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Résumé — Modèles PLS pour le suivi de la qualité par spectrométrie proche infrarouge des distil-
lats moyens issus des procédés de raffinage — La régression PLS (Partial Least Squares) a été utilisée
pour établir des modèles de prédiction de différentes familles chimiques i.e. % massique paraffines,
naphtènes et % massique et mol/100 g monoaromatiques, diaromatiques+ et total aromatiques à partir de
spectres proche infrarouge (PIR) de distillats moyens de composition chimique très variée. La classifica-
tion a été utilisée pour tenir compte des ressemblances chimiques entre échantillons et organiser en
classes la base de calibration. Les corrélations entre les spectres PIR et les propriétés modélisées permet-
tent de prédire, pour la plupart, l’ensemble des propriétés dans deux fois l’intervalle de confiance à 95 %
des méthodes de référence, après classification préalable des échantillons en trois clusters. La classifica-
tion a été nécessaire pour améliorer la qualité de prédiction des modèles PLS.

Abstract — Partial Least Square Modeling for the Control of Refining Processes on Mid-Distillates by
Near Infrared Spectroscopy — Partial Least Squares regression (PLS) was used to elaborate the 
prediction models of the different chemical families i.e. wt% paraffins, naphthenes, and wt% and mol/
100 g monoaromatics, diaromatics+ and total aromatics from Near InfraRed spectra (NIR) of mid-
distillates covering a large range of chemical compositions. Cluster analysis was used to reveal the
chemical similarities between samples and to organize in clusters the calibration data base. The relation-
ships between NIR spectra and modeled properties were well adapted for most of the prediction models
in twice the interval of confidence at 95% of the reference methods after clustering of the data base into
three clusters. Cluster analysis was necessary to improve the prediction quality of the PLS models.
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http://www.ifp.fr/


Oil & Gas Science and Technology – Rev. IFP, Vol. 59 (2004), No. 3

ABBREVIATIONS

CP Principal Components
CV Cross-Validation
DmodX Euclidean distance from each point to the PLS

model in the standardized predictors
DmodY Euclidean distance from each point to the PLS

model in standardized responses
FCC Fluid Cracking Catalysis
IC Interval of Confidence
LV Number of PLS components selected by cross val-

idation
Max lev. Maximum leverage
MLR Multiple Linear Regression
MS Mass Spectrometry
NIR Near InfraRed 
PLS Partial Least Squares regression 
PRESS Predicted REsidual Sum of Squares
RMSP Root Mean Square error of Prediction
Total Sum of the monoaromatics and the diaromatics+
aromatics compounds
UV UltraViolet
X Matrix of predictor variables 
X-var Predictor variation explained by the selected PLS

factors
Y Response variable
Y-var Response variation explained by the selected PLS

factors.

INTRODUCTION

Partial Least Squares (PLS) can be seen as a generalization of
regression [1-6]. This method has a particular interest in
chemometrics because, unlike Multiple Linear Regression
(MLR), it can be applied for the analysis of data with
strongly correlated (collinear) and/or noisy or numerous X
variables (structural descriptors) and can simultaneously
model several response variables Y. 

Spectrometric calibration is a type of problem in which
PLS regression can be very effective. The predictors are the
spectral responses at different wavenumbers, and the
responses are the amounts of various chemical properties in
the sample.

In this work, the data consists of NIR recordings on 
128 samples characterized by known concentrations of 
11 chemical properties: 
– the mol/100g of mono-, di+ and total aromatics deter-

mined by UV spectrometry; 
– the wt% of mono-, di+ and total aromatics determined by

UV spectrometry and mass spectrometry;
– the wt% of paraffins and naphthenes determined by mass

spectrometry.

The samples were selected in order to cover the chemical
diversity of the samples analyzed in the IFP Research Center
during the last 10 years. So, as data analysis is based on an
assumption of homogeneity, in this work, the calibration base
was organized in three clusters using Ward’s hierarchical
clustering with Euclidean distance [7]. The characteristics of
the different models for each cluster and for each reference
method are discussed.

1 EXPERIMENTAL

1.1 Experimental Analytical Conditions

The NIR, MS and UV analysis of the 128 selected samples
was performed on the same sampling along a period of 6
months in different laboratories. 

1.1.1 Near Infrared Spectroscopy (NIR)

The near infrared spectra were recorded on a nitrogen purged
Bomem MB160 spectrometer. It was equipped with a DTGS
detector in transmission mode with a resolution of 
4 cm–1 using a 2 +/– 0.02 mm cell (QX quality) and after a
delay of 5 min with a dry nitrogen flow of 3l/min in the
4900-9200 cm–1 range. A maximum absorbance of around
one absorbance unit was obtained in the wavenumber range
6400-4500 cm–1. Each sample was measured twice randomly
with 100 scans per spectrum. One of the two spectra was
used for modeling if the spectral difference between the 
two recordings on the same sample was less than 0.002 ab-
sorbance units in the wavenumber range 6400-4500 cm–1.
The measurements were carried out at 27.5°C with the help
of a Peltier cell [8] in a room where the temperature range
could vary from 20°C to 30°C.

1.1.2 Mass Spectrometry (MS)

The analysis was performed on a mass spectrometer with
double focalization MS50 manufactured by Kratos. The sam-
ple is introduced via a batch inlet heated at 270°C under a
secondary vacuum. Analysis is performed by electronic
impact at 70 eV and at medium resolution (R = 5000). Five
spectra are acquired at 10 s/decade with a 41-302 uma (unit
atomic mass) range. They are averaged in order to improve
the signal to noise ratio. The wt% of monoaromatics, diaro-
matics+ (sum of the di-, tri- and polyaromatics), total aromat-
ics (sum of mono- and di+), naphthenes and paraffins are
determined following the method described in [9]. The preci-
sion of the method is given in Table 1.

1.1.3 UV Spectrometry

The analysis was performed on a UV spectrometer equipped
with a double monochromator CARY4G manufactured 
by Varian. The sample, after dilution in cyclohexane,
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is analyzed in transmission in a 0.2 mm quartz cell (QS 
quality). The mol/100 g and wt% of monoaromatics, diaro-
matics and triaromatics+ are determined following the method
described in [10]. The total aromatics content was obtained by
addition of the mono-, di- and polyaromatics. To calculate the
w% of each family, the mean molecular mass of each family
(i.e. monoaromatics, diaromatics and tri+) was determined by
mass spectrometry for each aromatic family [9]. The precision
of the reference method is given in Table 1. 

TABLE 1

Interval of confidence (for one measurement) of the reference methods

Interval of confidence (IC) for one

measurement

MS method C < 1%, IC = 0.2

C > 1%, IC = 3.54 10–2 C + 0.424

Quantification limit = 1% 

UV method C > = 0.025%, IC = 2.12 10–2 C

in mol/100 g 0.0005 < C < 0.025%

IC = 7.07 10–3 C + 3.54 10–4

UV method in wt% C > = 5%, IC = 2.12 C

0.1% < C < 5%, IC = 7.07 10–3 C + 7.07 10–2

Quantification limit = 1%

Interval of confidence at different levels of concentration 
of UV and MS methods for determination in wt%

Level Interval Interval

of concentration of confidence of confidence

in wt% by UV by MS

0.1 0.07 0.2 

(< limit of quantification)

1 0.08 0.2

5 0.11 0.6

10 0.2 0.8

20 0.4 1.1

40 0.9 1.8

The intervals of confidence for one measurement calcu-
lated in Table 1 at different levels of concentration show that
UV spectrometry analysis is much more reproducible (factor
3 approximately) than MS spectrometry. 

2 CHARACTERISTTICS OF THE DATA BASE

2.1 Origin and Chemical Characteristics 
of the Samples

The data base includes kerosene, atmospheric and heavy
atmospheric gas oil samples from numerous refining processes
(i.e. FCC, direct distillation, coking and visbreaking and

hydrotreatment). It mainly completes the data base described
in reference [13] on which the wt% of hydrogen and cetane
number were already modelled. Samples issued from
hydrotreatment processes (Prime D, hydrocracking, H-oil)
represent 65% of the database. Samples issued from FCC
processes bring diversity to the paraffins/naphthenes/aromat-
ics composition. They are more enriched in diaromatics than
hydrotreated samples from the same distillation interval and
so have a higher density.

Tables 2 to 6 illustrate the chemical ranges covered by the
samples. The concentrations are determined in these tables
by MS spectrometry.

TABLE 2

Chemical ranges covered by the 128 samples of the database

Paraffins Naphthenes Monoaro. Diaro+. Total aro.

in wt% in wt% in wt% in wt% in wt%

Min. 2.0 0 0 0 0

Max. 100 86.9 58.6 80.5 88.4

TABLE 3

Chemical ranges covered by the 12 samples 
of the data base issued from direct distillation

Paraffins Naphthenes Monoaro. Diaro+. Total aro.

in wt% in wt% in wt% in wt% in wt%

Min. 3 30.8 11 2.1 17.4

Max. 37.9 58.9 38.6 23.3 59.8

TABLE 4

Chemical ranges covered by the 22 samples 
of the data base issued from FCC

Paraffins Naphthenes Monoaro. Diaro+. Total aro.

in wt% in wt% in wt% in wt% in wt%

Min. 2 1.6 7.8 4.7 60

Max. 15.6 27.2 55.9 80.5 88.4

TABLE 5

Chemical ranges covered by the 2 samples of the database issued 
from thermal cracking

Paraffins Naphthenes Monoaro. Diaro+. Total aro.

in wt% in wt% in wt% in wt% in wt%

Min. 21.7 29.6 16.9 15.1 31.7

Max. 25.7 33.3 20 11.7 32

NB: olefins content are counted in aromatics.
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TABLE 6

Chemical ranges covered by the 82 samples 
of the database issued from hydrotreatment processes

Paraffins Naphthenes Monoaro. Diaro+. Total aro.

in wt% in wt% in wt% in wt% in wt%

Min. 4.1 6.2 0.1 0.1 0.2

Max. 46.5 86.9 58.6 58.7 82.6

The range of the data base is illustrated by the following
figures:
– Figure 1, which represents the mean distillation tempera-

ture in °C versus the density at 15°C;
– Figure 2, which represents the mean distillation tempera-

ture versus the wt% of total aromatics determined by MS;
– Figure 3, which represents the distribution of the different

chemical families for the 128 samples of the data base;
– Figure 4, which represents the distribution of the different

chemical families for each type of processes (i.e. direct
distillation, FCC, thermal cracking and hydrotreatment). 
Samples with unknown origin are not represented.

2.2 Principal Components Analysis 
of the Calibration Base 

The variation explained by the first principal components
(PC), of the calibration base (predictors variables), is given
by the Table 7.

TABLE 7

Variation explained by the first principal components

CP1 CP2 CP3 CP4 CP5 CP6

Variation (%) 95.0 2.8 1.2 0.5 0.1 0.1

Total variation (%) 95.0 97.9 99.0 99.5 99.7 99.8

Table 7 indicates that only two or three principal compo-
nents are required to explain almost all (97.9 and 99%
respectively) of the variation in the calibration base (predictor
variables). We can conclude that the X variables correlate
well.

Figure 5 displays a plot of the calibration base projected
onto the first three principal components. The plotting sym-
bol is the process’s type of all the samples in the calibration
base. We notice that LCO GO issued from FCC processes
are easily distinguishable and are on the right side on the PC2
axis.

2.3 Ward’s Hierachical Clustering of the Data Base

A first PLS-1 modelisation of the properties on the complete
database shows very bad statistical results i.e. RMSP of 0.02
(for example) for the prediction of the mol/100 g of
monoaromatics by UV spectrometry. A more detailed explo-
ration of the data by cluster analysis was thus necessary to
improve the precision of the models.

306

180

200

220

240

260

280

300

320

340

360

380

0.75 0.80 0.85 0.90 0.95 1.00 1.05

Density at 15°C

D
S

 T
M

 (
°C

) 

1
2, 3, 4, 5
6, 7
8
9

180

200

220

240

260

280

300

320

340

360

380

0 20 40 60 80 100

D
S

 T
M

 (
°C

) 

1
2, 3, 4, 5
6, 7
8
9

Total aromatics by MS (wt%)

Figure 1 

Mean distillation temperature versus density at 15°C.

In green: direct distillation, in blue: hydrotreatment, in violet:
thermal cracking, in pink: FCC, in yellow: others.

Figure 2

Mean distillation temperature versus the total aromatics
content.

In green: direct distillation, in blue: hydrotreatment, in violet:
thermal cracking, in pink: FCC, in yellow: others.
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To explore the various structures present in the calibration
base, by taking into account their multidimensional character,
the projection of the calibration base on the first ten principal
components PC is explored by using Ward’s hierarchical
clustering method with the Euclidean distance. Figure 6 rep-
resents the dendrogram of this clustering with only the top 30
nodes. There are three main clusters in this base. The height
of the nodes indicates the distance between the objects. The
three clusters contain respectively 79, 24 and 25 objects. We
can notice that cluster 1 (79 objects) and cluster 2 (24
objects) are close together when compared to cluster 3 (25
objects) and that the number of samples in two clusters (24
and 25 respectively) could be critical for robust modeling.
Cluster 3 corresponds to samples issued mainly from FCC
processes. Nevertheless, these two clusters cover a large
range of PC1 and PC2 axis.

Figure 7 represents the calibration base plotted on its first
three principal components. The labels are the clusters
assigned by Ward’s hierarchical clustering. This representa-
tion on the first three principal component’s space displays
the separation and the significance of the obtained clusters.
The three clusters are very distinct on the projections on the
three PC axis and they all describe a large variation of PC
factors. By comparison with Figure 5, we can say that cluster
3 corresponds to samples with high aromatics and contains
samples mainly issued from FCC processes. 

Near infrared spectra of the samples of the clusters are
represented in Figure 8. This representation shows the dis-
similarity between the spectra in each of the three clusters
and confirms the reliability required to keep the three clus-
ters. The NIR fingerprints confirm the enrichment in paraf-
fins for the cluster 1 and in aromatics for cluster 3.

307

Paraffins (wt%) Total aro. (wt%)

0

2

4

6

8

10

12

14

16

18

20

0

2

4

6

8

10

12

0

2

4

6

8

10

12

14

16

18

0

5

10

15

20

25

0

10

20

30

40

50

60

1 3 5 7 9 11 13 15 17 19 1 3 5 7 9 11 13 15 17 19 1 3 5 7 9 11 13 15 17 19

1 3 5 7 9 11 13 15 17 19 1 3 5 7 9 11 13 15 17 19

Diaro+ (wt%)Monoaro. (wt%)

Naphthenes (wt%)

Figure 3

Distribution of the different chemical families for the 128 samples.

The abscissa axis represents the wt% of the considered family with a step of 5 wt% between 0 and 100% (20 classes). Class h: between 
(h – 1) × 5 and h × 5 wt%, h = 1 ,..., 20.



O
il &

 G
as Science and T

echnology – R
ev. IFP, V

ol. 59 (2004), N
o. 3

308

0

5

10

15

20

25

30

35

40

45

1 3 5 7 9 11 13 15 17 19

1 3 5 7 9 11 13 15 17 19

1 3 5 7 9 11 13 15 17 19

1 3 5 7 9 11 13 15 17 19

1 3 5 7 9 11 13 15 17 19

1 3 5 7 9 11 13 15 17 19

1 3 5 7 9 11 13 15 17 19

1 3 5 7 9 11 13 15 17 19

1 3 5 7 9 11 13 15 17 19

1 3 5 7 9 11 13 15 17 19

1 3 5 7 9 11 13 15 17 19

1 3 5 7 9 11 13 15 17 19

1 3 5 7 9 11 13 15 17 19

1 3 5 7 9 11 13 15 17 19

1 3 5 7 9 11 13 15 17 19

1 3 5 7 9 11 13 15 17 19

1 3 5 7 9 11 13 15 17 19

1 3 5 7 9 11 13 15 17 19

1 3 5 7 9 11 13 15 17 19

1 3 5 7 9 11 13 15 17 19

0

5

10

15

20

25

30

35

0

5

10

15

20

25

30

35

40

0

5

10

15

20

25

30

35

40

0

5

10

15

20

25

30

35

0

10

20

30

40

50

60

0

5

10

15

20

25

30

35

40

45

0

5

10

15

20

25

30

35

0

5

10

15

20

25

0

5

10

15

20

25

0

10

20

30

40

50

60

0

10

20

30

40

50

60

0

20

40

60

80

100

120

0

10

20

30

40

50

60

0

10

20

30

40

50

60

Data base issued
from FCC
(22 samples)

Data base issued
from direct
distillation
(12 samples)

Data base issued
from thermal
cracking
(2 samples)

0

5

10

15

20

25

0

2

4

6

8

10

12

14

0

2

4

6

8

10

12

14

16

0

2

4

6

8

10

12

14

16

18

0

10

20

30

40

50

60

Data base issued
from hydrotreatment
processes
(82 samples)

Paraffins (wt%) Total aro. (wt%) Diaro+ (wt%)Monoaro. (wt%)Naphthenes (wt%)

Figure 4

Distribution of the different chemical families for each type of processes. The classes are the same as on Figure 3.



S Aji et al. / Partial Least Square Modeling for the Control of Refining Processes on Mid-Distillates 309

Figure 6

Dendrogram plot of the hierarchical cluster tree of the calibration base.
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Figure 5

A plot of the calibration base projected onto the first two
principal components. 

The plotting symbol is the processes type of all the samples
in the calibration base: FCC in red, direct distillation in
yellow, thermal cracking in green, hydrotreatment in blue,
others in black.

Figure 7

The calibration base plotted on its first three principal
components. 

Cluster 1 in yellow, cluster 2 in blue and cluster 3 in red.
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In Figure 9 we present the box plot of the distributions of
the properties to be modeled in each of the three clusters.
These representations confirm the dissimilarity which exists
between the three clusters as well as the correlation which
exists between chemical properties and near infrared spectra. 

Concerning the mono-, di+ and total aromatics, the shape
of the three clusters depends neither on the reference method
(UV or SM) nor on the unit (wt% or mol/100 g ). The charac-
teristics of the clusters are the following:
– Cluster 1 is characterized by the lowest content of 

total aromatics (at 95% in the 12-30 wt% range) and the
higher content in paraffins and naphthenic compounds i.e.
respectively at 95% in the range 17-25 wt% and 
39-63 wt%. The content of monoaromatics (between 
10-22 wt%) is greater than the diaromatics (at 95% in the
range 0-7 wt%).

– Cluster 2 corresponds to an intermediate level of total aro-
matics  (at 95% in the range 50-70 wt% ), paraffins (at
95% in the range 15-23 wt% ) and naphthenes (at 95% in
the range 15-28 wt%). The amount of monoaromatics (at
95% in the range 25-60 wt%) is greater that the one of
diaromtics+  (at 95% in the range 17-22 wt%). 

– Cluster 3 corresponds to samples enriched in aromatics
(total aromatics at 95% in the range 70-78 wt%) with a
ratio monaromatics/diaromatic+ inversed by comparison
with cluster 1 and cluster 2. The amount of paraffins and
naphthenes are low. That corresponds to samples issued
from FCC processes.
Finally, we compare the characteristics of the PLS model

(for example) for the prediction of the mol/100 g of mono-
aromatics by UV spectrometry in the case of 1, 2 and 
3 clusters. Clusters 1 and 2, were grouped in the case of 
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Near infrared spectra of the samples of the three clusters of the calibration base.
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two clusters. Table 8 shows the improvement of the NIR 
models by keeping the three clusters. So, to approach the pre-
cision of the reference methods, PLS-1 models were devel-
oped keeping the three clusters for every chemical property.

TABLE 8

RMSP of NIR model for the prediction of the mol/100 g  
of monoaromatics content by UV spectrometry,

versus the number of clusters

Number of clusters RMSP

1 cluster 0.02

2 clusters:

cluster 1 + cluster 2 0.0126

cluster 3 0.0053

3 clusters:

cluster 1 0.0059 

cluster 2 0.0056

cluster 3 0.0053

3 STATISTICAL AND MATHEMATICAL TOOL USED
FOR THE DEVELOPMENT OF THE MODELS

3.1 Partial Least Square Regression

PLS regression [11] is a recent technique that generalizes and
combines features from principal component analysis (PCA)
and multiple linear regression (MLR). It is particularly useful
when we need to predict a set of response variables  (Y, n × p)
from a very large set of predictor variables  (X, n × m).

The goal of the PLS regression is to predict Y from X and
to describe their common structure. When Y is a vector and
X is full rank, this goal could be accomplished using ordinary
multiple regression (MLR). When the number m of the pre-
dictors is large compared to the number n of observations,
matrix X'X is likely to be singular and the regression
approach is no longer feasible (i.e., because of multicollinear-
ity). Several approaches have been developed to cope with
this problem. One approach called principal component
regression is to perform a principal component analysis
(PCA) of matrix X and then use the principal components 
to predict Y. The principal components are chosen to explain
X rather than  Y so nothing guarantees that they are relevant
for Y .

PLS regression finds components from X that are also 
relevant for Y. Specifically, PLS regression searches for a set
of components that performs a simultaneous decomposition
of X and Y with the constraint that these components explain
as much as possible of the covariance between X and Y. This
step is followed by regression where the decomposition of X

(PLS components) is used to predict Y. The “engine” of the
PLS methodology is the nonlinear iterative partial least
squares (NIPALS) algorithm [8]. Table 9 provides a sum-
mary of this algorithm.

TABLE 9

NIPALS algorithm for PLS regression

Step Summary of steps

0 Mean center X and Y: x0 = X, y0 = Y

1 Calculate the a-th PLS factor

2
Set the output score ua equal 

to any column of ya–1

3
Compute input weights wa by 

regressing  xa–1 on ua

4 Normalize wa to unit length:

5 Compute the input scores ta

6
Compute output loadings qa

by regressing ya–1 on ta

7 Normalize qa to unit length

8 Calculate new output scores ua

9
Check convergence on ua:

if yes go to step 10 else go to step 3

10
Compute input loadings pa

by regressing xa–1 on ta

11
Compute inner model regression

coefficient βa

12 Calculate input residual matrix

13 Calculate output residual matrix

If additional PLS dimension 

14
are necessary, replace xa–1 and ya–1

by  xa and ya respectively 

and repeat steps 2 to 14

When there is only one response variable, the standard
PLS algorithm can be reduced to an algorithm referred to as
PLS-1. In this work PLS-1 models were developed for every
chemical property.
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The power of PLS as a regression tool lies in the fact that
it decomposes a multivariate regression problem into a num-
ber of uncorrelated univariate regressions (Fig. 10).

The partial least squares algorithm selects a number of
orthogonal factors that maximize the covariance between
each X-scores ta and the corresponding Y-scores ua. For a
good PLS model, the first few factors show a high correlation
between the X-scores and Y-scores. The correlation usually
decreases from one factor to the next, whilst the higher order
latent variables are typically associated with the random
noise in the data. The appropriate number of latent variables
can be chosen for example by means of cross-validation [12].
In this work, we use the leave-one-out cross validation pre-
sented below.

3.2 Leave-One-Out Cross Validation

Using a set of n calibration spectra, the PLS algorithm is per-
formed on (n-1) calibration spectra and, with this calibration,
the concentrations of the chemical properties of the sample
left out during calibration is predicted. This procedure is
repeated n times until each sample has been left out once.
The prediction for each sample is then compared with the
known value of the reference sample. The sum of the squared
variable prediction errors for all calibration samples is a mea-
sure of how well a particular PLS model fits the response
variable:

PRESS is calculated in the same way each time a new fac-
tor is added to the PLS model. The optimal order (number of
factors) of the PLS model is the one that yields the minimum
PRESS or root mean square error of Prediction RMSP:

Data transformation: data are scaled to have a mean of zero.

3.3 Clustering

The clustering was performed by means of Ward’s hierarchi-
cal clustering with Euclidean distance [7].

A PLS model effectively models both the predictors and
the responses. In order to check and eliminate the outliers, in
this work, we look at the Euclidean distance from each point
to the PLS model in both the standardized predictors and the
standardized responses (DModX and DModY). No point
should be dramatically farther from the model than the rest. 

3.4 Outlier Detection Tests

Whatever the algorithm used to correlate a signal (in this case
the NIR spectrum) and property (the physio-chemical proper-
ties of gas oils, in this study), the PLS model, which corre-
lates the signal and the property, can be applied in certain
conditions (i.e. the chemical composition, the property range,
the sample temperature). When one of these conditions is not

RMSP
PRESS

=
n

PRESS  predicted measured= ∑ −( )Y Y 2
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Figure 10

A schematic representation of the PLS method.
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fulfilled, the unknown sample to analyze has to be declared
as an “outlier”.

In this work, two tests were used to detect outliers. The
first was based on the analysis on the DModX and the second
on the so-called “leverage value”:
– The DModX of the unknown sample was evaluated and

compared with the maximal DModX obtained by the
calibration sample.

– The leverage value represents the fraction of variance
explained by the sample. The leverage limit was generally
set to the maximum one encountered with the calibration
base. Sometimes, it was found necessary to take into
account the density of points with the same level of
leverage. The leverage limit was decreased to a value
corresponding to a high-density population. 
In this work, the calibration base was organized in three

clusters; the unknown sample to analyze has to be classified
to one of the three clusters on the base of their best fit to the
respective model (DmodX, leverage).

4 PLS MODELS FOR THE PREDICTION 
OF THE AROMATICS FAMILIES

In this section, we will use the results of the performance of
the PLS models as a tool to predict the concentrations of the
aromatics families. As pointed out, the clustering and prepro-
cessing of the outliers of raw data is a key step to obtaining a
good data set for the calibration of the prediction models.

We will then present, in each of the three clusters, the
characteristics of the prediction models: it will have three
models for every property. The characteristics which will be
presented are: the number n of objects (samples) used to
elaborate the prediction models; the optimal number of PLS
factors selected by cross validation (LV); max of the leverage
(max. lev.); root mean square error of prediction (RMSP);
predictor and response variation (X-var and Y-var) explained
by the PLS factors selected for every model.

For each presented model, we will see that for clusters 2
and 3, the number of samples in each cluster is at the limit of 
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Models N LV Max.
lev.

RMSP (%)
X-var

(%)
Y-var

N LV Max.
lev.

RMSP (%)
X-var

(%)
Y-var

N LV Max.
lev.

RMSP (%)
X-var

(%)
Y-var

Cluster 1 Cluster 2 Cluster 3

Monoaro.
by UV

(mol/100 g)

68 6 0.99 0.0059 98.3 97.7 22 6 0.96 0.0056 98.9 99.1 20 6 0.91 0.0053 99.4 99.3

Monoaro.
by UV (wt%)

68 7 0.53 1.02 98.6 98.6 20 6 0.72 0.90 97.9 99.5 19 6 0.76 0.88 99.0 99.1

Monoaro.

by MS (wt%)
64 7 0.56 1.44 98.7 97.5 21 6 0.88 1.01 98.7 99.5 17 6 0.82 0.79 99.5 99.4

Di- + aro. by
UV (mol/100 g)

69 6 0.99 0.0029 98.2 94.5 19 6 0.95 0.0027 99.1 99.4 21 6 0.98 0.0049 98.6 99.3

Di- + aro.
by UV (wt%)

60 6 0.35 0.47 98.0 95.8 17 6 0.75 0.38 99.2 99.6 21 6 0.77 0.63 98.6 99.5

Di- + aro.
by MS (wt%)

67 7 0.47 0.95 98.6 95.1 21 6 0.84 1.42 98.7 95.6 18 6 0.71 1.58 99.2 98.7

Total aro. by
UV (mol/100g)

73 7 0.54 0.0031 98.5 99.6 21 6 0.89 0.0024 99.2 99.9 21 6 0.79 0.005 98.7 98.6

Total aro.

by UV (wt%)
70 6 0.53 0.98 98.4 98.9 20 6 0.72 1.03 99.1 98.9 21 6 0.76 0.59 98.7 99.4

Total aro.
by MS (wt%)

67 6 0.36 1.29 98.0 98.8 21 6 0.88 1.11 99.3 92.3 17 5 0.78 0.84 98.8 97.9

Naphthenes
by MS (wt%)

72 6 0.68 2.07 96.2 98.3 21 6 0.89 0.99 99.3 97.6 16 4 0.67 0.69 97.1 95.3

Paraffins
by MS (wt%)

72 6 0.65 1.62 97.4 98.7 19 5 0.89 0.72 99.1 99.5 17 4 0.72 0.73 97.4 93.5

TABLE 10

The characteristics of the PLS models: 
Mono-, di- + and total aromatics: mol/100 g  by UV, wt% by UV and wt% by MS.

Naphthenes and paraffins: wt% by MS
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Figure 11

Predicted monoaromatics versus measured monoaromatics by
UV in mol/100 g. 

The interval of confidence is drawn with reference to the
diagonal.

Figure 12

Predicted monoaromatics versus measured monoaromatics by
UV in wt%.

The interval of confidence is drawn with reference to the
diagonal.
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Figure 13

Predicted monoaromatics versus measured monoaromatics by
MS in wt%.

The interval of confidence is drawn with reference to the
diagonal.

Figure 14

Predicted diaromatics+ versus measured diaromatics+ by UV
in mol/100 g 

The interval of confidence is drawn with reference to the
diagonal.



Oil & Gas Science and Technology – Rev. IFP, Vol. 59 (2004), No. 3316

0 10 20 30 40 70 8050 60
0

10

20

30

40

70

80

50

60

Measured diaromatics+ by UV (wt%)

P
re

di
ct

ed
 m

on
oa

ro
m

at
ic

s 
by

 U
V

 (
w

t%
) Cluster 1

Cluster 2
Cluster 3

0 10 20 30 40 70 8050 60
0

10

20

30

40

70

80

50

60

Measured diaromatics+ by MS (wt%)

P
re

di
ct

ed
 d

ia
ro

m
at

ic
s+

 b
y 

M
S

 (
w

t%
) Cluster 1

Cluster 2
Cluster 3

Figure 15

Predicted diaromatics+ versus measured diaromatics+ by UV
in wt%.

The interval of confidence is drawn with reference to the
diagonal.

Figure 16

Predicted diaromatics+ versus measured diaromatics+ by MS
in wt%.

The interval of confidence is drawn with reference to the
diagonal.
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Figure 17

Predicted total aromatics versus measured total aromatics by
UV in mol/100 g.

The interval of confidence is drawn with reference to the
diagonal.

Figure 18

Predicted total aromatics versus measured total aromatics by
UV in wt%.

The interval of confidence is drawn with reference to the
diagonal.
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Figure 21

Predicted naphthenes versus measured naphthenes by MS in
wt%.

The interval of confidence is drawn with reference to the
diagonal.

acceptance considering the number of factors. For the latter,
95% of the predicted values are in the interval of confidence
of the reference method. That confirms the reliability of the
clustering in three clusters.

In the Table 10 we present for each of the three clusters
the characteristics of the prediction models of the properties,
mol/100 g by UV, wt% by UV and wt% by MS of monoaro-
matics, diaromatics+ and total aromatics. We also present the
characteristics of the prediction models of the wt% by MS of
naphthenes and paraffins. Outlier detection decreases the
number of samples in each determined cluster. 

The variation summary of the prediction models shows
that over 97% of the predictor variation and over 92% of the
response variation are accounted for by the PLS components
selected by cross validation. They show the explanatory
power of the models and a correlation between chemical
properties and near infrared spectra.

Graphs below (Figures 11-21) show in each of the three
clusters the quality of the prediction of the NIR models of
aromatics families. They allow us to describe the global rela-
tion between the response variables (aromatics families) and
the NIR spectra. 

5 ANALYSIS OF THE PERFORMANCES 
OF THE NIR MODELS

Figures 22 and 23 represent, for mono-, di+ and total aromat-
ics, the correlation between the UV and MS determinations
(in wt%) respectively between the reference data and the NIR
predictions. We can say that NIR modeling keeps the correla-
tion between the two reference methods for the determination
of aromatic families.
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Figure 19

Predicted total aromatics+ versus measured total aromatics
by MS in wt%.

The interval of confidence is drawn with reference to the
diagonal.

Figure 20

Predicted paraffins versus measured paraffins by MS in wt%.

The interval of confidence is drawn with reference to the
diagonal.
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Figure 22

Correlation between UV and MS results with the references
values.

a) measured wt% monoaromatics by UV versus measured
wt% monoaromatics by MS.

b) measured wt% diaromatics+ by UV versus measured wt%
diaromatics+ by MS.

c) measured wt% total aromatics by UV versus measured
wt% total aromatics by MS.

Figure 23 

Correlation between UV and MS results with NIR predicted
values.

a) NIR predicted wt% monoaromatics by UV versus NIR
predicted wt% monoaromatics by MS.

b) NIR predicted wt% diaromatics+ by UV versus NIR
predicted wt% diaromatics+ by MS.

c) NIR predicted wt% total aromatics by UV versus NIR
predicted wt% total aromatics by MS.
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Figure 25

Differences between NIR total aromatics predictions and (mono +
di+) NIR predictions.

Comparing each family of aromatics and each cluster, the
correlations between the mol/100 g by UV versus the wt% by
MS (Fig. 24) and between the wt% by UV versus the wt% by
MS (Fig. 23), we can say that the introduction of the molecu-
lar mass for each family of aromatics improves the correla-
tion. So the developed NIR models referring to the UV
method in wt% is interesting. Usually in a laboratory, it is
costly to determine M for each type of aromatic. Because of
this, M is usually considered equal for each family of aromat-
ics and equal to that of the sample and calculated by correla-
tion. So, the wt% of each family of aromatics determined 
by UV is directly proportional to the mol/100 g determined
by UV.

Figure 25 illustrates for each determination in wt% by UV
and MS and in mol/100 g by UV, the differences (total –
(mono+ di+)). We can see that the differences are centred
around 0 with 95% of the differences very close to 0. That
illustrates the coherence of the NIR models.

Table 11 gathers the performances of the NIR models
regarding the % of predicted samples within the 2σ range
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Figure 24

Effect of the determination of M for each class of aromatics
by mass spectrometry on the correlation between UV and MS
method.

a) for monoaromatics, b) on diaromatics+, c) on total
aromatics.
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(resp. within 4σ) of the reference method. Concerning the
models referring to the MS method, the mono- and total 
aromatics, naphthenes and paraffins models are acceptable
due to the fact that 95% of the samples are within 4s of the
reference method. For the diaro.+ model, 90% of the NIR 
prediction are within the 4σ range of the reference method
due to the low concentration of diromatics+. 

Concerning the UV models, they seem to be less perfor-
mant than the MS one but the UV method is three times more
reproducible than the MS method. So, the statistics can be
evaluated as being satisfactory for process control. The NIR
predictions are very reproducible [14] and samples will be
able to be compared as long as they belong to the same
series.

TABLE 11

Percentage of predicted samples of the calibration data base in the 2σ
(resp in 4σ) of the reference methods

Mono- Di+ Total Napht. Paraff.

2σ 4σ 2σ 4σ 2σ 4σ 2σ 4σ 2σ 4σ

UV
45 81 34 61 72 97

mol/100 g 

UV wt% 46 83 37 73 57 87

MS  wt% 68 94 50 90 76 96 75 96 71 98

CONCLUSION

This work has shown that on a large chemical diversity of
samples, the NIR spectrum of mid-distillates contain the
chemical information to model by the PLS algorithm differ-
ent chemical families such as paraffins, naphthenes and total
aromatics. Furthermore, it is possible to quantify the
monoaromatics and diaromatics+.

We have demonstrated that:
– the NIR models keep the correlation between UV and MS

data from the reference methods;
– the coherence of the three models total aromatics, mono-

aromatics and diaromatics+;
– the introduction of the mean molecular mass of each

aromatics family improves the correlation between UV
and SM data. NIR models will then present a certain
advantage in practice because it is very costly to determine
M by MS;

– the NIR prediction of the wt% paraffins, naphthenes,
mono- and total aromatics are for 95% within the 4σ
range of the reference method, which is satisfactory. Only
90% of the NIR predictions are within the 4σ range of the
reference method for the model “diaromatics+”. This is
due to the lower concentrations.

– taking into account that the UV method is three times
more reproducible than MS method and that NIR predic-
tions are more stable than UV method, the UV models
could be used for process control to compare samples
from the same series with high precision.
The PLS algorithm has demonstrated its limitation in

modeling a large variety of samples and clustering, which
groups samples with chemical similarities, was necessary.
Other algorithms such as topology, PLS-2 or neural networks
could be tested in the future on this large data base.
Calculation of the errors on the NIR predictions with algo-
rithms such as bootstrap could be interesting in our case and
will soon be implemented.

This work has completed the panel of properties, it is pos-
sible now to predict off-line, in-line and on-line at the IFP
Research Centre. Several properties of interest for the char-
acterization of mid-distillates i.e. cetane number, wt% hydro-
gen, wt% and mol/100 g mono-, di+ and total aromtics,
naphthenes and paraffins can now be determined simultane-
ously, without any delay, on very small amounts of sample if
necessary. 

Even if the data base already covers a wide range of
chemical compositions, we are always adding new samples
to the data base by constant evaluation of them.
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