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Résumé — Calage d’un site de stockage de gaz par des données de pression — Cet article concerne
la modélisation d’un site souterrain de stockage de gaz, situé près de Paris (France), en considérant simul-
tanément les données géologiques et les pressions mesurées aux puits.

L’historique de production disponible comprend deux périodes. Le gaz coussin est injecté pendant une
première période, qui s’étale sur sept ans. Il s’agit avant tout d’une période de remplissage. La deuxième
période, d’une durée de dix ans, est consacrée à l’exploitation du site. On injecte du gaz l’été pour réali-
menter les réserves et on l’extrait l’hiver en fonction de la demande des consommateurs. Le fonctionne-
ment du stockage est assuré par une douzaine de puits. Pendant ces deux périodes, les pressions sont
enregistrées dans onze puits d’observation, situés autour du site de stockage. Dans cette étude, seules les
données collectées pendant la première période sont utilisées pour contraindre le modèle de réservoir. Les
données relatives à la seconde période sont mises de côté. Elles permettront ultérieurement d’apprécier la
qualité du modèle construit à partir des données de la première période.

Un processus assisté de calage d’historique est mis en place pour intégrer conjointement les données 
géologiques et les données de pression dans la modélisation du réservoir. Ce processus fait intervenir la
méthode de déformation graduelle. Il permet d’ajuster, au cours du processus de calage, des paramètres
déterministes ainsi que des paramètres stochastiques. On montre que les paramètres les plus influents
dépendent des propriétés pétrophysiques : on identifie, par exemple, les moyennes des porosités et les
coefficients liant les porosités et les perméabilités. Pour l’étude considérée, les paramètres stochastiques
s’avèrent être du deuxième ordre : ils n’affectent que très peu le processus de calage. Le modèle optimal
de réservoir obtenu après calage corrobore les données géologiques et les pressions enregistrées aux
puits. 

La méthodologie développée se caractérise essentiellement par les possibilités qu’elle offre en ce qui
concerne la gestion d’un workflow. Elle permet d’intégrer toutes les étapes de la construction d’un
modèle de réservoir depuis la création du modèle géologique à l’échelle fine jusqu’à la simulation des
écoulements de fluide sur le modèle grossier. Le workflow, une fois stocké, peut être répété : l’influence
de nombreux paramètres, tant déterministes que stochastiques, peut être analysée. Enfin, la technique
proposée permet d’effectuer rapidement des tests préliminaires de calage et d’élaborer au final un modèle
fin cohérent avec l’ensemble des données disponibles. La cohérence améliorée vis-à-vis des données
conduit à une réduction des incertitudes sur les prédictions relatives au comportement dynamique 
du réservoir.

http://ogst.ifp.fr/
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INTRODUCTION

Porous aquifer formations (usually sands, sandstones or car-
bonates at depths of about 1500 to 6000 ft) are the most com-
mon means of storing natural gas, in any quantity, especially
very large volumes. These underground gas storages (UGS)
provide the swing capacity required to meet the variations in
demand. Gas is injected during the summer when supply
exceeds demand and withdrawn during winter to cover peak
demands. Similarly to oil and gas production fields, gas stor-
age management requires an accurate reservoir modelling in
order to monitor the gas bubble extension and maximize the
potential deliverability of the UGS. The maximum with-
drawal rate will depend on the number of wells, the technical
capabilities, the pressure, but also on the characteristics of the
porous rock. Such modelling calls for relevant information
provided for instance by pressures recorded in observation
wells all along the production cycles (dynamic data) and by
geological knowledge (static data).

An assisted history-matching (AHM) process based upon
the gradual deformation method is implemented to integrate
production history jointly with geological data into reservoir
models. The gradual deformation method is a geostatistical
parameterization technique introduced by Hu [1] that allows
for varying any given attribute distribution from a few para-
meters, termed deformation parameters, while preserving the
overall spatial variability. In other words, the porosity or per-
meability fields that populate the reservoir model can be per-
turbed in order to reduce the dynamic data misfit while keep-
ing the consistency with the geological knowledge.

Additionally, the other parameters (e.g., correlation lengths,
means, aquifer activity coefficients, etc., termed deterministic
because they do not depend on any random seed, can be
simultaneously modified during the matching process. These
properties make the gradual deformation based matching
procedures very attractive.

This innovative matching process was applied to charac-
terize a gas storage reservoir, located in an aquifer close to
Paris, France. A dozen wells were alternatively used as injec-
tors and producers while pressures were recorded in 11
observation wells over 17 years. Our objective was to inte-
grate these pressure data in the reservoir model by optimizing
a few deterministic parameters as well as the permeability
and porosity distributions.

1 DESCRIPTION OF THE SITE 
AND THE AVAILABLE DATA

1.1 Reservoir Features

The underground gas storage flow model consists of 
4 embedded grid levels (Fig. 1). The coarsest level, the first
one, consists of 25*23*2 gridblocks with DX = DY = 13.5 km
and a nonconstant thickness. The fourth level contains
33*21*9 gridblocks with thickness varying with location,
and DX = DY = 750 m. This grid was used to build the flow
model. However, a geological model was also built for which
the fourth level was refined over a 330*210*9 grid. In this
case, DX = DY = 75 m. 
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Abstract — Conditioning an Underground Gas Storage Site to Well Pressures — This paper is con-
cerned with the integrated modelling of an underground gas storage (UGS) site, considering geological
data as well as production data. 
The production history for this UGS, located in an aquifer close to Paris, France, consists of two periods.
The first one is a 7-year filling period for which the cushion gas was injected. The second one is a 10-
year cycling period for which gas was injected during the summer to replenish the reserves and with-
drawn during the winter according to the demand. Gas storage was performed through a dozen wells.
During these two periods, pressures were recorded in 11 observation wells located all around the site.
The first period data only are used to constrain the reservoir model. The second period data are used for
comparison purposes.
An assisted history-matching process based on the gradual deformation method was implemented to inte-
grate production history jointly with geological data into reservoir models. By use of this innovative tech-
nique, both stochastic and deterministic parameters were accounted for. We show that the most influen-
tial parameters are related to the petrophysical properties (porosity means, coefficients defining the
relations between porosity and permeability). The stochastic parameters are of second order only: they
did not impact the matching process. The optimal reservoir model deduced from the matching procedure
reproduced the static data and the pressures recorded for almost all the wells.
The assisted history-matching methodology developed is especially powerful for managing a workflow
integrating every steps from fine grid model creation to fluid flow simulation, handling rapid preliminary
history-matching tests, analyzing the influence of several deterministic and stochastic parameters, deter-
mining fine grid reservoir models consistent with all the available data, and lastly reducing uncertainty
in predictions.
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Figure 1

Description of the fourth-level underground gas storage site. 

We aim at focusing on the fourth level and more espe-
cially on the 7 intermediate layers (L2-L8), the 2 outermost
layers (L1 and L9) being aquifers. Gas storage is performed
in the L2-L8 layers. Roughly speaking, gas storage is per-
formed in the middle of level 4. The properties of levels 1, 2
and 3 are not modified during the history-matching process.

1.2 Petrophysical Data

The L2-L8 layers are considered as independent. The analy-
sis of static well data provides information about porosity
means and variances as well as porosity-permeability rela-
tionships for each of the 7 studied layers (Table 1 and Fig. 2).
These relations express as:

log10(k) = Aφ+ B (1)

A and B are constants, φ is the porosity and k the perme-
ability. Horizontal permeability is assumed to be isotropic,
while the ratio of the vertical permeability to the horizontal
one is 0.1. We observe that layer L4 acts as a barrier to flow.

The available static well data did not allow for determining
any valid variogram model describing the spatial variations in
porosity. Thus, we consider the same spherical and isotropic
variogram with a range of 250 m for all of the 7 layers.

1.3 Pressure Data

The production history for this UGS consists of two periods.
The first is a 7-year filling period for which the cushion gas is
injected. The second is a 10-year cycling period for which
gas is injected during the summer to replenish the reserves
and is withdrawn during the winter according to demand.

Gas storage is performed through a dozen wells (Fig. 3)
alternatively used as injectors and producers. During the fill-
ing and cycling periods, pressures (Fig. 4) were recorded in
11 observation wells located throughout the site. Wells W3
and W6 are perforated in layer N2, wells W7 and W10 in
layer L7 and the other observation wells in layer L8. Gas
storage involves the formation of a gas bubble whose growth
depends on the injection and production rates. The static
pressure, that is the gas bubble pressure, was also measured
during the whole production history. 

TABLE 1

Petrophysical properties. Porosities belong to [0;1] 
and permeabilities express in mD

Layer Porosity Porosity Porosity φ-permeability k relation

mean variance 

L2 0.2292 0.00278 log10(k) = 6.8729 φ+ 0.4043

L3 0.1763 0.00608 log10(k) = 9.5409 φ– 0.3517

L4 0.0333 0.00177 log10(k) = 16.967 φ– 0.8234

L5 0.1895 0.00441 log10(k) = 11.257 φ– 0.6291

L6 0.1637 0.00545 log10(k) = 9.2728 φ+ 0.1777

L7 0.1906 0.00334 log10(k) = 7.6666 φ+ 0.0679

L8 0.1834 0.00556 log10(k) = 9.4154 φ+ 0.5935  

2 THEORETICAL FRAMEWORK

The following algorithms are the backbone of the AHM
developed here. They allow for designing a workflow from
the fine grid reservoir model to the fluid flow simulator, and
for modifying the fine grid reservoir model to make it as con-
sistent as possible with all the available data.

2.1 FFT-MA Algorithm

The moving average method [2] can be applied to simulate
large Gaussian stationary random fields. Let us write the
covariance function, C, as a convolution product:

(2)

where . Starting from a set of normal deviates
(or Gaussian white noise) z, a Gaussian random field y with
mean yo and covariance function C is built as follows:

(3)

This method is attractive because of the separation
between the random numbers (z) and the structural parame-
ters (yo and g, that is mean, variance, correlation lengths,
etc.). However, the calculation of g and the convolution prod-
uct may be difficult [3]. 

y y g zo= + ∗

 
(g g( ) ( )x x= −
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Figure 2

Porosity-permeability relationships. Porosities belong to [0;1] and permeabilities express in mD.
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Figure 3

Location of the observation wells (groups of producers/
injectors are also indicated by circles). The white square
defines the area of interest for reservoir characterization.

Therefore, we apply the Fast Fourier Transform moving
average (FFT-MA) method described in [4]. The FFT-MA
generator still benefits from the moving average framework,
but also from discrete spectral computations. In this special
case, the convolution product g*z is computed in the 
frequency domain, which is easier. The FFT-MA algorithm

is fast and stable since computations are performed through
FFTs. It can be used to generate large Gaussian stationary
random fields. Additionally, it uncouples the random num-
bers from the structural parameters because of the underlying
moving average background. Distinct realizations can be
simulated from distinct sets of independent normal deviates,
but identical structural properties: they are realizations of the
same stochastic process. Similarly, the structural properties
can be modified without changing the random numbers. The
resulting realizations are different, but keep the same general
trend. 

The CPU time required to simulate a random field based
on the FFT-MA algorithm is negligible. For instance, gener-
ating a field with 106 grid blocks necessitates about 30 s with
a standard PC.

2.2 Gradual Deformation

The gradual deformation method (GDM) is a geostatistical
parameterization technique used to modify smoothly realiza-
tions of stochastic Gaussian or Gaussian-related models. Its
basic version applies to standard normal deviates distributed
as N(0, IM). Let us consider two sets of independent standard
normal deviates: a starting one, z1, and an additional one, also
termed complementary, z2. A new set of independent stan-
dard normal deviates z is obtained from:

(4)z t z t z t( ) = ( ) + ( )1 2cos sinπ π

StaticW1
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Figure 4

Static pressure and pressures measured in the 11 observation wells.
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Whatever the value of the deformation parameter t, z is a
set of independent standard normal deviates. As the deforma-
tion law is periodic, t ranges from –1 to 1. For t = 0, z is the
same as the starting z1; when t = 0.5, z is the same as z2.
Continuous variations in t yield continuous variations in z.
Varying t provides a chain or path in the realization space. 

When varying the normal deviates solely in some subdo-
mains [5], the deformation is said to be local. In addition, this
deformation technique can be easily extended to the combi-
nation of more than two sets of normal deviates [6], which
implies an increase in the number of gradual deformation
parameters.

2.3 Conditioning Stochastic Realizations 
to Dynamic Data (Pressures)

Geostatistical generators, such as the FFT-MA one,  provide
many realizations that appear equally probable when focus-
ing on the structural information. However, these realizations
do not reproduce (except by chance) the dynamic data mea-
sured at wells. Conditioning consists in adjusting the realiza-
tions so that they also comply with these measurements.
Such a problem is termed an optimization problem. 

An objective function is defined to measure the discrepancy
between the actual reservoir and the simulated realization. The
purpose of the optimization process is to adjust gradually the
realization to minimize the objective function. Basically, the
objective function expresses the cumulative weighted least-
square error between simulation and measurements. 

When tackled through the GDM, the optimization prob-
lem is sequentially solved. A starting set of independent nor-
mal deviates is generated. Then, a second one is drawn at
random. These two sets of normal deviates are considered as
the basic components for designing a path in the realization
space. An optimization process is run to determine the grad-
ual deformation parameter that minimizes the objective func-
tion when investigating this path. In other words, the gradual
deformation parameter is modified in order to explore the
path until an “optimal” realization is identified. As the path
represents a very tiny part of the realization space, it may be
of interest to iterate the search process. Thus, the starting set
of normal deviates is updated to the “optimal” realization.
Simultaneously, a new complementary set of normal deviates
is randomly generated. The starting set and the complemen-
tary one yield a new path that can be screened again to find a
realization further reducing the objective function.

When using the FFT-MA generator, the geostatistical
parameters are uncoupled from the stochastic ones, that is the
normal deviates. Thus, one may simultaneously optimize the
stochastic realization, the mean, the variance, the correlation
lengths [7] etc. At the same time, of course, one can also
optimize parameters such as activity coefficients for aquifers,
productivity indexes, coefficients defining petrophysical rela-
tionships between permeability and porosity etc.

3 HISTORY MATCH

3.1 Definition of the Objective Function

For the studied case, the available dynamic data are:
– the static pressure;
– the pressures measured in 11 observation wells for the

first 7 years solely. 
The second cycling period data set is not used at this stage: it
is used in the last section for comparison purposes. In addi-
tion, a few forward fluid flow simulations pointed out the dif-
ficulty to respect the conditions about maximum flow rates at
injectors/producers. Thus, an objective function J was
defined that accounts both for pressures and flow rates:

where PS is the static pressure, Pobs is the pressure in the obser-
vation wells, and QIP is the flow rate at the injectors/
producers. The superscripts “sim” and “meas” stand respectively
for “simulated” and “measured”, while the subscript “S”
refers to “static pressures”. t is time. Indexes i, j and k indi-
cate summation over the time steps, the number of observa-
tion wells and the number of injectors/producers.

3.2 The Modelling Workflow

The studied UGS geomodel consists of 7 independent inter-
vals associated to the 7 layers L2-L8. Each interval consists
of 390 × 210 grid blocks, grid block size being 75 m × 75 m.
There is one facies per layer.

As defined, the domain modelled extends outside level 4
which is the area where the permeability and porosity distrib-
utions have to be characterized from optimization. This alter-
native was preferred in order to account for the static data
provided by wells in level 3.

The entire modelling workflow is shown in Figure 5. For
each layer of interest, a porosity realization is created using a
“Gen” component connected to a “FFT” component. The first
one creates a set of normal deviates and the second one con-
verts this set into a correlated, nonstandard normal realization,
based on the FFT-MA algorithm. The horizontal and vertical
permeabilities are created in the “GeoModel” component
using porosity-permeability relations and Kv/Kh ratios. The
petrophysical properties of interest, restricted to the 7 layers of
level 4, are extracted from the “GeoModel” component using
the “Slicer” component. They are then upscaled in the
“PowerLaw” component before being transferred to the
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Athos flow simulator. More precisely, the workflow built for
the studied UGS case is as follows:
– We generate 7 realizations describing the porosity distribu-

tions on the basis of the FFT-MA algorithm. Each of them
is connected to one of the 7 layers of the “GeoModel”
component. We consider the same variogram for the 
7 porosity realizations. Negative porosity values are set to
0 while porosities superior to 0.5 are set to this upper limit.
In addition, the porosity realizations were constrained to
the static porosity data collected at the wells.

– Once the 7 porosity realizations are built and connected to
the “GeoModel”, the horizontal and vertical permeabilities
are also computed.

– As mentioned above, the “GeoModel” covers an area
larger than level 4. Thus, the petrophysical properties pop-
ulating layers L2-L8 have to be extracted from the
“GeoModel”. The initial detailed realizations were gener-
ated over 390 × 210 × 1 grids. We extract the values asso-
ciated to X cell numbers between 1 and 330. 

– The next step consists in upscaling the porosity and per-
meability realization. The fine grid blocks are aggregated
by 10 × 10 × 1. The equivalent properties of the resulting
coarse grid blocks are derived from arithmetic averages

for porosities and from geometric averages for horizontal
and vertical permeabilities. 

– When all the realizations are upscaled, they are used to
feed the level 4 porosity and permeability properties
required by the fluid flow simulator. Reservoir fluid flow
simulations are carried out with Athos, a software devel-
oped by the IFP and Beicip-Franlab. This reservoir simu-
lator includes the following options [8]: black-oil or com-
positional model, single or dual porosity medium, thermal
effects, polymers, tracers.
One of the advantages of such an integrated workflow is to

provide a framework to perform easily and rapidly many
matching tests to refine the reservoir study. The CPU time is
fully governed by the repeated flow simulations. In the studied
case, a single flow simulation requires a CPU-time of about 
10 min on a standard PC. Second, the strength of the workflow
is to incorporate all of the steps from the fine grid reservoir
modelling to the fluid flow simulator. Usually, history-match-
ing is performed at the coarse scale only, so that the connection
to the fine grid reservoir model is lost. One can determine an
optimal coarse grid reservoir model, but not an optimal fine
grid reservoir model. The proposed method circumvents this
difficulty. At any time during the optimization process, the fine
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grid and the corresponding coarse grid reservoir models are
perfectly known and consistent.

3.3 Early Optimization Attempts

Early matching experiments were performed optimizing only
the gradual deformation parameters that govern the porosity
distributions for the L2-L8 layers. The deformation was
assumed to be global: each porosity realization is entirely

modified from a single deformation parameter. Because the 7
layers are independent, this deformation process results in 7
deformation parameters. On the example depicted in
Figure 6, three realization chains were successively investi-
gated resulting in an objective function decrease from 81 to
7. The same experiment was repeated many times with dif-
ferent seeds to generate the initial sets of normal deviates.
Two observations can be made. First, the decrease observed
in Figure 6 was exceptional: for all our other attempts, the
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Objective function versus the number of fluid flow simulations
for one starting experiment.

Figure 7

Relations between porosities and permeabilities (the
exponential law is equivalent to the one reported in Table 1).
Porosities belong to [0;1] and permeabilities express in mD.
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Figure 8

Numerical gradients computed at the starting guess - 1st
optimization experiment.

Figure 9

Objective function versus the number of fluid flow simu-
lations - 1st optimization experiment.



M Le Ravalec-Dupin et al. / Conditioning an Underground Gas Storage Site to Well Pressures

objective function never converged towards 0. This unique
behaviour was due to the fact that, for the successful case, the
gradual combinations affected mainly the porosity means
rather than the spatial distributions of porosity values. In
other words, the first order optimization parameters are not
the stochastic ones, but rather deterministic parameters that
influence the porosity and permeability values. Second, the
porosity-permeability relations used for these early numerical
experiments were expressed as k = AφB and not as reported in
Table 1. The primary reason for this choice was that it resulted
in better correlation coefficients. However, a significant conse-
quence was that the permeability values were not sufficiently
high (Fig. 7) and because of this, pressure responses were very
different from the real data for least at 2 wells (W7 and W10).
To avoid these difficulties, the following matching studies
were performed on the basis of log10(k) = Aφ+ B relations and
with deterministic parameters impacting porosity and perme-
ability values in addition to the deformation parameters.

3.4 First Matching Study

We selected the following parameters to be optimized:

– the mean porosity values for the L2-L8 layers, that is 7
parameters;

– the horizontal correlation lengths (ranges) describing the
variogram, that is 2 parameters (the variogram model is
assumed to be the same for the 7 layers);

– the A and B coefficients in the 7 porosity-permeability
relationships, that is 14 parameters; 

– the gradual deformation parameters that govern the poros-
ity distributions for the L2-L8 layers. Again, the deforma-
tion is assumed to be global. Because the layers are
considered independently, we deal with 7 deformation
parameters.

Therefore, the total number of parameters was 30.
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TABLE 2

Deterministic parameter values at the beginning and at the end of the optimization processes

State Initial 
Optimal Optimal 

first study second study

FFT_L8_mean: mean porosity of layer L8 0.1834 0.20419435 0.18962201

FFT_L7_mean: mean porosity of layer L7 0.1906 0.19425212 0.18968546

FFT_L6_mean: mean porosity of layer L6 0.1637 0.1796963 0.16281527

FFT_L5_mean: mean porosity of layer L5 0.1895 0.17931432 0.1892202

FFT_L4_mean: mean porosity of layer L4 0.0333 0.03036233 0.03308355

FFT_L3_mean: mean porosity of layer L3 0.1763 0.17306632 0.17205182

FFT_L2_mean: mean porosity of layer L2 0.2292 0.24100643 0.2282547

Range 0: main correlation length 250 249.9992 –

Range 1: second correlation length 250 249.9992 –

L8_A: A coefficient for the k-φ law of layer L8 9.4154 10.761104 13.702663

L8_B: B coefficient for the k-φ law of layer L8 0.5935 0.6381013 0.55743533

L4_A: A coefficient for the k-φ law of layer L4 16.967 16.98687 –

L4_B: B coefficient for the k-φ law of layer L4 – 0.8234 – 0.8325772 –

L6_A: A coefficient for the k-φ law of layer L6 9.2728 9.323828 8.671017

L6_B: B coefficient for the k-φ law of layer L6 0.1777 0.17475024 0.16085398

L7_A: A coefficient for the k-φ law of layer L7 7.6666 7.640175 8.462549

L7_B: B coefficient for the k-φ law of layer L7 0.0679 0.056191377 0.07128522

L3_A: A coefficient for the k-φ law of layer L3 9.5409 9.512374 9.490515

L3_B: B coefficient for the k-φ law of layer L3 – 0.3517 – 0.35682243 – 0.40463528

L5_A: A coefficient for the k-φ law of layer L5 11.257 11.269428 11.080508

L5_B: B coefficient for the k-φ law of layer L5 – 0.6291 – 0.64304227 – 0.685935

L2_A: A coefficient for the k-φ law of layer L2 6.8729 6.9258037 7.1191397

L2_B: B coefficient for the k-φ law of layer L2 0.4043 0.4020811 0.4100515
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Figure 10

Objective function versus the number of fluid flow simu-
lations - 2nd optimization.

The selected minimization process was based upon the
Powell algorithm, which requires the gradients of the objec-
tive function relatively to the 30 parameters. As the fluid
flow simulator does not allow for computing these gradients,
they were approximated by numerical gradients. Following
the gradual deformation procedure, we successively investi-
gated chains of realizations, attempting to reduce further and
further the objective function. Investigating a single chain
involves a minimization process. Investigating 3 chains
requires the launch of 3 successive minimization processes.

Prior to each of these, 30 forward fluid flow simulations are
run in order to determine the gradients.

Considering the previously mentioned parameters, we run
3 optimization processes to investigate 3 successive chains of
realizations and identify the reservoir model that induces the
strongest decrease in the objective function. Figure 8 shows
the numerical gradients computed for the starting guess: they
provide information about the local sensitivity of the objec-
tive function relative to the 30 selected parameters. The 
gradients show that:
– the porosity means are very influential parameters;
– the two horizontal correlation lengths characterizing the

variogram model as well as coefficients A and B specify-
ing the porosity-permeability relation for layer L4 are neg-
ligible. Such observations were expected. First, the start-
ing correlation lengths (250 m) are smaller that the size of
the coarse grid blocks (750 m). Second, layer L4 repre-
sents a barrier to flow.
The behaviour of the objective function throughout the

minimization process is depicted in Figure 9. The 3 succes
sive decreasing steps show the gradual deformation
approach. The objective function decreases by about 40% in
108 forward fluid flow simulations. We observed, mainly at
the end of the history-matching process, that many simula-
tions resulted in an unexpectedly high objective function.
Two of these cases were due to numerical convergence 
problems that prevented the fluid flow simulator from termi-
nating. The other high values are due to the producing well
with the highest X coordinates. In some conditions, this well
does not succeed in flowing at the desired maximal flow rate.
The mismatch emerges for a single time, but is sufficient to
produce a significant increase in the objective function: we
simulate a 0 flow rate instead of the expected 140 m3/day.
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Figure 11

Measured (dots) and simulated (line) pressure at well W1 before and after performing history-match (2nd study).
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Note that this producing flow rate is much smaller than the
others involved during the production history.

The relative variations in the objective function and the
deterministic parameters computed after the exploration of 1
and 3 realization chains are reported in Table 2. Investigating
one chain induces a 30% decrease of the objective function
and 3 successive chains a 40% decrease. The optimization
process of the first chain ensures most of the decrease. The
deterministic parameters (mainly the most influential) change
during the first chain, and then remain constant for the two
successive ones. The only parameters that still contribute to

the matching during the two other chain investigations are
the A and B coefficients for layer L8 and the gradual defor-
mation parameters. This allows for assessing qualitatively the
impact of the gradual deformation.

3.5 Second Matching Study

Because one of the producing wells had difficulties to reach
the flow rate conditions (see 1st study), its productivity index
was modified by a factor of 5. This change allows us to avoid
the problem. Then, the matching process was repeated based
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Measured (dots) and simulated (line) pressure at well W2 before and after performing history-match (2nd study).
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Measured (dots) and simulated (line) pressure at well W4 before and after performing history-match (2nd study).
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upon the same parameters minus the 4 negligible ones (corre-
lation lengths and coefficients A and B for layer L4). Four
realization chains were investigated. The behaviour of the
objective function against the number of fluid flow simula-
tions is depicted in Figure 10. There are still 3 unexpected
very high values: they depend on numerical convergence
problems that stop the fluid flow simulator. Most of the
objective function decrease is ensured by the investigation of
the 1st chain. This 2nd optimization experiment results in a
matching improvement of 45% (the 1st one produces an

improvement of 40%). Compared to the first matching study,
the second yields a significant improvement even if the varia-
tion in the objective function is minor. Pressure calibration is
good for all of the wells, except well W7.  A few examples
are shown from Figure 11 to Figure 16. Briefly, the AHM
process was able to reproduce correctly the phases and the
amplitudes of the observed pressure responses. The poor fit
obtained at well W7 could be due to a geological feature that
was not accounted for in our geological description. The opti-
mal deterministic parameters are detailed in Table 2. 
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Measured (dots) and simulated (line) pressure at well W7 before and after performing history-match (2nd study).

Initial
Time (day)

4000
800

1200
1600

2000
2400

2800

10 bar

B
H

P
F

 (
ba

r)

2nd optimization study
Time (day)

B
H

P
F

 (
ba

r)

10 bar

4000
800

1200
1600

2000
2400

2800

Figure 15

Measured (dots) and simulated (line) pressure at well W8 before and after performing history-match (2nd study).
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Figure 17

Comparison of the measured and simulated pressures for well
W9. (Dots: data; solid line: simulation for the optimal
reservoir model; dashed line: simulation for the initial
reservoir model).

4 IMPACT ON UNCERTAINTY

The matching process was performed based upon the pres-
sures measured during the first 7 years solely, that is the
filling period. We did not include the data collected during
the following cycling period in the objective function. Now,

in order to appreciate the benefit of history-matching, we
simulate these cycling data with the starting reservoir model
and the optimal one identified during the 2nd matching
study. The starting model is constrained to the static data
and the optimal to the static data plus the pressures obtained
during the first 7 years. This is thus an attempt at predic-
tion. How these two models are capable of estimating the
pressures over the last 10 years? For almost all of the wells,
the difference between the measured and simulated cycling
pressures of the second period was much smaller for the
optimal reservoir model than for the initial one. An example
is given in Figure 17, which points out the interest of 
history-matching.

CONCLUSIONS

An assisted history matching (AHM) involving simultane-
ously stochastic and deterministic parameters was success-
fully applied to integrate structural data and pressures in the
modelling of an underground gas storage. A small number of
deterministic parameters, related to porosity and permeabil-
ity, were shown to have a significant impact on the matching
process: they acted as first order parameters. On the other
hand, the use of gradual deformation parameters added a sto-
chastic dimension and allowed for refining further the match
when possible. However, in this case, they remain second
order parameters, because the correlation lengths were
smaller than the size of the coarse grid blocks. All of the
pressure responses were correctly reproduced in terms of
phases and amplitudes except at well W7. 
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Measured (dots) and simulated (line) pressure at well W9 before and after performing history-match (2nd study).



Oil & Gas Science and Technology – Rev. IFP, Vol. 59 (2004), No. 6

The AHM methodology developed appears to be espe-
cially powerful for:
– managing a workflow integrating every steps from fine

grid model creation to fluid flow simulation;
– handling rapid history matching tests;
– analyzing the influence of several deterministic and sto-

chastic parameters;
– determining fine grid reservoir models consistent with all

the available static and dynamic data; and lastly for
– reducing uncertainty in predictions.
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