study. Paper 19600, SPE 64th Ann. Tech. Conf. and Exh. San
Antonio, 207-221.

Arbogast, T. and Bryant, S.L. (2001) Numerical Subgrid
Upscaling for Waterflood Simulations. SPE No. 66375, SPE
Reservoir Simulation Symposium, Houston, 11-14 February.

Artus, V., Nœtinger, B. and Ricard, L. Dynamics of the Water Oil
Front for Two-Phase, Immiscible Flow in Heterogeneous Porous
Media. 1 Stratified Media. To be published in Transport in
Porous Media.

Artus, V. and Nœtinger, B. (2002) Macrodispersion Approach for
Upscaling of Two-Phase, Immiscible Flow in Heterogeneous
Porous Media. ECMOR VIII, Freiberg, Germany, 3-6 Sept.

Avellaneda, M. (1996) Homogenization and Renormlization, the
Mathematics of Multiple Scale Random Media and Turbulent
Diffusion. Lectures in Applied Mathematics, 31, 251-268.

Blanc, G., Guérillot, D., Rahon, D. and Roggero, F. (1996)
Building Geostatistical Models Constrained by Dynamic Data-A
Posteriori Constraint. SPE 35478, European 3D Reservoir
Modeling Conference, Stavanger, Norway, 19-33.

Blanc, G., Nœtinger, B., Piacentino, L. and Helios Reservoir
Group (1996) Contribution of the Pressure Moments to the
Interpretation of Numerical Simulation of Well Tests.
ECMOR V - 5th European Conference on the Mathematics of Oil
Recovery, Mining University Leoben, Austria, 3-6 Sept.

Bourgeat, M., Quintard, M. and Whitaker, S. (1988) Éléments de
comparaison entre la méthode d’homogéneisation et la prise de
moyenne avec fermeture. C.R. Acad. Sci., Paris, 306 2, 463-466.

Boyer, S. and Mari, J.L. (1994) Sismique et diagraphie, Éditions
Technip, Paris.

Cardwell, W.T. and Parsons, R.L. (1945) Average Permeabilities
of Heterogeneous Oil Sands Trans. American Inst. Min. Pet.
Eng., 160, 34-42.

Cherblanc, F. (1999) Étude du transport miscible en milieu
poreux hétérogènes: prise en compte du non-équilibre. Thèse,
université Bordeaux 1.

Christakos, G., Miller, C.T. and Oliver, D.S. (1993) Stochastic
Perturbation Analysis of Groundwater Flow. Spatially Variable
Soils, Semi Infinite Domains and Large Fluctuations. Stoch.
Hydrol. and Hydrauli., 7, 3, 213-239.

Christakos, G., Hristopulos, D.T. and Miller, C.T. (1995)
Stochastic Diagrammatic Analysis of Groundwater Flow in
Heterogeneous Porous Media. Water Resources Research, 31, 7,
1687-1703.

Cushman, J.H. (1984) On Unifying the Concepts of Scale,
Instrumentation, and Stochastics in the Development of Multi-
phase Theory. Water Resources Research, 20, 11, 1668-1676.

Cushman, J.H. and Ginn, T.R. (1993) Non Local Dispersion
in Porous Media with Continuously Evolving Scale of
Heterogeneity. Transport in Porous Media, 13, 1, 123-138.

Dagan, G. (1989) Flow and Transport in Porous Formations
Springer Verlag, Berlin.

Daviau, F. (1986) Interprétation des essais de puits, Éditions
Technip, Paris.

Deutsch, C.V. and Journel, A.G. (1992) Geostatistical Software
Library and User’s Guide, Oxford University Press.

Ding, D.Y. and Urgelli, D. (1997) Upscaling of Transmissibility
for Field Scale Flow Simulation in Heterogeneous Media.
SPE 38016 - Reservoir Simulation, 14th Symposium of the
Society of Petroleum Engineers, Dallas, June 8-11, Proceedings,
311-312.

Duquerroix, J.P., Lemouzy, P., Nœtinger, B. and Romeu, R.K.
(1993) Influence of the Permeability Anisotropy Ratio on the
Large Scale Properties of Heterogeneous Reservoirs. SPE 26648,
68th Annual Tech. Conf. and Exhb. of the SPE, Houston, 29-40.

Durlovsk, L.J. (1991) Numerical Calculation of Equivalent Grid
Block Permeability Tensors for Heterogeneous Porous Media.
Water Resour. Res., 27, 699-708.

Eschard, R., Doligez, B.D., Rahon, D., Ravenne, C. and Leloch,
G. (1991) A New Approach for Reservoirs Description and
Simulation Using Geostatistical Methods. Advances in Reservoir
Technology, Characterization Modeling and Management.

Feitosa, G.S., Chu, L., Thompson, L.G. and Reynolds, A.C.
(1993) Determination of Permeability Distribution From Well
Test Pressure Data, SPE 26 407.

Furtado, F., Glimm, J., Lindquist, B. and Pereira, F. (1990)
Multiple Length Scale Calculus of Mixing Length Growth in
Tracer Floods. Kovaritch ed, Proceedings of the Emerging
Technologies Conference, Houston TX, Institute for Improve Oil
Recovery, 251-259.

Galli, A., Guérillot, D., Ravenne, C. and Heresim-Group (1990)
Combining Geology, Geostatistics and Multiphase Fluid Flow
for 3D Reservoir Studies. ECMOR II - 2nd European Conference
on the Mathematics of Oil Recovery, Proceedings, Arles, Sep. 11-
14, D. Guérillot, O. Guillon eds., 11-19.

Gautier, Y. and Nœtinger, B. (1997) Preferential Flow-Paths
Detection for Heterogeneous Reservoirs Using a New Renormal-
ization Technique. Transport in Porous Media, 26, 1-23.

Gautier, Y. and Nœtinger, B. (1998) Determination of Geo-
statistical Parameters Using Well-Test Data. SPE 73rd ATCE,
27-30, New Orleans, USA.

Gautier, Y., Blunt, M.J. and Christie, M.A. (1999) Nested
Gridding and Streamline-Based  Simulation for Fast Reservoir
Performance Prediction. Computational Geosciences, 3, 295-320.

Gelhar, W. (1993) Stochastic Subsurface Hydrology, Prentice
Hall.

Germano, M. (1992) Turbulence: the Filtering Approach. J. Fluid
Mech., 238, 325-336.

Glimm, J., Lindquist, B., Pereira, F. and Peirls, R. (1992) The
Multifractal Hypothesis and Anomalous Diffusion. Math. App.
Comput., 11, 2, 189-207.

Goldenfeld, N. (1992) Lectures on Phase Transitions and the
Renormalization Group, Frontiers in Physics, Addison Wesley.

Gomez-Hernandez, J. (1990) A Stochastic Approach to the
Simulation of Block Conductivity Fields Conditioned upon Data
Measured at a Smaller Scale, PhD, Stanford University.

Gorell, S., and Basset, R. (2001) Trends in Reservoir Simulation:
Big Models, Scalable models? Will you please make up your
mind? SPE 71 596, ATCE, New Orleans.

Gavalas, G.R. and Shah, P.C. (1976) Reservoir History Matching
by Bayesian Estimation. Soc. Pet. Eng. J., 16, 6, 337-350.

Granjeon, D. (1997) Modélisation stratigraphique déterministe -
Conception et applications d’un modèle diffusif 3D multi-
lithologique. PhD Dissertation, Mémoires Geosciences Rennes,
France.

Granjeon, D., Joseph, P. and Doligez, B. (1998). Using a 3D
Stratigraphic Model to Optimise Reservoir Description. Hart’s
Petroleum Engineer International, November, 51-58. 

Guérillot, D., Rudkiewicz, J.L., Ravenne, C., Renard, G. and
Galli, A. (1989) An Integrated Model for Computer Aided
Reservoir, Description: from Outcrop Study to Fluid Flow
Simulations. Improved Oil Recovery. 5th European Symposium,
Proceedings, Budapest, April 25-27, 651-660.

Guérillot, D.R., Lemouzy, P. and Ravenne, C. (1991) How
Reservoir Characterization can help to Improve Production

137



Oil & Gas Science and Technology – Rev. IFP, Vol. 59 (2004), No. 2

Forecasts. Improved Oil Recovery. 6th European Symposium,
Proceedings, Stavanger, May 21-23, 3-12.

Guérillot, D.R. and Verdière, S. (1995) Different Pressure Grids
for Reservoir Simulation in Heterogeneous Reservoirs. SPE
29148, SPE Symposium on Reservoir Simulation, San Antonio.

Haas, A. and Nœtinger, B. (1996) Stochastic Reservoir Modelling
Constrained by Well Test Permeabilities. Fifth International
Geostatistics Congress, 22-27 Sept., Wollongong, Australia.

Haas, A. and Nœtinger, B. (1995) 3D Permeability Averaging for
Stochastic Reservoir Modelling Constrained by Well Tests,
Reservoir Description Forum. The Heriot-Watt and Stanford
University, 10-14 Sept., Puebles Hydro, UK.

Horne, R.N. (1990) Modern Well Test Analysis, Petroway.

Hou, T.Y. and Wu, X.H. (1997) A Multiscale Finite Element
Method for Elliptic Problems in Composite Materials and Porous
Media. J. Comput. Phys., 134, 169-189.

Hou, T.Y., Wu, X.H. and Cai, X. (1999) Convergence of a
Multiscale Finite Element Method for Elliptic Problems with
Rapidly Oscillating Coefficients. Math. Comput., 227, 913-943.

Hu, L.Y., Blanc, G. and Nœtinger, B. (2001) Gradual Defor-
mation and Iterative Calibration of Sequential Stochastic
Simulations. Math. Geol., 33, 475-489.

Hu, L.Y., Blanc, G. and Nœtinger, B. (1996) Estimation of
Lithofacies Proportions Using Well and Well-Test Data.
SPE 36571, Annual Technical Conference and Exhibition, 6-9
October, Denver, USA.

Hu, L.Y., Le Ravalec, M., Roggero, F., Blanc, G., Nœtinger., B.
and Haas, A. (1999) An Overview of the Gradual Deformation
Approach for Constraining Gaussian-Related Stochastic Models
to Dynamic Data. EAGE/SPE International Symposium on
Petroleum Geostatistics, 20-23 April, Toulouse.

Hu, L.Y., Le Ravalec, M., Blanc, G. Corre, B., Haas, A.,
Nœtinger, B. and Roggero, F. (1999) Reducing Uncertainties in
Production Forecasts by Constraining Geological Modeling
Using Dynamic Data. SPE 56703, 74th Annual Technical Confer-
ence and Exhibition, 3-6 Oct., Houston, USA.

Hu, L.Y., Blanc G. and Nœtinger, B. (1998) Estimation of
Lithofacies Proportions by Use of Well and Well-Test Data. SPE
Reservoir Evaluation  and Engineering, February.

Indelman, P. and Abramovich, B. (1994) A Higher Order
Approximation to Effective Conductivity in Media of Anisotropic
Random Structure. Water Resources Research, 30, 6, 1857-1864.

Indelman, P. and Abramovich, B. (1995) Effective Permittivity of
Log Normal Isotropic Random Media. J. Phys A: Math Gen., 28,
693-700.

Indelman, P. (1996) Averaging of Unsteady Flows in Heterog-
eneous Media of Stationary Conductivity. J. Fluid. Mech., 310,
39-61.

Jaekel, U. and Vereecken, H. (1997) Renormalization Group
Analysis of Macrodispersion in a Directed Random Flow. Water
Resources Research, 33, 10, 2287-2299.

Jikov, V.V., Kozlov, S.M. and Oleinik, O.A. (1994) Homoge-
nization of Differential Operators, Springer Verlag.

King, P. (1987) The Use of Field Theoretic Methods for the
Study of Flow in Heterogeneous Porous Medium. J. Phys. A.
Math. Gen., 20, 3935-3947.

King, P. (1989) The Use of Renormalisation for Calculating
Effective Permeability. Transport in Porous Media, 4, 37-58.

Koslov, S.M. (1993) Central Limit Theorem for Multiscaled
Permeability. Porous Media Meeting, Birkhauser, 19-33.

Kretz, V., Le Ravalec, M. and Roggero, F. (2002) An Integrated
Reservoir Characterization Study Matching Production Data and

4D seismic. SPE - Annual Technical Conference and Exhibition of
the Society of Petroleum Engineers, San Antonio, 29 Sep.-2 Oct. 

Lachassagne, P. (1989) Estimation des perméabilités moyennes
dans les milieux poreux fortement non uniformes étudiés sous
l’angle stochastique. Application aux essais de débit en aquifère
captif. Thèse de doctorat, École des mines de Paris.

Landau, L.D. and Lifschitz, E.M. (1960) Electrodynamics of
Continuous Media, Oxford, Pergamon.

Langlo, P. and Espedal (1994) Macrodispersion for Two-Phase,
Immiscible Flow in Porous Media. Advances in Water Resources,
17, 217-316.

Lenormand, R. and Thiele, M. (1996) Determining Flow
Equations from Stochastic Properties of a Permeability Field: the
MHD model. SPE Journal, 179-190.

Lesieur, M. and Métais, O. (1996) New Trends in Large Eddy
Simulations of Turbulence. Ann. Rev. of Fluid Mech., 28, 45-82.

Mallet, J.L. (1997) Discrete Modeling for Natural Objects.
Journal of Math. Geology, 29, 2, 199-219.

Marle, C.M. (1981) Multiphase Flow in Porous Media, Éditions
Technip, Paris.

Marle, C.M., Simandoux, P., Pacsirszky, J. and Gaulier, C. (1967)
Étude du déplacement de fluides miscibles en milieu poreux
stratifié. Revue de l’Institut Français du Pétrole, 22, 272-294.

Matheron, G. (1970) La théorie des variables régionalisées et ses
applications. Les Cahiers du Centre de morphologie mathéma-
tique de Fontainebleau, Fascicule 5.

Matheron, G. (1967) Éléments pour une théorie des milieux
poreux, Masson, Paris.

de Marsily, G. (1981) Hydrogéologie quantitative, Masson, Paris.

Matheron, G. (1967) Composition des perméabilités en milieu
poreux hétérogène : méthode de Schwydler et règles de pondé-
ration. Revue de l’Institut Français du Pétrole, 22, 3, 443-466.

Neuman, S.P. and Orr, S. (1993) Prediction of Steady State Flow
in Nonuniform Geologic Media by Conditional Moments: Exact
non Local Formalism, Effective Conductivities and Weak
Approximation. Water Resources Research, 29, 2, 341-364.

Nœtinger, B., Artus, V. and Ricard, L. Dynamics of the Water Oil
Front for Two-Phase, Immiscible Flow in Heterogeneous Porous
Media. 2 Isotropic Media, to be published in Transport in Porous
Media.

Nœtinger, B. (2000) Computing the Effective Permeability of
Log-Normal Permeability Fields Using Renormalization Methods.
C.R. Acad. des sciences, Sciences de la Terre et des planètes, 331,
353-357.

Nœtinger, B. and Gautier, Y. (1998) Use of the Fourier-Laplace
Transformation and of Diagrammatical Methods to Interpret
Pumping Tests in Heterogeneous Reservoirs. Advances in Water
Resources, 21, 581-590.

Nœtinger, B. (1994) The Effective Permeability of a Heter-
ogeneous Porous Medium. Transport in Porous Media, 15, 99-
127.

Nœtinger, B. and Artus, V. (2002) About Macrodispersion in
Immiscible Diphasic Flows in Heterogeneous Porous Media: a
Lagrangian Point of View. Second Symposium on Computational
Modelling of Multiscale Phenomena, Petropolis, Brazil, 5-9
August.

Nœtinger, B. (1993) A Pressure Moment Approach for Helping
Pressure-Transient Analysis in Complex Heterogeneous Reser-
voirs. SPE 26466, 68th Annual Technical Conference and
Exhibition of the Society of Petroleum Engineers, 3-6 Oct.,
Houston, USA.

Nœtinger, B. and Haas, A. (1996) Permeability Averaging for
Well-Tests in 3D Stochastic Reservoir Models. SPE 36653,

138



B Nœtinger and G Zargar / Multiscale Description and Upscaling of Fluid Flow in Subsurface Reservoirs

Annual Technical Conference and Exhibition, 6-9 October,
Denver, USA.

Nœtinger, B. and Jacquin, C. (1991) Experimental Tests of a
Simple Permeability Composition Formula. SPE 22841, 66th
Annual Technical Conference and Exhibition of the Society of
Petroleum Engineers, 6-9 Oct., Dallas, USA.

Oliver, D.S. (1989) The Averaging Process in Permeability
Estimation from Well Test Data. SPE 19845, SPE 64th Ann.
Tech. Conf. and Exh.

Oliver, D.S., He, N. and Reynolds, A.C. (1996) Conditioning
Permeability to Well Test Data. 5th ECMOR Conf. Proc. Leoben,
259-268.

Pianelo, L., Guérillot, D. and Gallouët, T. (2000) Inversion
simultanée des données sismiques et des données de production.
Oil & Gas Science and Technology - Revue de l’IFP, 55, 3,
235-248.

Pianelo, L., Guérillot, D., Gallouët T. (2000) Coupled Inversion
of Permeability and Acoustical Impedance an Outstanding Data
Integration. ECMOR VII - 7th European Conference on the
Mathematics of Oil Recovery, Baveno, Proceedings, Paper M-16,
Sep. 5-8.

Quintard, M. and Whitaker, S. (1994) Transport in Ordered an
Disordered Porous Media ii: Generalized Volume Averaging.
Transport in Porous Media, 14, 179-206.

Le Ravalec, M., Hu, L.Y. and Nœtinger, B. (2001) Stochastic
Reservoir Modeling Constrained to Dynamic Data: Local
Calibration and Inference of Structural Parameters. SPE 68883,
SPE Journal.

Le Ravalec, M., Hu, L.Y. and Nœtinger, B. (1999) Stochastic
Reservoir Model Constrained to Dynamic Data: Local Calibra-
tion and Inference of the Structural Parameters. SPE 56556, 74th
Annual Technical Conference and Exhibition, 3-6 Oct., Houston,
USA.

Le Ravalec, M., Hu, L.Y. and Nœtinger, B. (2000) The FFT
Moving Average (FFT-MA) Method: an Efficient Tool for
Generating and Conditioning Gaussian Simulations. Math. Geol.
32, 6.

Romeu, R.K. and Nœtinger, B. (1995) Calculation of Internodal
Transmissibilities in Finite-Difference Models of Flow in
Heteregeneous Media. Water Resources Research, April, 31, N4,
943-959.

Romeu, R.K., Lara, A.Q., Nœtinger, B. and Renard, G. (1996)
Well Testing in Heterogeneous Media: a General Method to
Calculate the Permeability Weighting Function. Four Latin

American and Caribbean Petroleum Engineering Conference,
23-26 April, Port-of-Spain, Trinidad and Tobago.

Rubin, Y. and Dagan, G. (1988) Stochastic Analysis of Bound-
aries Effects on Head Spatial Variability in Heterogeneous
Aquifers 1 Constant Head Boundary. Water Resources Research,
24, 10, 1689-1697.

Ramé, M. and Killough, J.E. (1991) A New Approach to the
Simulation of Flows in Highly Heterogeneous Porous Media.
SPE 21247, SPE Symposium on Reservoir Simulation, Anaheim.

Renard, Ph. and de Marsily, G. (1997) Calculating Equivalent
Permeability: a Review. Advances in Water Resources, 20, 5-6,
253-378. 

Saffman, P.G. and Taylor, G. (1958) The Penetration of a Fluid
into a Porous Medium or Hele Shaw cell Containing a More
Viscous Fluid. Proc. Royal Society of London, A245, 312-329.

Schaaf, T., Mezghani, M. and Chavent, G. (2002) Direct
Conditioning of Fine-Scale Facies Models to Dynamic Data by
Combining the Gradual Deformation and Numerical Upscaling
Techniques. Proc. 8th European Conference on the Mathematics
of Oil Recovery, Freiberg, Germany. 

Stauffer, D. (1985) Introduction to Percolation Theory, Taylor
and Francis, London and Philadelphia.

Stepanayants, Y.A. and Teodorovitch, E.V. (2003) Effective
Hydraulic Conductivity of a Randomly Heterogeneous Porous
Medium. Water Resour. Res., 39, 3, 1065.

Tarantola, A. (1987) Inverse Problem Theory, Elsevier.

Urgelli, D. (1998) Upscaling of Transmissibility Applied to
Corner Point Geometry. Paper SPE 52063, SPE - Society of
Petroleum Engineers European Petroleum Conference, The
Hague, Oct. 20-22.

Verdière, S. and Guérillot, D. (1996) Dual Mesh Method for
Multiphase Flows in Heterogeneous Media. 5th European
Conference on the Mathematics of Oil Recovery, Leoben,
Austria, September 3-6.

Warren, J.E. and Price, H.S. (1961) Flow in Heterogeneous
Porous Media. SPE Journal, 1, 153-169.

de Witt, A. (1995) Correlation Structure Dependance of the
Effective Permeability of Heterogeneous Porous Media. Physics
of Fluids, 7, 11, 2553-2562.

Zhang, Q. (1992) A Multiple Scale Theory of the Anomalous
Mixing Length Growth for Tracer Flow in Heterogeneous Porous
Media. J. Stat. Phys., 505, 485-501.

Final manuscript received in April 2004

139

Copyright © 2004, Institut français du pétrole
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made
or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this
work owned by others than IFP must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute
to lists, requires prior specific permission and/or a fee. Request permission from Documentation, Institut français du pétrole, fax. +33 1 47 52 70 78, 
or revueogst@ifp.fr.


