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Résumé— Intégration numérique pour la migration de Kirchhoff — Dans les acquisitions sis-
miques 3D, les points milieux d’une collection & déport constant sont distribués de fagon irréguliere.
Dans une telle situation, un simple «diffraction stack» ne peut réaliser correctement la migration de
Kirchhoff car cette technique ne fournit pas une approximation consistante de l'intégrale de Kirchhoff.
La solution a ce probléme réside dans I'utilisation de véritables formules d’'intégration numérique telles
gue celles basées sur des interpolations polynomiales de type Lagrange ou Hermite. Une intégration
numérique basée sur l'interpolation de Lagrange peut parfaitemeent prendre en compte le caractere
irrégulier de la distribution spatiale des points milieux, pour peu que ceux-ci soient suffisamment
rapprochés. Linterpolation d’Hermite, bien qu’en théorie plus précise que la précédente, ne fournit
gu’une approximation trés relative de la qualité des images migrées : cette amélioration n’est en fait
perceptible qu'au voisinage de I'événement migré. Les deux approches sont trés faciles a implémenter ;
elles reviennent a faire une compensation adéquate (qui dépend du schéma d’interpolation retenu) de
I'amplitude des différentes traces sismiques. La mise en place de ce simple prétraitement permet de
transformer tout code de «diffraction stack » en une approximation de I'intégrale de Kirchhoff, ceci au
prix d’'une augmentation négligeable du temps de calcul. Enfin ce prétraitement permet a ces techniques
d’intégration numérique d’'étre mises en ceuvre conjointement a |'utilisation de filtres congus pour éviter
«I'aliasing de I'opérateur de migration ».

Abstract— Numerical integration for Kirchhoff migration — In 3D seismic surveys, common offset
data often involve an irregular distribution of midpoints. In such a situation, common offset Kirchhoff
migration cannot be correctly performed by means of a mere discrete diffraction stack algorithm. Such
an algorithm indeed corresponds to an inconsistent numerical integration formula. To overcome this
difficulty, genuine numerical integration formulas (yielding a consistent approximation of the continuous
diffraction stack) have to be useglg. numerical integration formulas based on polynomials leading to
the so-called Lagrange or Hermite interpolations. A numerical integration formula based on Lagrange
interpolation can cope with irregularly sampled midpoints provided that the density of midpoints
involved in the common offset gather is sufficient. Besides, Hermite interpolation, more accurate in
theory than the former, also provides relative improvement in the images at the vicinity of the migrated
event,. Both techniques can be implemented by means of a simple preprocessing (adequate scaling) of
the data. Thus they are quite easy to implement in any existing diffraction stack code. In addition, they
can be used in combination with filters to prevent aliasing of the migration operator. The additional
computation cost is negligible compared with the cost of running the diffraction stack itself.
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INTRODUCTION account of dynamic effects,e. without attempting to pre-
serve seismic reflection amplitudes. The conclusions we
Seismic imaging of complex geologic structures is still adraw and the technigues proposed are nonetheless valid and
challenging problem today. These structures are charactesuitable for a true-amplitude migration.
ized by complicated interface geometries giving rise to strong  Using a test example, we first illustrate the difficulties
lateral velocity variations (like those caused by salt bodiegncountered when imaging irregularly sampled data with
in the North Sea and in the Gulf of Mexico). In such casesa mere diffraction stack. We then analyze the underlying
classical post-stack imaging techniques do not work. 3Dlifficulty and show at this stage that a consistent numerical
prestack depth migration is recognized as the ideal techniquetegration formula is required to obtain a correct image.
provided an accurate velocity model has been determinetor the sake of simplicity, we first examine the problem of
Migration velocity analysis (MVA) has accordingly aroused numerical integration in 1D (for application to 2D migration)
considerable interest for this purpose. This technique reliesnd then go on to 2D (for application to 3D migration), which
on a sound interpretation of 3D common offset migrateds precisely the situation that interests us.
data.

In 3D seismic surveys, offset is a vector (characterized by
anorm and an azimuth) and irregularities in acquisition (dud 3D KIRCHHOFF MIGRATION: A TEST EXAMPLE
for instance to streamer feathering in marine acquisition) arg larities i isiti ffset variati )
frequent. These irregularities give rise to offset variationg - arties Ih acquisition cause ofiset variations (in norm

(in norm and/or in azimuth) and to irregularly sampled dat and/or azimuth) and an i”egu'.af distribution of midpoints_.
(i.e. nonuniform distribution of midpointy. The influence t has been shown [1] that mixing offsets has no drastic

. . : : .~ influence on the quality of migrated images if the offsets vary
of offset variations on migrated images has been mvestlgateq : S . .
owly with the midpoint coordinate. However, in the case

by [1]. This paper examines the influence of the second kind . e S
| SR . . S of a non uniform distribution of midpoints, severe artefacts
of irregularities,i.e. the influence of a nonuniform distribu-

. N . . . appear, as in Figures 2 and 3, which show common offset
tion of midpoints, on the quality of the migrated image and " ! : .

; Iy migrated synthetic dafa For this experiment, the 3D model
solutions are proposed to overcome the difficulties met when o )
. . shown in Figure 1 was used: two layers are separated by
imaging such data.

For the study we use a simple kinematic Kirchhoff migra—an anticline reflector exhibiting a relatively high curvature

tion algomhm (a mere diffraction StaCk) without takmg (2) The offset variations involved in these data being small (the data come

- from a marine acquisition) we call a “common offset migration”, a
(1) In this paper, midpoint means the true midpoint, not to be confused migration technigue that actually does account for the actual locations
with the center of the associated bin. of sources and receivers (and hence the offset variations).

00 17 « 0O 17 » 0O 17 »
(km) (km) (km)
20 20 20
z (km) z (km) z (km)
0—1 13 0—1 13 0-1 13 y
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Figure 1

Synthetic 3D model. Map of interface (left) and different sections in the model:
— top row: constanY sections, left to righ = 2 km,Y = 4km,Y = 6 km;

— bottom row: constanX sections, left to righX = 1 km,X = 7 km,X = 17 km.
The velocity above the reflector is constant{\8.0 km/s)
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Figure 2

Small offset (0.2 km) migrated synthetic data associated with an actual marine acquisition geometry:

— constantY sections (top);

— constaniX sections (bottom).

In the depth migrated data volume obtained with the exact migration velacity3.0 km/s). The amplitude of the imaging artefacts is ten
times lower than that of the migrated event corresponding to the reflector of the model.

and dips up to 45. Above the interface the velocity is reflector because, in order to save computing time, the image
constantv = 3.0 km/s. The acquisition survey (source- was not calculated above this limit; this will be the case
receiver positions) used to compute the synthetic data comélsroughout this paper). Note that the same difficulty appears
from an actual marine acquisition in the North Sea. Thdor small and large offsets. These artefacts are strong enough
synthetic data are generated by convolving travel-times frornto harm a migration velocity analysis process.

ray tracing [2] with a Ricker wavelet centered on 25 Hz. This paper proposes a way to remove these artefacts. To
Our imaging technique is a mere diffraction stack. In theunderstand the difficulties met in imaging, we first present
sequel we consider two subsets of data: one associated withreview of some theoretical aspects involved in Kirchhoff
small offsets (around 0.2 km) and the other with large offsetsnigration.

(around 3 km).

Figures 2 and 3 show, for the two considered offsets
some in-line and cross-line sections extracted from the dep
mlgrat.ed data volumes obtained W!th the exact velocity, 1 Kirchhoff Migration:
model: as expected, they show the migrated event that peaks$ . . .

2 the Continuous Diffraction Stack
on the reflector in the model, but they also show severe
migration artefacts that strongly degrade the images (thedeor the sake of simplicity, we consider here an offsetthat does
artefacts are not visible at depths less than 2 km above thet vary with the midpoint coordinate. The common offset

THE UNDERLYING DIFFICULTY: AN ANALYSIS
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Figure 3

Large offset (3 km) migrated synthetic data associated with an actual marine acquisition geometry:

— constanly sections (top);

— constani sections (bottom).

In the depth migrated data volume obtained with the exact migration velacity 3.0 km/s). The amplitude of the imaging artefacts is ten
times lower than that of the migrated event corresponding to the reflector of the model.

migrated i |magenh at a subsurface poiiM for an offseth = Considering seismic data with a single event localized
I — S (whereSandr characterize the locations of the souge in the vicinity of the arrival time functiore(d, h) the use
and the receiveR, respectively) and a velocity field, is  of the stationary phase method ([3], for instance) yields the
defined as the superposition of elementary migrated imagédscation of the support of the common offset migrated event.
my,, each of those elementary images being characterized It is the set of point$/ solution of the system:

by a specmc midpoint with location defined by vectpe

S+, t(M; d, ) — te(G h) = 0
2 . S 9 - _ ()
nqa(M)=ffme.(M;q, h) da day 1) oG —(t(M:; G h) —te@ h) =0 i=xy
|
Ox Qy
The value of the elementary image, at pointM is Note that this result relies on different assumptions: high

obtained as: frequency asymptotics, smooth kinematics in the data and a
VM-SR AE R AR smooth migration velocity field.

m(M; G,y = d(q,h, t(M; 6 ) @ The first Equation of system (3), namely the phase con-
where dg, h t) is the seismic trace associated with midpointdition, gives the geometry of an elementary migrated event:
gand offset. ty(M; q, h) is the travel-time from sourc®to it is localized in the vicinity of the isochron surface, which
subsurface poin¥l to receiverR, for the migration velocity is the set of possible reflection poirl in the subsurface.
field considered. The second Equation of system (3), namely the stationarity
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condition, gives the geometry of the migrated event: it iss irregular,i.e. if the midpoint distribution is not uniform,
the envelope of the family of isochron surfaces, parametthe discrete sum (4) is unlikely to approximate the integral
erized byd. Thus, common offset migrated data showof the continuous function. From the migration standpoint,
reflections imaged as migrated events with the geometrthis means that using the discrete sum (4) yields a mere
described above regardless of the migration velocity fieldsuperposition of elementary migrated events that can hardly
This means that even if data are migrated with an erroneouse compared with the continuous diffraction stack: the con-
migration velocity field, we can expect the migrated datastructive interferences between elementary migrated events
to show organized events rather than a fuzzy image. Thedbat are expected to build the migrated event (the event that
organized events are called migrated events: they show@eaks on the envelope) only take place to a partial extent
deformed geometry of the associated reflectors, the image that the migrated event shows up among a multitude of
of the geologic interface being all the less deformed as thenigration smiles (the elementary migrated events). This is

migration velocity is right. observable in Figures 2 and 3. The important point at this
stage is to realize that the difficulty lies in the use of the
2.2 Numerical Diffraction Stack mere diffraction stack (4) in conjunction with a non uniform

) _ ) ) ) ~distribution of midpoints, and this difficulty persists even if
A widely used discrete diffraction stack involves a straight-the distance is very short between neighboring midpoints.
forward summation of the elementary migrated images (2)This is illustrated by the following experiment.

L oo Let us again consider the same acquisition survey as
mEM) = Z me(M: G, b) ) before, but with midpoint sampling refined by adding syn-
' thetic data to the original acquisition. The technique used
We now examine whether the migrated data obtained witfior this refinement is explained in detail in the Section 5
this discrete formula can approximate the data that would bérig. 22) but at this stage we only need to know that the
obtained by using the continuous formula (1). For the sakenidpoint distribution is still not uniform and that the mean
of simplicity, we consider a 2D migration, thus involving, distance between neighboring midpoints is two times shorter
for givenM andh, a 1D integration in variablg. Let us than before. Figure 5 shows the corresponding migrated data
consider the function to be integratea,(q), having the obtained for the large offset (3 km) and the exact velocity
shape described in Figure 4. If the midpoint sampling ismodel: it still shows a multitude of migration smiles and the
both regular and fine (small and constant sampling intervamage quality (in terms of interpretability) is not improved
AQ), discrete formula (4) is (up to the constant facar) a  at all as compared with the image shown in Figure 3, which
consistent approximation of the continuous diffraction stackconfirms our hypothesis.
it is the classical rectangle formula for numerical integration This paper proposes an imaging technique that can cope
of continuous functions. However, if the midpoint samplingwith non uniformly distributed midpoints. To do this, we

Figure 4

Sketch of the functionm, to be integrated. Left: the function is sampled with a constant spacing between discretizatiorgpamthis
situation, the sum of the samples approximates (up to the faapthe integral of the continuous function (rectangle formula). Right: the
function is sampled with a nonconstant spacing between discretization ggintthis situation, the sum of the samples can hardly be compared
with the integral of the continuous function.
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Figure 5

Large offset (3 km) migrated synthetic data associated with the refined actual marine acquisition geometry: ¥@wtaons (top) and
constaniX sections (bottom) in the depth migrated data volume obtained with the exact migration velcei§.Q km/s). The amplitude of
the imaging artefacts is ten times lower than that of the migrated event corresponding to the reflector of the model.

have to make use of a consistent (meaning that if the dis- elementary migrated events could cross a strongly tilted
tances between neighboring midpoints go to zero, the result envelope).
provided by the numerical integration formula converges- We expect that, when subsurface poMt is on the
to the integral of the continuous function) and, if possible, reflector, even though we do not want to preserve amp-
accurate numerical integration formula. The derivation and litudes (but to approximate the continuous diffraction
testing of these formulas are the goals of the subsequent stack), the numerical integration formula gives an indica-
sections. However, before opening this subject, we want tion of the reflectivity for the considered offset. Looking
to state what can and cannot be expected from a consist- at the values taken by the different elementary migrated
ent numerical integration formula. In the case of an exact images for such a poit (Fig. 6), we find that the func-
migration velocity?: tion to be integrated is smooth and that our sampled data
give detailed information on this function (note, however,
that if the midpoint sampling were too coarse (holes in the
acquisition), the samples would not correctly represent
the continuous function. This is a hopeless situation: no
numerical integration formula can create missing inform-
ation). All we can expect from a numerical integration
formula is that it gives a good approximation of the integ-
(3) These expectations also hold in the case of an erroneous migration al of the continuous function. From the stationary phase
velocity provided that we replace “reflector” by “migrated event”. approximation, we know that the only samples that con-

— We expect that, when subsurface pdimtis below the
reflector, the numerical integration formula yields a zero
value for the migrated image. This condition is, in fact,
almost always fulfilled as elementary migrated images
are in general zero below the reflector (however, some
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Figure 6

Values of functionmy, at regularly spaced midpoinswith a 50 m spacing both in theandy directions, for a subsurface point located on the
interface. Left: 3D view of the function. Right: section obtaineddpe= 2.6 km.
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Figure 7

Values of by functionm, at regularly spaced midpoinswith a 50 m spacing both in theandy directions, for a subsurface point located
2.5 km above the interface. Left: 3D view of the function. Right: section obtainedifer 4.0 km.

tribute to the reflectivity evaluation are those in the neigh2.3 The Underlying Difficulty: Conclusion
borhood of the point where the phase is stationary (the
point with highest positive amplitude) and that the contri-This analysis shows that if midpoints are irregularly sampled
bution of all the other samples must cancel each other ouin an acquisition, Kirchhoff migration cannot be correctly
— However, looking at the values of the different elementaryperformed by using a mere discrete diffraction stack. A
migrated images for a poiM located 25 km above the consistent numerical integration is needed to approximate
reflector (Fig. 7), we cannot expect an accurate resultthe continuous diffraction stack. Besides, at poidtsar
from the best numerical integration formula: the functionabove the reflector, the function to be integrated varies very
to be integrated is not sampled finely enough regarding iteapidly with midpoint coordinate. In this situation, midpoint
very rapid variations. In such a situation, the migrationsampling is usually not fine enough to correctly represent the
operator turns out to be aliased and, the only alternativunction to be integrated, thereby entailing the use of appro-
to another survey, is to apply filters, as describegiby  priate filters to prevent aliasing in the migration operator.
[4] or [5], which in fact make the function to be integrated The use of these filters in combination with a consistent and,
vary more slowly. if possible, accurate numerical integration formula is the key
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for obtaining good migrated images. Designing such filters
has been the object of different studies (see for instance
[4] or [5]). We ignore this problem in the sequel to focus
rather on the design of consistent and accurate numerical
integration formulas for use in combination with such filters.
We describe the principle of the derivation of such formulas
in a 1D situation ie. for applications to 2D migration) for
information, and then switch to the materially important 2D
situation (for application to 3D migration).

f int

Xi3 Xi2 Xi1 Xi Xi+1 X2
3 NUMERICAL INTEGRATION IN 1D ,
Figure 8
3.1 Principle In the simplest 1D Lagrange interpolation procedure we inter-

. . . . . . . polate between pointg by a linear function. The interpolation
Numerical integration consists in calculating an approxima-  function hasc? regularity.

tion of the integral, over some interva, [b], of a function

f (x) from its valuesf at different pointsx (called in the
sequelinterpolation nodesin the sequel) in4, b]. Let
these interpolation nodes be numbered from 1 to I, assuming
thatx; = aandx, = b. A straightforward approach to 1
numerical integration is based on interpolation procedures:

we calculate a functiofi,; () (int stands for interpolating)

that interpolates the valudgx;) (Lagrange interpolation)

and possibly the first order derivativEgx;) or even higher

order derivatives (Hermite interpolation) and then approxim-
b

b
ate | f(x)dxby | fin:(X)dx. This procedure assumes that

€;

func?ionfmt (X) apparoximates functiofh(x) which, obviously,

requires that the distance between successive pgirie

small enough regarding the roughness of function Xi1 X Xir1 X
This section introduces the basic elements involved in

numerical integration in a simple 1D situation, enabling us Figure 9

to be concise in the more complex 2D situation. Lagrange basis functiog(x): this function is associated with
interpolation node with abscissa

3.2 Numerical Integration by Means of Lagrange
Interpolation

3.2.1 Lagrange Interpolation . .
3.2.2 Numerical Integration Formula

We begin with the simplest interpolation procedure, namely o . . ) ) )
the Lagrange interpolation: this interpolation only uses thd € numerical integration formula is obtained by integrating
valuesf (x). We also deal with its simplest implementation functionfi (x) which, from (6), gives:
(known asP?! finite element), in which the interpolation b
function is piecewise linedFig. 8). !

The set of these interpolation functions is the vector space / fine 00 dx = Zf (6) Wi (7)
generated byasis functionss described in Figure 9, each a =1
of them associated with one interpolation node. These bas(ga- .
functions are the piecewise first order polynomials define b 1
by: - — Tx e —x

060 =8 Vijmd. o w= [ 00 =5 (xea %0 ®)

whered; = 1if i =j andd; = 0if not.

Thus the interpolation functidi: (X) can be expressed as:

a

From Equation (7) we observe that numerical integration
appears as a weighted summation of the vafugg), the
| weightsbeing the numbers; defined in (8). From Figure 8
fint () = Z f(x) e (6)  we also see that this numerical integration is an application
i—1 of the very classical trapezoidal formula.
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3.2.3 Error Estimate

To determine the accuracy of the numerical integration for-
mula, it is important to calculate an error estimate denoted

by E,: this estimate gives a bound of the errae(the
b

absolute value of the difference betwe%n f(x)dx and
a

b
/ fint(X) dx). More precisely, it allows us to highlight the
a

dependency of the error on thgpical distancé h between , .
interpolation nodes (this distance can, for instance, be the Xi3 Xii2 X1
minimum distance between successive interpolation nodes)

and on the smoothness of function. This smoothness is  Figure 10
quantified by a norm involving the derivatives of function Hermite interpolation in 1D: the interpolation functidp ()
f (X). The error estimate, whose derivation is recalled in matches the valudgx) andf’(x).

Appendix A, is of the form:

EL = Cr(b—ah? (9)

whereCt is a constant that depends on the nornfi@j in It is straightforward to check that the interpolation func-

C?([a, b]). InE. andC} the subscript and superscriptefer tion can be expressed as:
to the technique based on Lagrange interpolation.

X

Xix1 Xiv2

| |
_ _ _ fin =Y foe 0+ e  (10)
3.3 Numerical Integration by Means of Hermite i—1 i=1

Interpolation . . . . :
where thebasis functions®&(x) ande! (x) are piecewise third

3.3.1 Hermite Interpolation degree polynomials defined by:

To obtain a more accurate numerical integration procedure

(i.e. a procedure yielding an error estimate showing for ¢ (%) =% and Zﬁo(xj) =0 Vi,j=1,...,1 (11)
X

instance a&h® dependency) more sophisticated interpolation
procedures must be followed including techniques based on de!
Hermite interpolation. In Hermite interpolation, we inter- & () =0 and d—(x,-) =3 Vi,j=1,...,1 (12)
polate, at interpolation nodeg the values of the derivatives %

of functionf(x) as well as the values of the function itself =~ These basis functions are shown in Figure 11. It is
(Fig. 10). We shall restrict ourselves to the simplest casétraightforward to obtain the analytic expression of the basis

where only first order derivatives are taken into account. functions over some intervgl 1], j = 1,...,1 — 1
Equations (11) or (12) give the information for determin-
(4) Not to be confused with offset vectbr ing, in a unique way, the four coefficients defining a third
1
e.
e \
A
1
Xi1 Xi Xi+1‘X
Xi1 Xi Xi+1=x
Figure 11

Basis functionse,o(x) (left) andql(x) (right) associated with Hermite interpolation.
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degree polynomial. The uniqueness in this determination We begin with the classical description of the numerical
shows that, for any Hermite interpolation ddtéx;) and differentiation procedure (see for instance [6]) and the deriv-
f (%), = 1,...,1, there exists a unique function which ation of the associated error estimates. We wish to estimate
is a third degree polynomial over each interyalx 1],  the derivative of functiori(x) at a given interpolation node,

j = 1,...,1 — 1, that matches the Hermite interpolation which we place, by an appropriate translation of the origin,
data. It is important to note that the interpolation functionatx = 0. We want the derivative to have the form of a linear
finn Now hasC?! regularity as we have imposed a given valuecombination of the values(x) (the derivation operator is

for its derivative at the boundaries of interva[lg,xjﬂ], linear) plus an error estimate M(h"):

J=l,,|—l df n
0= ; axf () + O(h") (15)

3.3.2 Numerical Integration Formula
As already stated, the numerical integration formula isnodH:rfﬁz;thi;:bbsgéftp:gs;t)Zta Ioociv“ﬁ?é;\egp:gsfs;:gs
obtained by integrating, (x). We obtain: ~ b ~

yinteg Gre () to k = 0) numbering(Fig. 12) of nodes (as opposed to
b | | subscripti associated with the overall node numbering).

(%) dX = foOWe + 3 (x)wh 13 The summation ok only takes place at interpolation nodes
/ int 09 ; () W, ; (oW (13) located in the neighborhood of the onexat 0, the latter
é being included. The numbesg (as well as the number of

_ b 0 b neighbor interpolation nodes that must be included in the
with wf = / & (x) dxandw] = / & (%) dx summation) are determined so as to yield an error estimate
a a .

Now the numerical integration formula appears not onlyin O(h"). _ _ . _
as a linear combination of the values fofx,) but also of The derivation of the error estimate is obtained classic-
the values off’ (x). Note that coefficients® andw? are ~ ally by means of Taylor's expansions. We write for any
straightforward to calculate since functiogs ande! are  interpolation node, includingx = 0:
third degree polynomials. df 1 .2

f (%) =f(0 —(0) + =x¢—(0
(%) =T( )+XkdX( ) + Z!Xkdx2( )
1 ,d%f 1 ,d%
e (0) + —xt—
+ 3!X‘§dx3( ) + 4!Xﬁdx4(2k)

wheregy is between 0 andy. Calculating) axf (Xc) with

3.3.3 Error Estimate (16)

As shown in Appendix B, the error estimate is of the form
En = C{'(b— a)h? (14) ”

f (xx) given by Equation (16) we find that if numbesg

whereCl! is a constant that now depends on the norm of

f(x) in C*([a, b]). H used as subscript or superscript refers

to Hermite interpolation. Thus, for a smooth functibn f

(having not too large @ order derivative), the numerical

integration procedure based on Hermite interpolation is more

accurate than that based on Lagrange interpolaRbfirgite

elements): the former yields an error estimat®ih*) (see .

Eq. (14))whereas the latter yields an error estimat®{h?) :

(see Eq. (9)) y
[ ]
3.3.4 Numerical Differentiation k=4 ' .
In the problem at hand, the valué€gx) are not directly k=2 kio k; 1 k='3 X

available. Itis hence normal to try to estimate them from the
valuesf (x)) by a numerical differentiation procedure such )
as the finite difference technique. If we wish to preserve the
good accuracy associated with Hermite interpolation, the
numerical differentiation procedure must also be accurate
enough. This section describes a numerical differentiation

Figure 12

procedure that gives an error @h") with n chosen such
that the overall error involved in the resulting numerical
integration formula is of a higher order than that involved in
Lagrange interpolatio(Eq. (9))

Numerical differentiation in 1D. In this procedure we try to
estimate the value of the derivative at the nodg at 0 from

the values of the function at neighboring nodes. Note the use
of a local numbering (indek) of nodes, the one at = 0
corresponding t& = 0.
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> =0 (17)

satisfy the system: m&
@@*
- 4

k
D ax=1 (18) |
‘ 2 Ei',' I
D =0 (19) .
k
> 0o =0 (20) SEERESSERE
” _ ¥, ﬂ'ﬁﬁﬁﬂ ]
we then have: ? / E ) '51 iy
of 1 o At S ¥
fi) = —©0) + — 21 :
;ak 0 = >+4!;ukx;‘dx4(ek> @) g b
- - dif Figure 13
As shown in Appendix C, the terrE X — (&) is
ax* An example of tri lati Note that triangl h
k é ple o nr_:lngualon. ote _a riangles can have
O(h®) so that finally Equation (15) holds with approximation summits or edges in common but not pieces of edges.

ordern= 3.
This accuracy requires numbergto satisfy the system
of four linear equations (17)—(20): hence four interpolation

nodes are taken into account (including the ong &t 0).  classical technique of finite elements (see [7] for instance) to
If we want Equation (15) to hold only with approximation splve this interpolation problem. More specifically, we shall
ordern = 2 we simply need system (17)—(19) to be fulfilled, yse simplectic finite elements here: we start by splitting
thus having to account for only three interpolation nodesthe integration domain into non overlapping triangles whose
This yields the simplest implementation for a numericalsymmits are the interpolation nod@g. 13). This splitting
estimation of derivatives that gives an overall er(eee s called triangulation. More precisely, we assume that in
Appendix DYor the resulting numerical integration formula sych a triangulation, no summitlies inside the edge of another
in O(h%). triangle: triangles can have summits or edges in common
but not pieces of edges. We also assume that the integration
domain, denoted b2, is the union of the triangles included

in the triangulation.

4 NUMERICAL INTEGRATION IN 2D

The principle of numerical integration in 2D is the same as in o
1D: we construct an interpolation function and then calculaté-1-2 The Technology of Finite Elements

the integral, on the considered area, of the interpolatiofhe technology of finite elements is based on discrete func-
function, which is theoretically simple since the interpolation;jg g (.e. functions depending on a finite number of para-

function is a piecewise polynomial. meters). These discrete functions are polynomials on each
triangle of the triangulation considered, thus allowing easy
4.1 Interpolation in 2D and Finite Elements computation of basic mathematical quantities: the values of

the function or of some of its derivatives or its integral on
some domain, etc. The nature of the polynomial function
In 2D interpolation consists in constructing a functiondepends in particular on the problem to be solved (Lagrange
fint (X,y) that assumes specified values at the interpolatiorersusHermite interpolation in our case). The discrete func-
nodes and, in the case of Hermite interpolation, whose gradtions considered belong to a (finite dimensional) vector space
ent (or even higher order derivatives) also assumes specifiggtnerated by somgasis functionsany discrete function is
values at these interpolation nodes. The interpolation nodes linear combination of these basis functions. The above
are, of course, distributed on the area over which the integrahentioned computation of basic mathematical quantities is
is to be calculated. Returning to the physics of the problemthen straightforward once the basis functions are exhibited.
the interpolation nodes are the midpoints involved in thdn the finite elements we consider, the support of these basis
common offset gather: the locations of these midpoints ar&nctions is a set of triangles at the vicinity of a specific
defined by vectorsj, i = 1, ..., 1. Integration takes place interpolation node(Fig. 14). It is normal to define the

in the midpoint coordinatesee Eq. (1)) We shall use the basis functions piece by piecee. separately in each of

4.1.1 The Interpolation Problem
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space (or subspace) of polynomials (for instance, the space of
third order polynomials that match a given linear equation),

this space being called the space of interpolation functions
and denoted by P, whose values, or the values of some
derivatives, at some points (called interpolation nodes) in
triangle T, match some specified values (called interpolation

values). Assume that this interpolation problem in triangle

T gives rise to a uniquely defined interpolation operdtor

for whatever specified interpolation values, there exists a

unique interpolation function in P that matches these inter-

polation values. Then the associated interpolation problem
Figure 14 on triangle T (the problem in which the interpolation values
In the different finite elements considered in this paper, the are to be matched at the interpolation nodes defined as
basis functions are associated with a specific vertex of the the images by F of the interpolation nodes in triangle
triangulation whose location is defined by vectpifand, for has a unique solution in the space of interpolation func-
Hermite interpolation, with the quantity to be interpolated at . . " . . .
this vertex). The basis functions have their support localized tions defined by the composition of polynomials in P with
on the triangles that surround the vertex considered. F-1.

This result is obvious for simple interpolation problems
- such as the simplest implementation of Lagrange interpol-
95 01) ation but, contrary to what may appear at first glance, is
£ a not that obvious for more complex problems, such as those
associated with Hermite interpolation. The reader can refer
F-1 = to textbooks on the finite elements method such as [8], for a
- Gs  proof of this theorem.
yy e From a practical standpoint, this theorem also gives the
6. =(0,0) g5 = (1,0) construction of a piece of basis function in any triangle
once the basis function has been exhibited on the reference
triangle. Barycentric coordinates play an important role here

Piecewise construction of some basis functions associated with since they remain invariant in the affine transformation con-

nodedi. To construct the piece of basis function associated with id d. | I th fb tri dinat "
triangleT on the right, we use the affine invertible transforma- sidered. Ingeneral, the use orbarycentric coorainates greatly

—

Figure 15

tion F~ that maps it onto the reference triangle on the left. We simplifies the expression of basis functions in trianglef
introduce a locali(e. attached to the triangle considered) node the locations of the vertices of triangle are defined by
numbering: nodgj in the global numbering becomégin the vectorsd.. G.. G.. the barvcentric coordinat . hr Of
local numbering. Note that these nodgshave a specific role: . qlhqz’ q|3’ .. yd fined b - éﬁ'd 2};. 3d
the vertex shared by all the triangles in Figure 14. This affine a point W ose location Is defined by vectpare defined as
transformation mapsj;, d,, Gz into points with coordinates the solution of:
(0,0), (0,1) and (1,0), respectively. The basis function on the 3
right hand triangle is straightforwardly obtained once the basis 4= Z A6 (22)
function on the reference triangle is exhibited. This task is 15
simplified in practice by using barycentric coordinates. =1
with:
3
, o doy=1 (23)
these triangles, and then to assemble the contribution of the i1

different pieces.

It is classic to construct a piece of basis function associ- It is easy to check that the barycentric coordinates of the
ated with a specific triangle from a piece of basis functiorvertex atg; are(1, 0, 0) and thatk; remains constant while
defined on a reference triangle, and to obtain the piece dghoving in a direction parallel to vectdg — dp.
basis function on the triangle of interest using the affine The nature of the affine transformatiénalso plays an
transformation that maps it into the reference triangle. Thismportant role in the derivation of error estimates, which
construction relies on the following general result. is an important point for our goal of accurate numerical

Theorem: Consider two triangles (Fig. 15), one of themintegration (see [8] for a detailed analysis). All this is
being considered as a reference triangle. Consider the affineather formal, merely the guideline for solving our 2D Lag-
invertible transformation F that maps the reference trianglerange and Hermite interpolation problems. In addressing
T onto the other triangle T. Consider a general interpolationthese problems, we will stop being formal and become very
problem on trianglel : we seek a function within a specific concrete.
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4.2 Numerical Integration by Means of Lagrange 4.2.3 Error Estimate

Interpolation We wish to estimate the err@t involved in the numerical

integration formula (26), namely the error made in replacing
function f (x,y) by functionfiy; (X,y) in the integral. The
derivation of the error estimate (see [8] for instance) is fairly

. . . .__technical and we merely give the result:
In 2D Lagrange interpolation, we calculate an interpolation

function that assumes specified values at the interpolation ELe I f —fintllirey < Crb? (28)
nodes. The simplest choice (first order Lagrange interpola-

tion) consistsin finding an interpolation function thatis affine  Hereh is the characteristic dimension of the triangles in
on each triangle in the triangulatioRY(finite elements): this the triangulation, constai@F depends on the deformations
function is defined in a unique way from the values specifiedf the triangles in the triangulation (the best triangles are
at the interpolation nodes. This interpolation function obvi-equilateral triangles) and on the norm of functiom the
ously display<C° regularity. It is straightforward to realize Sobolev spac&#/?1+¢ (Q) (¢ is an arbitrary strictly positive

4.2.1 First Order Lagrange Interpolation in 2D
(P! Finite Elements)

that the interpolation function can be written as: number). Such a norm is large whenever the second order
derivatives of functiorf are large. Note that, for this error
fine(G) = Zf(qi)a G)) (24)  estimate, we find the same order as in the 1D situation.
i
) . . ) . : ) 4.3 Numerical Integration by Means of Hermite
where basis functioe (q) is the piecewise affine function Interpolation
such that:
_ 4.3.1 A Finite Element for 2D Hermite Interpolation
e (G) =3 (25) P

We now wish to find an interpolation functidg:(G) which

Its support is localized on the triangles around ngde takes specified values at the vertices of the triangulation and
(Fig. 14). To exhibit the piece of basis function associatedwhose gradient also takes specified values at these vertices.
with a triangle which has as summit we use a reference Functionfi,(§) thus has to fulfill the system of equations:
triangle: the affine transformatid#r * that maps the original
triangle onto the reference triangle magsinto the point fin (Gi) = T (i) (29)
with coordinateg0, 0) (Fig. 15). The basis function on the Vi fint (q’i) = V,f (qi) (30)
reference triangle is quite simple. In terms of barycentric vof (q) _wf (ﬁ) (31)
coordinates its expression s, (1 is the number of the y fint (G vt G
summit with coordinateg0, 0)). It is also the expression \herev, and V, are thex andy components of the gradi-

of the piece of basis function for the right hand triangle ing operatoﬁ respectively. Quantitie§ (Q) v, f (d)
Figure 15: barycentric coordinates are invariant in the affinevy]c (ﬁ) are gi’ven Jata for — 1 | i) i)
| R

transformation. Note that this interpolation function is a well-known finite

element that is described for instance in the book of [9]
(Chapter 10: bending of plates). We also suggest [8]
(Chapter 5, example 2.2) for a complete treatment of the

Thanks to Equation (24) integration of the interpolation func-Proolem.

tion is quite simple. The integral is a weighted summation S usual we shall now seek an interpolation function
of the valued (C]) fint(4) which is a superposition of basis functions:
)

4.2.2 Numerical Integration

| |
/fim (x.y) dxdy = Y wif (q) @6) (@ =Y _f(G)eX@ + Y Vxf (G) (@)
Q i i=1 i=1
|
with: +Y W@ @ @32
m=/a@mmy (27) =
4 where basis functiog’(q) is defined by:
In fact, since basis functions are simple first degree poly- e.-o (qj) = dj (33)
nomials on each triangley; has a rather simple expression: Ve (ﬁ,) -0 (34)

it is one third of the sum of the areas of the triangles sur- 0/
rounding node. Vy€' (G) =0 (35)
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[t 0 0.14

Figure 16

The three kinds of basis functions for Hermite interpolation in 2D for a reference triangle. In the first (left) the function has value one at the
origin, zero at the other two vertices and, at all vertices, the derivatives along edges are zero. In the second (middle) the function has value zero
at all vertices and, at all vertices, the derivatives along edges are zero except fofigdggdt the origin, where this derivative has value one.

In the third (right) the function has value zero at all vertices and, at all vertices, the derivatives along edges are zero excepfjfotigdge [

the origin, where this derivative has value one.

e(q) by: vertices, conditions on derivatives along edges instead of
5 — 0 36 derivatives along the or y directions (it is straightforward to
€(G) = (36) obtain basis functiong ande! once the new basis functions
Vi€ (G) = (37)  have been exhibited). Again making use of the reference
Ve (~) -0 (38) triangle and of the node numbering attached to this triangle,
J the basis functione’ as described in Figure 16 (middle) can
ande/(q) by: be expressed in terms of barycentric coordinates as:
e (G) =0 (39) 1
~ =M1+ — N 43
Vyel (G) = 3 (41)  whereas the basis functiomd as described in Figure 16
The above equations must be fulfilled for aéindj with ~ (right) can be expressed as:
values 1...,1. On each triangle, each basis function has to 1
fulfill 9 conditions: on each triangle, the basis functions are q3 = §x1x3 AI+7—2N\3) (44)

to be sought within the space of third order polynomials (in
fact, a subspace of spal#of third order polynomials since |t can be verified that the basis functions obtained by
the definition of these polynomials requires the specificatiomssembling the pieces described above Haleegularity

of 10 coefficients). (instead ofC! regularity in the 1D situation).
To exhibit the piece of basis functi@l associated with a

triangle which ha_lsii as summit we can equ_ival_ently impose , 2 5 Numerical Integration

that at all summits of the triangle, the derivatives along the

edges are zero and exhibit this function by using a referend®nce again, numerical integration turns out to be a weighted
triangle (Fig. 16, left). This function can be expressedsummation of the different quantities that have been inter-
in terms of barycentric coordinate&(is the barycentric polated:

coordinate associated with vertex numkarthe numbering

associated with the triangle) in closed form: _ ~
gle) / fioe O, Y) dxdy = 3 wlF (G) + Y WAV (@)
& =23 (3—2n1) + 2nhohs (42) ¢ i i
Instead of exhibiting basis functior ande/, we shall + ZW?’Vyf (G) (45)
i

exhibit basis functions for which we impose, at the different
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with: at those interpolation nodes located at the vicinity of the one
atq = 0; and thirdly, the vectorgy (as well as the number
W = /e,o(d) dxdy (46)  of neighbor interpolation nodes that have to be involved in
5 the summation) must be determined so as to yield an error
estimate inO(h?).
W = /e,x(ﬁ)dxdy (47) We begin with the Taylor expansion at the vicinity of
Q

-

g=0:

Wiy=/ ) dxd 48 ) = £ )+ 9 (0) 6+ ~G.. (1D ©)]
2 &/(d) dxdy “8 t @ = f(0)+Vf(0).Gc+ 50 (D’ (0] Go+0(h*) (51)

4.3.3 Error Estimate where. denotes the dot product 2 and[D?f (0)] denotes

o ] ] ) the 2x 2 matrix of second order derivatives of functibat
The derivation of the error estimaig involvedinthe numer- 5 _ 3

ical integration formula (45) is technical. In [8] (example V-~ |¢ e d¢'s in Equation (50) are chosen so as to satisfy:
2-2, page VI-23) we find the following result;

ag =0 52

B If — fillsgo < 'R (49) % 2

Again, his the characteristic dimension of the triangles in Z (G.O)ax =0 Vie R? (53)
the triangulation; consta@! depends on the deformations k

of the triangles in the triangulation (the best triangles are G, (TA1G.)) & = O 54

equilateral triangles) and on the norm of functiom the Xk: (QK ([ ]QK)) “ 4

Sobolev spac®V/®1+¢ (Q) (e is an arbitrary strictly positive

number). Such a norm is large whenever the third ordeY [A], a 2x 2 symmetric matrix, then we obtain a second order
derivatives of functiorf are large: thus the Hermite interpol- accurate estimate (keep in mind the scaling based argument
ation quadrature formula is more accurate than the one bas@iven in Appendix C) oV (G = 0) given by Equation (50).

on Lagrange interpolation only for smooth functidndNote The total number of conditions to be fulfilled by thgs

that we loose one order iras compared with the 1D situation is 12: 2 are given by Equation (52), 4 by Equation (53),
(Eq. (14)) this is because the space of finite elements is n@nd 6 by Equation (54). Hence thg's can be computed
longer P3 but just a subspace . However, this error by solving the linear system (52)—(54) involving the values
estimate will turn out to be quite compatible with the errorsof functionf atg = 0 and at 5 properly chosen (so that the
that arise from a numerical evaluation of derivatives (see nextnear system is not singular) neighbor interpolation nodes

section). with locationsgj, (typical situations are shown in Figure 17).
This technique can be applied for each interpolation node:
4.3.4 Numerical Differentiation if f denotes the vector whose components are the values

_ _f(G).i=1,...,1 (subscripti refers to the global num-
If we wish to use a quadrature formula based on Hermitge ing of interpolation nodes), we can construct, from this
interpolation with no direct measurements of the derivaty

: DUTE *vector, the vectoﬁhf (here again, subscriptrefers to the
ives, we must evaluate these derivatives by some numericg}, acteristic dimension of the triangles) whose components

procedure. Here we resume for the 2D situation what wagye estimates of the gradient bevaluated at the different
previously done for the 1D situation, restricting ourselves t‘?nterpolation nodesj, i = 1,...,1. Since the evaluation
a specific order of accuracy, namely= 2. The aimis again ot his gradient involves a linear procesee Eq. (50))the
to obtain an estimation of the gradient of functid) ata  onstruction of this vector is nothing but the application of
given interpolation node (which we place, by an appropriate, |inear operator (& x | matrix) denotedvi, to vectorf.
translation of the origin, & = 0) of the form: The technique described above explains how to construct
. o operatorvp,.
Vi@@=0 = Zo‘kf(qk) +O(h?) (50) It is straightforward to use this numerical differentiation
k technique together with the numerical integration formula
where first, subscripk refers to a locali(e. relative to  based on Hermite interpolation: instead of Equation (45) we
the node placed aj = O which corresponds t& = 0)  obtain:
numbering@ of nodes (the global numbering is defined by /fim (x,y) dxdy ~ wP.f WLV f (55)

subscript ); secondly, the summation drtakes place only A

(5) This local node numbering must not be confused with the one attache}tﬂ’herew0 is th_e vector that gathers the weighi3 de.ﬁned
to a specific triangle that we used previously. in (46) (the first dot product involves a summation over
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Figure 17

Typical situations for the choice of 5 neighboring interpolation nodes, with locafjgris the vicinity of the interpolation nodg,, for the
numerical differentiation procedure. Left: a simple choice of 5 neighfjpemong those associated with the 6 neighbor§gof Middle:
necessity to find one summds, in a neighboring triangle. Right: & is on the boundary of the integration domain, it appears necessary to
find two other summitsgj, anddjs, in two neighboring triangles.

subscript), andw is the vector (with the same dimensions scaled seismic traces yields the same result as the numerical
as Vif) that gathers the weights’ andw! defined in (47) integration formula (57): this simple preprocessing makes
and (48), respectively (the second dot product involves ghe mere numerical diffraction stack a consistent approxim-
summation over all components of the vectors consideredtion of the continuous diffraction stack.

namely over subscriptand over thecandy components). The same kind of procedure also applies to Hermite inter-
As shown in Appendix D, the error made when usingpolation. The Hermite interpolation functiei, can indeed
numerical integration formula (55) is @ (h®). be written, accordingly to equation (32), as:

A AR v .8 mO(q
4.4 Application to Kirchhoff Migration Me(M: G, h) = Z me(M: G, We'(@)
(Diffraction Stack) ' .
_ _ + ) Vamly(M; G, he'@  (58)
We shall now apply these interpolation procedures to our i
concrete problem,e.the numerical integration for Kirchhoff Vg2 DNyrm
migration. ) + Z Vyma(M; G, e/ (@)
For givenM andh, the Lagrange interpolation function
my,(M; g, h), that interpolates the different,(M; Gi,h)  where the basis functione, €, & are defined by Equa-
defined by Equation (2) for = 1,...,1, can be written, tions (33) to (41).
according to Equation (24), as: If the derivatives are evaluated by the numerical differenti-
. . ation procedure described above, the corresponding migrated
my(M; g, h) = Z my(M; G, hye(q) (56)  imagent. at a subsurface poitd is defined, according to
i Equation (55), by:

Equation (26) then provides the migrated imatjeat a MM) = wo.m¥,(M) +\7V.€nm‘é|(M) (59)
subsurface poin¥l as a weighted summation of the values
of m, at midpointsg; of the acquisition: wherew?, W andV;, are defined in (55) aneh’,(M) denotes

the vector whose components are the valogéM; G, h) of
Mi(M) = / My, (M §, h) dxdy = Zwim‘é(l\/l; g, h the elementary migrated images. )
o i Introducing V! ,the transposed operator ©f, the quad-
(57) rature formula can be rewritten as:
with w; defined by (27). .
Note that weightsn; do not depend on the poiril m(M) = (Wo+ VWV) Mg (M) (60)
where the image is to be computed. Note also that, by
linearity of the migration operator;my(M; g, h) is the This formulation is interesting since vecta® + %ﬁ\Tv
elementary migrated image associated with the seismic traggves the weights to be applied to each elementary migrated
w; d(g, h, t(M; G, ). imagemY,(M; G, h). Asin the Lagrange interpolation, these
Thus, for a given offset gather, we can compute once andieights are independent on the subsurface gdinand a
for all the weightsw; associated with each midpoigtand  preprocessing involving a scaling of each seismic trace in the
scale the corresponding seismic trace by multiplying ithy  common offset gather by the corresponding weight makes
The use of the simple numerical diffraction stack (4) withthe mere numerical diffraction stack a consistent and very
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Figure 18

Migration using a Lagrange numerical integration formula, of small offset (0.2 km) data associated with an actual marine acquisition geometry
(Fig. 2). Constanty sections (top) and constaKtsections (bottom) in the depth migrated data volume obtained with the correct migration
velocity (v = 3.0 km/s).

accurate (error ifD(h%)) approximation of the continuous (0.2 km) are shown in Figure 18. A substantial improve-
diffraction stack. ment is observed in the qualflyof the migrated images
In conclusion, our numerical integration formulas basechs compared with those obtained with the mere diffrac-
on Lagrange and Hermite interpolation can be very easilyion stack formula (4YFig. 2): a considerable number of
implemented in any Kirchhoff migration program involving migration artefacts has been removed. The same kind of
a superposition of elementary migrated images. The addresult is obtained for the large offset (3 km) (Figure 20,
tional cost is a scaling of the seismic traces, which is quitéo be compared with Figure 3). For the large offset,
negligible compared with the cost of running the migrationhowever the number of remaining artefacts is much lar-
itself. ger than for the smaller offset. The remaining artefacts
are caused by local sparsities in the midpoint distribution.
In such a situation, as explained in the Section 2, we do
5 NUMERICAL RESULTS not have enough samples (values taken by the elementary
migrated images at the image point considered) to correctly
represent the function to be integrated. This situation is
We shall now test the diffraction stack based on the Lagrange

and Hermite interpolation schemes on the previously studi , L ) i .
thetic data built usi | . isiti t 6) Note that image quality is essentially evaluated here by a visual cri-
Synthetc data bullt using a real marine acquisItion geometry. = o o it thus depends on the graphical representation mode selected.

Using th? Lag.range numerical ir}tegrati(_)n formula, the | ail the experiments, the scaling factor used for the displays is the
corresponding migrated data associated with a small offset same so as to allow comparison between results.

5.1 Application to the Test Example
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Figure 19

Migration using a Hermite numerical integration formula, of small offset (0.2 km) data associated with an actual marine acquisition geometry
(Fig. 2). ConstantY sections (top) and constaKtsections (bottom) in the depth migrated data volume obtained with the correct migration
velocity (v = 3.0 km/s).

frequently encountered when migrating data associated with The results obtained by means of Hermite interpolation
large offsets. are shown in Figure 23: despite irregularities in the midpoint
Using the Hermite interpolation scheme (which is, the-distribution, they appear as perfect (these results should be
oreretically, more accurate than the Lagrange scheme), tltwmpared with those in Figure 5 obtained by migrating the
corresponding migrated data associated with a small offsame data but with the mere diffraction stack formula (4)).
set (0.2 km) and with a large offset (3 km) are shown inBoth theory and software thus seem to be correct. These
Figures 19 and 21, respectively. The result is apparentlgood results may serve as a refererice Be considered as
degraded by a kind of random noise as compared with theorrect) and therefore be used to evaluate the error made
result obtained by Lagrange interpolation. when computing the results with the original acquisition.
In order to understand this surprising result we shall carnyrhe errors(Figs. 24, 25 and 26gvaluated for offset 3 km
out a similar experiment with a survey involving a finer (which gave rise to the strongest artefacts) are the differences
sampling in midpoints (actually the same data than thosbetween the reference resiffig. 23) and the results in
used in Figure 5). This finer sampling was obtained byFigures 3, 20 and 21, respectively.
adding midpoints to the original acquisition geometry. These Comparing the observed errors we note that:
additional midpoints are located at the barycenter of each
triangle in the triangulation built from the original acquisition —
(Fig. 22)and the added traces correspond to offset such that
IIh]l = 3 km with azimuth equal to zero. With this finer
sampling interval, our numerical integration formulas can be
expected to be more accurate. — in the vicinity of the reflector, results obtained by means

the use of a consistent numerical integration formula
drastically improves the quality of the migrated images as
compared with those obtained with the mere diffraction
stack;
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Figure 20

Migration using a Lagrange numerical integration formula, of large offset (3 km) data associated with an actual marine acquisition geometry
(Fig. 3). Constanty sections (top) and constaKtsections (bottom) in the depth migrated data volume obtained with the correct migration
velocity (v = 3.0 km/s).

of Hermite interpolation are more accurate than thoselense enough to make the samples correctly represent such
obtained by Lagrange interpolation; a rapidly varying function.

— at some distance above the reflector, the use of Hermite
interpolation reveals many more migration smiles, henc®.2 Application to a Real Data Set

the random noise observed in Figures 19 and 21. We shall now compare the behavior of the mere diffraction

These experimental results are well explained by thgtack and the diffraction stack based on the Lagrange inter-
theory: polation scheme on a real data set. The Lagrange interpola-

— the Hermite based integration formula can be expectefion scheme was chosen because this technique appeared in
to be more accurate than the formula based on LagrandB€ Previous section as the most robust. o
interpolation when the function to be integrated is smooth, 1he real data set came from a marine acquisition in the
thatis, as shown in Figure 6, at the vicinity of the reflector;NOrth Sea. This data set covers a narrow salt body (about

. . . . . 3 kmwide). The data acquisition system was a single-source

— however, ifthe function to be integrated is rough (typically 4, pje_streamer. In theory, the spacing between both the
the situation shown in Figure 7), that is, at some d!Stancgtreamers and the navigation lines was 75 m. The spacing
above the reflector, the Lagrange based integration for'etween both the shots and the receivers was 25 m. From the
mula turns out to be more robust. prestack data, we built a cube of near offset data (offset range
This relative robustness, however, is still not sufficient{80 m, 100 m]). Figure 27 shows the midpoint distribution of

to achieve a correct numerical integration when we movea part of the acquisition and the triangulation that was used

far above the reflector: the midpoint distribution is then notfor the Lagrange interpolation scheme (again the midpoints
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Migration using a Hermite numerical integration formula, of large offset (3 km) data associated with an actual marine acquisition geometry
(Fig. 3). ConstantY sections (top) and constaKtsections (bottom) in the depth migrated data volume obtained with the correct migration

velocity (v = 3.0 km/s).

Figure 22

Densification of midpoints in an acquisition. The midpoints
in the original acquisition are shown by circles: they are the
vertices of the triangles in the original triangulation. New
midpoints (squares) are added to the original acquisition as
the barycenters of the triangles from the original triangulation.
They serve to refine the original triangulation: the refined tri-
angulation is obtained by splitting each triangle in the original
triangulation into three pieces.

are the vertices of the triangles). We can clearly observe
the non uniform distribution of midpoints in the acquisition.
This figure also clearly shows the navigation direction and
the ordinate of obstacles met by the ship.

We applied a 3D prestack common offset time migration
software to the cube of near offset data. This software carries
out a mere diffraction stack but takes account of the true
locations of the source-receiver pairs. The migration velocity
model is a 1D model with constant gradient. Although this
model is quite simple, it provides a reasonable approximation
of the velocity distribution in the sediments surrounding the
salt body. A cross-line section in the cube of migrated
data is shown in Figure 28. Many migration smiles can
be observed. This is not surprising given the irregularity
in the midpoint distribution. Note that the migration smiles
could also have been caused by inaccuracies in our migration
velocity model. However the effect of these inaccuracies
should not be important in the shallower part of the migrated
image.
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Figure 23

Migration using a Hermite numerical integration formula, of large offset (3 km) data associated with the refined actual marine acquisition
geometry. ConstanX sections (top) and constaKtsections (bottom) in the depth migrated data volume obtained with the correct migration
velocity (v= 3.0 km/s).

X(=16.0/km

Figure 24

Evaluation of the error involved using the mere diffraction stack formula (4): this error was evaluated by computing the difference between the
results shown in Figure 3 (obtained by the mere diffraction stack) and those shown in Figure 23 (used as reference)YGenstarg (top)
and constanX sections (bottom).
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Figure 25

Evaluation of the error involved in the migration scheme based on Lagrange interpolation: this error was evaluated by computing the difference
between the results shown in Figure 20 (obtained by numerical integration) and those shown in Figure 23 (used as reference)Y Constant
sections (top) and constaXtsections (bottom).
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Figure 26

Evaluation of the error involved in the migration scheme based on Hermite interpolation: this error was evaluated by computing the difference
between the results shown in Figure 21 (obtained by numerical integration) and those shown in Figure 23 (used as reference)Y Constant
sections (top) and constaXtsections (bottom).
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Thus we focus our interest on this shallower part namely
in depths less than 1 second two-way travel-time. Figure 29
shows the result obtained by applying the same migration
software to the data after they have been scaled (prepro-
cessing associated with the Lagrange interpolation scheme)
so as to compensate for irregularities in the midpoint distri-

bution. This figure shows that the migration smiles, instead

!P:IH:ITJHH!H”MEmﬂm of disappearing, appear to be strengthened: in fact, large tri-
angles have been generated in those areas where the midpoint
distribution is sparse.g. at the vicinity of acquisition holes),
hence giving huge weights to the seismic traces associated
with the vertices of these triangléBSigs. 30 and 31)

To overcome this difficulty, we set an upper bound,

Figure 27 - : - )
bart of the trianaulation of anoth _ <ition from th namely 1800, to the weight values. In doing so, the migration
N gog anguiation ofanofher marine acquistion rom e regylt(Fig. 32, top)appears somewhat clearer but basically

Figure 28
Cross-line section in the cube of real data migrated using the mere diffraction stack.

0s 200 400 inline number

Figure 29

Cross-line section (the same as in Figure 28) in the cube of real data migrated using the scheme based on Lagrange interpolation. The migration
smiles appear strengthened compared with the result in Figure 28.
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Figure 30

Histogram of the weight distribution (output of the Lagrange
interpolation scheme) used to scale the traces in order to com-
pensate for irregularities in the midpoint distribution. Large
weight values are associated with midpoints surrounded by

large triangles.

guantitative comparison). The difference basically consists,
as expected, of migration smiles caused by the irregular
midpoint distribution. On average, the amplitude of the
difference turns outto be ten times smaller than the amplitude
of the individual results: we can thus understand why the
results obtained using the mere diffraction stack and those
based on a consistent numerical formula yield appeared so
similar!

In conclusion, the application of a consistent numerical
integration formula to carry out a Kirchhoff migration does
not drastically improve the quality of migrated images in
practice. Moreover, this approach cannot compensate for
large acquisition holes: yet, the weights have to be truncated
to avoid spurious migration smiles arising from those areas
where the midpoint distribution is sparse. However, once this
upper bound has been properly chosen, the method can be
applied at negligible additional cost to yield a result at least
more satisfactory from a quantitative standpoint. Hence the
main context for an application of this approach is quantit-
ative migration (see.g.[10]) for reservoir characterization.

CONCLUSION

Theoretically speaking, Kirchhoff migration cannot be per-

quite similar to the one obtained using the mere (unweightedprmed with a mere discrete diffraction stack since, for irreg-
diffraction stack(Fig. 28). Figure 32 bottom shows the ularly sampled data.e.for a non uniform midpoint distribu-
differences between the two results (after scaling to allowion in an acquisition, it yields an inconsistent approximation

500

1500

Figure 31

5km

Crossline location 10 km

15 km

Inline location

6 km

Color plot of weight values as a function of midpoint location (zoom).
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Figure 32

Top: same as the left part of Figure 29 but with weight values truncated above 1800.
Bottom: difference between the results in Figures 32 top and 28, after normalization of these results.

of the continuous version of the diffraction stack. In fact,good, provided the midpoint distribution is dense enough
using a mere discrete diffraction stack gives a result whiclilo account correctly for the variations of the function to
is a superposition of elementary migrated events (migrabe integrated. This also holds for an erroneous migration
tion smiles) and this superposition does not give rise to theelocity.
construction of the migrated event (the envelope of the ele- The technique we have investigated is designed to com-
mentary migrated events). To carry out a migration with norhensate for irregularities in the midpoint distribution. The
uniformly distributed midpoints, a consistent approximationgitficulty raised by the sparsity of midpoints is another
of the continuous diffraction stack must be used. This Calbrob|em_ More Speciﬁca”y, variations in the function to
be done by implementing a numerical integration based oBe integrated can be extremely rapid and it is therefore quite
interpolation procedures. Two interpolation schemes haveommon, especially when shallow dipping events are to be
been examined: first order Lagrange interpolation and thirgmaged, that the distance between midpoints is too large to
order Hermite interpolation. allow correct imaging: the image is then contaminated by
The implementation of these schemes is straightforwardnigration smiles. This difficulty is often referred to as the
we can use any available code computing a mere discretdiasing of the migration operator. A number of filters have
diffraction stack after a simple scaling of the input seismicbeen designed to remove these artefacts (for instance [4]
traces, the scaling factor being determined by the selectemt [5]) and implemented in industrial migration programs.
(Lagrange or Hermite) numerical integration technique. InThe counterpart is an unavoidable degradation of the spatial
turn, since this scaling is quite cheap, using the proposecksolution. Since the schemes we propose amount to a data
schemes does not really increase the CPU time required fireprocessing, they can, and must, be used in combination
run the migration. with these filters.

We have shown that, when the correct migration velocity From the practical standpoint, the numerical integration
is used, the results obtained with either scheme are verfprmula based on Lagrange interpolation is more robust than
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APPENDIXES
A ERROR ESTIMATE OF LAGRANGE INTERPOLATION ¢(x) defined by:
IN 1D
e(X) =f(X) — fin(®) X € [a b] (A1)

We use thé®! finite element technique to interpolate a func-
tion f(x) on[a, b]. We have discretized intervéd, b] by
introducing some nodes with abscissgdori = 1,...,1,
these nodes being such that= aandx, = b. The nodes
may be irregularly distributed ofa, b]. For an arbitrary
functionf(x) € C?([a, b]), we consider the functiofy(x)
obtained by & finite element interpolation technique. To W(X)

estimate the error involved in this interpolation, we present fik (X) = fine(X) + ﬂ(f(u) fint (W) (A2)
a classical proof (more precisely an adaptation of a very

general proof (Engels, 1980, for instance) to our simple interwhere:

polation procedure) based on a study of the error function W(X) = (X — %) (X — Xi+1) (A3)

Oninterval[x;, X, 1] the error function vanishes far= x;
andx = xy1. On interval[x, Xi;+1] we introduce an arbit-
rary additional node with abscisga= u (u given arbitrary
but different fromx andx; 1) and construct a higher order
Lagrange interpolated functidp, (x) defined by:
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We find that:

Int(x)_f(x) for X=X, Xx=X41 and x=u (A4)

We introduce the higher order error functighix) defined
by e2(x) = f(x) — f,(x). This error function can be rewrit-
ten as: WE)

—8()—ﬁ()

Because of (A4)s!(x) has at Ieast 3 zeros [R®, Xit1]-

el (x) (A5)

Hence, by Rolle’s theorede(x) has at least one zero

g in ]x, X11[. Hence there exists €]x;, Xi+1[ (which, of
course, depends an such that:

d2 2 W/(E)
32 ®=0= 3 S5 - o =V (A6)
and therefore:
_ow(u) (o d2fing
e(u) = wWE) <@(§) T e (E)) (A7)

2f,
Noting thatddx';1t () = 0 and thaw’(g) = 2 (see (A3)),
we finally obtainvu €]x;, X1 1[:

w(u) d4f

o @(E)

The total quadrature errd; is then:

g(u) = (A8)

b

/e(u) du

a

11 X+l

<—Z/

(U) (E(U))‘du (A9)

Using the assumption théte C?([a, b)), there exists C

such that:
d2f )
dx2

<C Vxelab] (A10)

. Xi+1 1 3

Noting that/ |(X = %) (X = Xi1)| dX = 6(Xa+1—xa) ,
Xi

we obtain: 1

C 3
B <o i;(ml — %)

Finally, introducing the minimum sampling interdal=

(A11)

.....

1—1(Xix1 — %) and assuming that the discretization
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B ERROR ESTIMATE OF HERMITE INTERPOLATION
IN 1D

We use a finite element technique to implement a Hermite
interpolation of a functiof(x) on[a, b]. We have discretized
interval[a, b] by introducing some nodes with abscisggs
fori = 1,...,1, these nodes being such that= a and

X, = b. The nodes may be irregularly distributed [@b].
Functionf being given inC*([a, b]), we denote by (x) the
corresponding interpolation function. It is given by:

D (F00elx) + /(%))

i=1

fint (X) = (B13)

where€l(x) ande' (x) are third degree polynomials on each
interval [, X, 1] defined by:

0

d .
& (%) = di; d—i(mzo Vij el (B14)

& () =0;

Our goal is to estimate the error involved in the interpol-
ation procedure and, from this to derive the error involved
in the associated quadrature formula. To do this, we use an
adaptation of a very classical technique ([12] for instance).

We introduce the error functiar(x) defined by:

d o
d—il(&) =% VijellLll  (B15)

eX) =f(X) —fin(X) X €[ab] (B16)

and we analyze this function on an interygl x; 1] (with i
arbitrarye {1, ...,1 — 1}).

On interval]x;, x,1[ we introduce an arbitrary additional
node with abscissa and construct another interpolation
functionf (x) defined by:

int
W2(X)
W2 (u)
with w(X) = (X — X)) (X — Xi11).
We find that:

|nt(X) = fin(X) + —— (f(u) - fint(u)) (B17)

fLoo=f(x) for x=x, x=x,1 andx=u (B18)

is such that the ratio between the largest and the smallest

sampling intervals is bounded by a bouBdn O(1) (B,
which is of course less thatb — a)/h, must be inO(1)

otherwise the nodes would not yield a genuine discretization

of [a, b]), we obtain:

C -1
ws R

C(b a)

B3h? (A12)

and that:
"l“ —Mx)y="f'(x) for x=% andx=x,1 (B19)
Besidesgt(x) = f(X) — IIrﬂ(x) satisfies:
£ () = e(x) — WZ ; O (B20)

Now, because of (B18) and (B19),(x) has at least one
single and 2 double distinct zeroisg. at least 5 zeros in
[xi, %i+1]. By recursive application of Rolle’s theorem, we
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det D OVERALL ERROR ESTIMATE OF HERMITE
h h I hich, of
determine thatp- has atleast one zegdwhich, of course, - = \rea05) ATION IN 1D INCLUDING NUMERICAL
depends om) in 1%, xi1[. Hence: DERIVATION
4,
el d W2 When a numerical derivation procedure is used to carry out
d_i(g) - F(sg-) 2( 5 e(U) (B21) a Hermite interpolation, the interpolation function obtained
X X W 3

is T, (X) whereas it would have bedp (x) if the derivatives

f'(x), (fori = 1,...,1) had been available. Regarding
b

numerical integration, we compu% fi () dx instead of
a

_d'w? .
and usmgW(E) = 4! we obtain:

WA(U)

(W ==

b
(f"(8) = ®)) Yuelx, %l (B22) /a fine (X) 0.

L . The overall erroEy is then given by:
and considering thd}, is identically zero, we end up with: H ¢ y

b

w2 (U - _
o) = )f””(E(U)) YU €%, Xl (B23) By = / (FO0 = Fing(0) dx
a
The total quadrature errd@y is then: b
b g %1 < / (f 00 = fine(0) dx
Ep §/|e(u)|du_ Z f wA(u) | £ (5(w)| du .
a Xi —
(B24) + / (fine () = it (x)) dx (D28)
Asf e C*(a b)), |f""(g(w)| is bounded by some con- 2
stant D.
Noting that: Then }
- Ey <Eq+Ep (D29)
WA(U) du = (41— X)° (B25)  WhereEy is the error evaluated in Appendix B is the error
J 30 arising from the numerical evaluation of the derivatives,
we obtain: D -t b
B = o X %) (B26) Ep = f (k00 — Fing(09) dix
1= a
Introducingh andB as defined in Appendix A, the same |
reasoning leads to the result: _ Z(f/(xl num(Xl /Ql(x) dx (D30)
i=1
v 5,4
Eq < 4'30(b a)B°h (B27)

wheref; (%) is the numerical evaluation f(x;) by finite

differences. We have seen that, when this evaluation makes
C SCALING ARGUMENT use of two interpolation nodes in the vicinity &f, the
error| f'(x) — f/,,%)| is O(h?). Besides, a straightforward

Theay's are the solution of system (17)—(20) for givess. calculation shows that:

If, by scaling of discretization, eack becomes\x,, each
ax becomesi /). Besidesh is the characteristic size of the 1
intervals involved in the discretization: this quantity can be / &' ()] dx < ZB?h? (D31)
viewed as the result of a scaling hyof an original discret- 6
ization. This shows that the's areO(h~1), so that, for a
with B andh as defined in Appendix A.

d*f
. 4 .
functionf(x) € C*((a, b]), the q“a”“tyzk X d_x“( k Hence finallyEp is O(h®), and, according to the estimation
is O(h3). of Ex given in Appendix B, so i&y.



