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Résumé— Intégration numérique pour la migration de Kirchhoff — Dans les acquisitions sis-
miques 3D, les points milieux d’une collection à déport constant sont distribués de façon irrégulière.
Dans une telle situation, un simple « diffraction stack » ne peut réaliser correctement la migration de
Kirchhoff car cette technique ne fournit pas une approximation consistante de l’intégrale de Kirchhoff.
La solution à ce problème réside dans l’utilisation de véritables formules d’intégration numérique telles
que celles basées sur des interpolations polynomiales de type Lagrange ou Hermite. Une intégration
numérique basée sur l’interpolation de Lagrange peut parfaitemeent prendre en compte le caractère
irrégulier de la distribution spatiale des points milieux, pour peu que ceux-ci soient suffisamment
rapprochés. L’interpolation d’Hermite, bien qu’en théorie plus précise que la précédente, ne fournit
qu’une approximation très relative de la qualité des images migrées : cette amélioration n’est en fait
perceptible qu’au voisinage de l’événement migré. Les deux approches sont très faciles à implémenter :
elles reviennent à faire une compensation adéquate (qui dépend du schéma d’interpolation retenu) de
l’amplitude des différentes traces sismiques. La mise en place de ce simple prétraitement permet de
transformer tout code de « diffraction stack » en une approximation de l’intégrale de Kirchhoff, ceci au
prix d’une augmentation négligeable du temps de calcul. Enfin ce prétraitement permet à ces techniques
d’intégration numérique d’être mises en œuvre conjointement à l’utilisation de filtres conçus pour éviter
« l’aliasing de l’opérateur de migration ».

Abstract— Numerical integration for Kirchhoff migration — In 3D seismic surveys, common offset
data often involve an irregular distribution of midpoints. In such a situation, common offset Kirchhoff
migration cannot be correctly performed by means of a mere discrete diffraction stack algorithm. Such
an algorithm indeed corresponds to an inconsistent numerical integration formula. To overcome this
difficulty, genuine numerical integration formulas (yielding a consistent approximation of the continuous
diffraction stack) have to be used,e.g.numerical integration formulas based on polynomials leading to
the so-called Lagrange or Hermite interpolations. A numerical integration formula based on Lagrange
interpolation can cope with irregularly sampled midpoints provided that the density of midpoints
involved in the common offset gather is sufficient. Besides, Hermite interpolation, more accurate in
theory than the former, also provides relative improvement in the images at the vicinity of the migrated
event,. Both techniques can be implemented by means of a simple preprocessing (adequate scaling) of
the data. Thus they are quite easy to implement in any existing diffraction stack code. In addition, they
can be used in combination with filters to prevent aliasing of the migration operator. The additional
computation cost is negligible compared with the cost of running the diffraction stack itself.

http://ogst.ifp.fr/
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INTRODUCTION

Seismic imaging of complex geologic structures is still a
challenging problem today. These structures are character-
ized by complicated interface geometries giving rise to strong
lateral velocity variations (like those caused by salt bodies
in the North Sea and in the Gulf of Mexico). In such cases,
classical post-stack imaging techniques do not work. 3D
prestack depth migration is recognized as the ideal technique
provided an accurate velocity model has been determined.
Migration velocity analysis (MVA) has accordingly aroused
considerable interest for this purpose. This technique relies
on a sound interpretation of 3D common offset migrated
data.

In 3D seismic surveys, offset is a vector (characterized by
a norm and an azimuth) and irregularities in acquisition (due
for instance to streamer feathering in marine acquisition) are
frequent. These irregularities give rise to offset variations
(in norm and/or in azimuth) and to irregularly sampled data
(i.e. nonuniform distribution of midpoints1). The influence
of offset variations on migrated images has been investigated
by [1]. This paper examines the influence of the second kind
of irregularities,i.e. the influence of a nonuniform distribu-
tion of midpoints, on the quality of the migrated image and
solutions are proposed to overcome the difficulties met when
imaging such data.

For the study we use a simple kinematic Kirchhoff migra-
tion algorithm (a mere diffraction stack) without taking

(1) In this paper, midpoint means the true midpoint, not to be confused
with the center of the associated bin.

account of dynamic effects,i.e. without attempting to pre-
serve seismic reflection amplitudes. The conclusions we
draw and the techniques proposed are nonetheless valid and
suitable for a true-amplitude migration.

Using a test example, we first illustrate the difficulties
encountered when imaging irregularly sampled data with
a mere diffraction stack. We then analyze the underlying
difficulty and show at this stage that a consistent numerical
integration formula is required to obtain a correct image.
For the sake of simplicity, we first examine the problem of
numerical integration in 1D (for application to 2D migration)
and then go on to 2D (for application to 3D migration), which
is precisely the situation that interests us.

1 3D KIRCHHOFF MIGRATION: A TEST EXAMPLE

Irregularities in acquisition cause offset variations (in norm
and/or azimuth) and an irregular distribution of midpoints.
It has been shown [1] that mixing offsets has no drastic
influence on the quality of migrated images if the offsets vary
slowly with the midpoint coordinate. However, in the case
of a non uniform distribution of midpoints, severe artefacts
appear, as in Figures 2 and 3, which show common offset
migrated synthetic data2. For this experiment, the 3D model
shown in Figure 1 was used: two layers are separated by
an anticline reflector exhibiting a relatively high curvature

(2) The offset variations involved in these data being small (the data come
from a marine acquisition) we call a “common offset migration”, a
migration technique that actually does account for the actual locations
of sources and receivers (and hence the offset variations).

Figure 1

Synthetic 3D model. Map of interface (left) and different sections in the model:
– top row: constantY sections, left to rightY = 2 km,Y = 4 km,Y = 6 km;
– bottom row: constantX sections, left to rightX = 1 km,X = 7 km,X = 17 km.
The velocity above the reflector is constant (v= 3.0 km/s)
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Figure 2

Small offset (0.2 km) migrated synthetic data associated with an actual marine acquisition geometry:
– constantY sections (top);
– constantX sections (bottom).
In the depth migrated data volume obtained with the exact migration velocity (v = 3.0 km/s). The amplitude of the imaging artefacts is ten
times lower than that of the migrated event corresponding to the reflector of the model.

and dips up to 45◦. Above the interface the velocity is
constantv = 3.0 km/s. The acquisition survey (source-
receiver positions) used to compute the synthetic data comes
from an actual marine acquisition in the North Sea. The
synthetic data are generated by convolving travel-times from
ray tracing [2] with a Ricker wavelet centered on 25 Hz.
Our imaging technique is a mere diffraction stack. In the
sequel we consider two subsets of data: one associated with
small offsets (around 0.2 km) and the other with large offsets
(around 3 km).

Figures 2 and 3 show, for the two considered offsets,
some in-line and cross-line sections extracted from the depth
migrated data volumes obtained with the exact velocity
model: as expected, they show the migrated event that peaks
on the reflector in the model, but they also show severe
migration artefacts that strongly degrade the images (these
artefacts are not visible at depths less than 2 km above the

reflector because, in order to save computing time, the image
was not calculated above this limit; this will be the case
throughout this paper). Note that the same difficulty appears
for small and large offsets. These artefacts are strong enough
to harm a migration velocity analysis process.

This paper proposes a way to remove these artefacts. To
understand the difficulties met in imaging, we first present
a review of some theoretical aspects involved in Kirchhoff
migration.

2 THE UNDERLYING DIFFICULTY: AN ANALYSIS

2.1 Kirchhoff Migration:
the Continuous Diffraction Stack

For the sake of simplicity, we consider here an offset that does
not vary with the midpoint coordinate. The common offset
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Figure 3

Large offset (3 km) migrated synthetic data associated with an actual marine acquisition geometry:
– constantY sections (top);
– constantX sections (bottom).
In the depth migrated data volume obtained with the exact migration velocity (v = 3.0 km/s). The amplitude of the imaging artefacts is ten
times lower than that of the migrated event corresponding to the reflector of the model.

migrated imagemv
�h at a subsurface pointM for an offset�h =

�r − �s(where�sand�r characterize the locations of the sourceS
and the receiverR, respectively) and a velocity fieldv, is
defined as the superposition of elementary migrated images
mv

el, each of those elementary images being characterized
by a specific midpoint with location defined by vector�q =
�s+ �r

2
:

mv
�h(M) =

∫
qx

∫
qy

mv
el(M ; �q, �h) dqx dqy (1)

The value of the elementary imagemv
el at point M is

obtained as:
mv

el(M ; �q, �h) = d
( �q, �h, tv(M ; �q, �h)

)
(2)

where d( �q, �h, t) is the seismic trace associated with midpoint
�q and offset�h. tv(M ; �q, �h) is the travel-time from sourceSto
subsurface pointM to receiverR, for the migration velocity
field consideredv.

Considering seismic data with a single event localized
in the vicinity of the arrival time functionte( �q, �h), the use
of the stationary phase method ([3], for instance) yields the
location of the support of the common offset migrated event.

It is the set of pointsM solution of the system:



tv(M ; �q, �h) − te( �q, �h) = 0

∂

∂qi

(
tv(M ; �q, �h) − te( �q, �h)

) = 0 i = x,y
(3)

Note that this result relies on different assumptions: high
frequency asymptotics, smooth kinematics in the data and a
smooth migration velocity field.

The first Equation of system (3), namely the phase con-
dition, gives the geometry of an elementary migrated event:
it is localized in the vicinity of the isochron surface, which
is the set of possible reflection pointsM in the subsurface.
The second Equation of system (3), namely the stationarity
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condition, gives the geometry of the migrated event: it is
the envelope of the family of isochron surfaces, paramet-
erized by �q. Thus, common offset migrated data show
reflections imaged as migrated events with the geometry
described above regardless of the migration velocity field.
This means that even if data are migrated with an erroneous
migration velocity field, we can expect the migrated data
to show organized events rather than a fuzzy image. These
organized events are called migrated events: they show a
deformed geometry of the associated reflectors, the image
of the geologic interface being all the less deformed as the
migration velocity is right.

2.2 Numerical Diffraction Stack

A widely used discrete diffraction stack involves a straight-
forward summation of the elementary migrated images (2):

mv
�h(M) =

∑
i

mv
el(M ; �qi, �h) (4)

We now examine whether the migrated data obtained with
this discrete formula can approximate the data that would be
obtained by using the continuous formula (1). For the sake
of simplicity, we consider a 2D migration, thus involving,
for given M andh, a 1D integration in variableq. Let us
consider the function to be integrated,mv

el(q), having the
shape described in Figure 4. If the midpoint sampling is
both regular and fine (small and constant sampling interval
∆q), discrete formula (4) is (up to the constant factor∆q) a
consistent approximation of the continuous diffraction stack:
it is the classical rectangle formula for numerical integration
of continuous functions. However, if the midpoint sampling

is irregular,i.e. if the midpoint distribution is not uniform,
the discrete sum (4) is unlikely to approximate the integral
of the continuous function. From the migration standpoint,
this means that using the discrete sum (4) yields a mere
superposition of elementary migrated events that can hardly
be compared with the continuous diffraction stack: the con-
structive interferences between elementary migrated events
that are expected to build the migrated event (the event that
peaks on the envelope) only take place to a partial extent
so that the migrated event shows up among a multitude of
migration smiles (the elementary migrated events). This is
observable in Figures 2 and 3. The important point at this
stage is to realize that the difficulty lies in the use of the
mere diffraction stack (4) in conjunction with a non uniform
distribution of midpoints, and this difficulty persists even if
the distance is very short between neighboring midpoints.
This is illustrated by the following experiment.

Let us again consider the same acquisition survey as
before, but with midpoint sampling refined by adding syn-
thetic data to the original acquisition. The technique used
for this refinement is explained in detail in the Section 5
(Fig. 22) but at this stage we only need to know that the
midpoint distribution is still not uniform and that the mean
distance between neighboring midpoints is two times shorter
than before. Figure 5 shows the corresponding migrated data
obtained for the large offset (3 km) and the exact velocity
model: it still shows a multitude of migration smiles and the
image quality (in terms of interpretability) is not improved
at all as compared with the image shown in Figure 3, which
confirms our hypothesis.

This paper proposes an imaging technique that can cope
with non uniformly distributed midpoints. To do this, we

qi qi
q q

mv
el mv

el

 q

Figure 4

Sketch of the functionmv
el to be integrated. Left: the function is sampled with a constant spacing between discretization pointsqi ; in this

situation, the sum of the samples approximates (up to the factor∆q) the integral of the continuous function (rectangle formula). Right: the
function is sampled with a nonconstant spacing between discretization pointsqi ; in this situation, the sum of the samples can hardly be compared
with the integral of the continuous function.
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Figure 5

Large offset (3 km) migrated synthetic data associated with the refined actual marine acquisition geometry: constantY sections (top) and
constantX sections (bottom) in the depth migrated data volume obtained with the exact migration velocity (v = 3.0 km/s). The amplitude of
the imaging artefacts is ten times lower than that of the migrated event corresponding to the reflector of the model.

have to make use of a consistent (meaning that if the dis-
tances between neighboring midpoints go to zero, the result
provided by the numerical integration formula converges
to the integral of the continuous function) and, if possible,
accurate numerical integration formula. The derivation and
testing of these formulas are the goals of the subsequent
sections. However, before opening this subject, we want
to state what can and cannot be expected from a consist-
ent numerical integration formula. In the case of an exact
migration velocity3:

– We expect that, when subsurface pointM is below the
reflector, the numerical integration formula yields a zero
value for the migrated image. This condition is, in fact,
almost always fulfilled as elementary migrated images
are in general zero below the reflector (however, some

(3) These expectations also hold in the case of an erroneous migration
velocity provided that we replace “reflector” by “migrated event”.

elementary migrated events could cross a strongly tilted
envelope).

– We expect that, when subsurface pointM is on the
reflector, even though we do not want to preserve amp-
litudes (but to approximate the continuous diffraction
stack), the numerical integration formula gives an indica-
tion of the reflectivity for the considered offset. Looking
at the values taken by the different elementary migrated
images for such a pointM (Fig. 6), we find that the func-
tion to be integrated is smooth and that our sampled data
give detailed information on this function (note, however,
that if the midpoint sampling were too coarse (holes in the
acquisition), the samples would not correctly represent
the continuous function. This is a hopeless situation: no
numerical integration formula can create missing inform-
ation). All we can expect from a numerical integration
formula is that it gives a good approximation of the integ-
ral of the continuous function. From the stationary phase
approximation, we know that the only samples that con-
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Values of functionmv
el at regularly spaced midpoints�q with a 50 m spacing both in thex andy directions, for a subsurface point located on the

interface. Left: 3D view of the function. Right: section obtained forqx = 2.6 km.
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Values of by functionmv
el at regularly spaced midpoints�q with a 50 m spacing both in thex andy directions, for a subsurface point located

2.5 km above the interface. Left: 3D view of the function. Right: section obtained forqx = 4.0 km.

tribute to the reflectivity evaluation are those in the neigh-
borhood of the point where the phase is stationary (the
point with highest positive amplitude) and that the contri-
bution of all the other samples must cancel each other out.

– However, looking at the values of the different elementary
migrated images for a pointM located 2.5 km above the
reflector (Fig. 7), we cannot expect an accurate result
from the best numerical integration formula: the function
to be integrated is not sampled finely enough regarding its
very rapid variations. In such a situation, the migration
operator turns out to be aliased and, the only alternative
to another survey, is to apply filters, as describede.g.by
[4] or [5], which in fact make the function to be integrated
vary more slowly.

2.3 The Underlying Difficulty: Conclusion

This analysis shows that if midpoints are irregularly sampled
in an acquisition, Kirchhoff migration cannot be correctly
performed by using a mere discrete diffraction stack. A
consistent numerical integration is needed to approximate
the continuous diffraction stack. Besides, at pointsM far
above the reflector, the function to be integrated varies very
rapidly with midpoint coordinate. In this situation, midpoint
sampling is usually not fine enough to correctly represent the
function to be integrated, thereby entailing the use of appro-
priate filters to prevent aliasing in the migration operator.
The use of these filters in combination with a consistent and,
if possible, accurate numerical integration formula is the key
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for obtaining good migrated images. Designing such filters
has been the object of different studies (see for instance
[4] or [5]). We ignore this problem in the sequel to focus
rather on the design of consistent and accurate numerical
integration formulas for use in combination with such filters.
We describe the principle of the derivation of such formulas
in a 1D situation (i.e. for applications to 2D migration) for
information, and then switch to the materially important 2D
situation (for application to 3D migration).

3 NUMERICAL INTEGRATION IN 1D

3.1 Principle

Numerical integration consists in calculating an approxima-
tion of the integral, over some interval [a, b], of a function
f (x) from its valuesf at different pointsxi (called in the
sequel interpolation nodesin the sequel) in [a, b]. Let
these interpolation nodes be numbered from 1 to I, assuming
that x1 = a and xI = b. A straightforward approach to
numerical integration is based on interpolation procedures:
we calculate a functionfint (x) (int stands for interpolating)
that interpolates the valuesf (xi) (Lagrange interpolation)
and possibly the first order derivativesf ′ (xi) or even higher
order derivatives (Hermite interpolation) and then approxim-

ate
∫ b

a
f (x)dxby

∫ b

a
fint(x)dx . This procedure assumes that

functionfint (x) approximates functionf (x)which, obviously,
requires that the distance between successive pointsxi be
small enough regarding the roughness of functionf .

This section introduces the basic elements involved in
numerical integration in a simple 1D situation, enabling us
to be concise in the more complex 2D situation.

3.2 Numerical Integration by Means of Lagrange
Interpolation

3.2.1 Lagrange Interpolation

We begin with the simplest interpolation procedure, namely
the Lagrange interpolation: this interpolation only uses the
valuesf (xi). We also deal with its simplest implementation
(known asP1 finite element), in which the interpolation
function is piecewise linear(Fig. 8).

The set of these interpolation functions is the vector space
generated bybasis functionsas described in Figure 9, each
of them associated with one interpolation node. These basis
functions are the piecewise first order polynomials defined
by:

ei
(
xj

) = δij ∀i, j = 1, . . . , I (5)

whereδij = 1 if i = j andδij = 0 if not.
Thus the interpolation functionfint (x) can be expressed as:

fint (x) =
I∑

i=1

f (xi) ei (x) (6)

int

xi-3 xi-2 xi-1 xi xi+1 xi+2

Figure 8

In the simplest 1D Lagrange interpolation procedure we inter-
polate between pointsxi by a linear function. The interpolation
function hasC0 regularity.

1

xi-1 xi

ei

xi+1 x

Figure 9

Lagrange basis functionei(x): this function is associated with
interpolation node with abscissaxi .

3.2.2 Numerical Integration Formula

The numerical integration formula is obtained by integrating
functionfint (x) which, from (6), gives:

b∫
a

fint (x) dx =
I∑

i=1

f (xi) wi (7)

with:

wi =
b∫

a

ei (x) dx = 1

2
(xi+1 − xi−1) (8)

From Equation (7) we observe that numerical integration
appears as a weighted summation of the valuesf (xi), the
weightsbeing the numberswi defined in (8). From Figure 8
we also see that this numerical integration is an application
of the very classical trapezoidal formula.
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3.2.3 Error Estimate

To determine the accuracy of the numerical integration for-
mula, it is important to calculate an error estimate denoted
by EL: this estimate gives a bound of the error (i.e. the

absolute value of the difference between
∫ b

a
f (x)dx and∫ b

a
fint(x)dx). More precisely, it allows us to highlight the

dependency of the error on thetypical distance4 h between
interpolation nodes (this distance can, for instance, be the
minimum distance between successive interpolation nodes)
and on the smoothness of function. This smoothness is
quantified by a norm involving the derivatives of function
f (x). The error estimate, whose derivation is recalled in
Appendix A, is of the form:

EL = CL
f (b − a)h2 (9)

whereCL
f is a constant that depends on the norm off (x) in

C2([a, b]). In EL andCL
f the subscript and superscriptL refer

to the technique based on Lagrange interpolation.

3.3 Numerical Integration by Means of Hermite
Interpolation

3.3.1 Hermite Interpolation

To obtain a more accurate numerical integration procedure
(i.e. a procedure yielding an error estimate showing for
instance ah3 dependency) more sophisticated interpolation
procedures must be followed including techniques based on
Hermite interpolation. In Hermite interpolation, we inter-
polate, at interpolation nodesxi , the values of the derivatives
of function f (x) as well as the values of the function itself
(Fig. 10). We shall restrict ourselves to the simplest case
where only first order derivatives are taken into account.

(4) Not to be confused with offset vector�h.

int

xi-3 xi-2 xi-1 xi xi+1 xi+2

Figure 10

Hermite interpolation in 1D: the interpolation functionfint(x)
matches the valuesf (xi) andf ′(xi).

It is straightforward to check that the interpolation func-
tion can be expressed as:

fint (x) =
I∑

i=1

f (xi) e0
i (x) +

I∑
i=1

f ′ (xi) e1
i (x) (10)

where thebasis functions e0i (x) ande1
i (x) are piecewise third

degree polynomials defined by:

e0
i

(
xj

) = δij and
de0

i

dx
(xj) = 0 ∀i, j = 1, . . . , I (11)

e1
i

(
xj

) = 0 and
de1

i

dx
(xj) = δij ∀i, j = 1, . . . , I (12)

These basis functions are shown in Figure 11. It is
straightforward to obtain the analytic expression of the basis
functions over some interval

[
xj,xj+1

]
, j = 1, . . . , I − 1:

Equations (11) or (12) give the information for determin-
ing, in a unique way, the four coefficients defining a third

1

xi-1 xi x

x

ei
0 ei

1

xi+1

xi-1 xi+1xi

Figure 11

Basis functionse0
i (x) (left) ande1

i (x) (right) associated with Hermite interpolation.
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degree polynomial. The uniqueness in this determination
shows that, for any Hermite interpolation dataf (xi) and
f ′ (xi), i = 1, . . . , I , there exists a unique function which
is a third degree polynomial over each interval

[
xj,xj+1

]
,

j = 1, . . . , I − 1, that matches the Hermite interpolation
data. It is important to note that the interpolation function
fint now hasC1 regularity as we have imposed a given value
for its derivative at the boundaries of intervals

[
xj,xj+1

]
,

j = 1, . . . , I − 1.

3.3.2 Numerical Integration Formula

As already stated, the numerical integration formula is
obtained by integratingfint(x). We obtain:

b∫
a

fint (x) dx =
I∑

i=1

f (xi) w0
i +

I∑
i=1

f ′ (xi) w1
i (13)

with w0
i =

∫ b

a
e0

i (x) dx andw1
i =

∫ b

a
e1

i (x) dx

Now the numerical integration formula appears not only
as a linear combination of the values off (xi) but also of
the values off ′ (xi). Note that coefficientsw0

i andw1
i are

straightforward to calculate since functionse0
i and e1

i are
third degree polynomials.

3.3.3 Error Estimate

As shown in Appendix B, the error estimate is of the form

EH = CH
f (b − a)h4 (14)

whereCH
f is a constant that now depends on the norm of

f (x) in C4([a, b]). H used as subscript or superscript refers
to Hermite interpolation. Thus, for a smooth functionf
(having not too large 4th order derivative), the numerical
integration procedure based on Hermite interpolation is more
accurate than that based on Lagrange interpolation (P1 finite
elements): the former yields an error estimate inO(h4) (see
Eq. (14))whereas the latter yields an error estimate inO(h2)

(see Eq. (9)).

3.3.4 Numerical Differentiation

In the problem at hand, the valuesf ′(xi) are not directly
available. It is hence normal to try to estimate them from the
valuesf (xi) by a numerical differentiation procedure such
as the finite difference technique. If we wish to preserve the
good accuracy associated with Hermite interpolation, the
numerical differentiation procedure must also be accurate
enough. This section describes a numerical differentiation
procedure that gives an error inO(hn) with n chosen such
that the overall error involved in the resulting numerical
integration formula is of a higher order than that involved in
Lagrange interpolation(Eq. (9)).

We begin with the classical description of the numerical
differentiation procedure (see for instance [6]) and the deriv-
ation of the associated error estimates. We wish to estimate
the derivative of functionf (x) at a given interpolation node,
which we place, by an appropriate translation of the origin,
atx = 0. We want the derivative to have the form of a linear
combination of the valuesf (xi) (the derivation operator is
linear) plus an error estimate inO(hn):

df

dx
(0) =

∑
k

αkf (xk) + O(hn) (15)

Here, the subscriptk refers to a local (i.e. relative to the
node that has been placed atx = 0 which corresponds
to k = 0) numbering(Fig. 12) of nodes (as opposed to
subscript i associated with the overall node numbering).
The summation onk only takes place at interpolation nodes
located in the neighborhood of the one atx = 0, the latter
being included. The numbersαk (as well as the number of
neighbor interpolation nodes that must be included in the
summation) are determined so as to yield an error estimate
in O(hn).

The derivation of the error estimate is obtained classic-
ally by means of Taylor’s expansions. We write for any
interpolation nodexk, includingxk = 0:

f (xk) = f (0) + xk
df

dx
(0) + 1

2!x
2
k

d2f

dx2
(0)

+ 1

3!x
3
k

d3f

dx3
(0) + 1

4!x
4
k

d4f

dx4
(ξk)

(16)

whereξk is between 0 andxk. Calculating
∑
k

αkf (xk) with

f (xk) given by Equation (16) we find that if numbersαk

k = 0 k = 1 k = 3k = 2

k = 4

x

Figure 12

Numerical differentiation in 1D. In this procedure we try to
estimate the value of the derivative at the node atx = 0 from
the values of the function at neighboring nodes. Note the use
of a local numbering (indexk) of nodes, the one atx = 0
corresponding tok = 0.
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satisfy the system:
∑

k

αk = 0 (17)

∑
k

αkxk = 1 (18)

∑
k

αkx
2
k = 0 (19)

∑
k

αkx
3
k = 0 (20)

we then have:

∑
k

αk f (xk) = df

dx
(0) + 1

4!
∑

k

αkx
4
k

d4f

dx4
(ξk) (21)

As shown in Appendix C, the term
∑

k

αkx
4
k

d4f

dx4
(ξk) is

O(h3) so that finally Equation (15) holds with approximation
ordern = 3.

This accuracy requires numbersαk to satisfy the system
of four linear equations (17)–(20): hence four interpolation
nodes are taken into account (including the one atx = 0).
If we want Equation (15) to hold only with approximation
ordern = 2 we simply need system (17)–(19) to be fulfilled,
thus having to account for only three interpolation nodes.
This yields the simplest implementation for a numerical
estimation of derivatives that gives an overall error(see
Appendix D)for the resulting numerical integration formula
in O(h3).

4 NUMERICAL INTEGRATION IN 2D

The principle of numerical integration in 2D is the same as in
1D: we construct an interpolation function and then calculate
the integral, on the considered area, of the interpolation
function, which is theoretically simple since the interpolation
function is a piecewise polynomial.

4.1 Interpolation in 2D and Finite Elements

4.1.1 The Interpolation Problem

In 2D interpolation consists in constructing a function
fint (x,y) that assumes specified values at the interpolation
nodes and, in the case of Hermite interpolation, whose gradi-
ent (or even higher order derivatives) also assumes specified
values at these interpolation nodes. The interpolation nodes
are, of course, distributed on the area over which the integral
is to be calculated. Returning to the physics of the problem,
the interpolation nodes are the midpoints involved in the
common offset gather: the locations of these midpoints are
defined by vectors�qi , i = 1, . . . , I . Integration takes place
in the midpoint coordinates(see Eq. (1)). We shall use the

Figure 13

An example of triangulation. Note that triangles can have
summits or edges in common but not pieces of edges.

classical technique of finite elements (see [7] for instance) to
solve this interpolation problem. More specifically, we shall
use simplectic finite elements here: we start by splitting
the integration domain into non overlapping triangles whose
summits are the interpolation nodes(Fig. 13). This splitting
is called triangulation. More precisely, we assume that in
such a triangulation, no summit lies inside the edge of another
triangle: triangles can have summits or edges in common
but not pieces of edges. We also assume that the integration
domain, denoted byΩ, is the union of the triangles included
in the triangulation.

4.1.2 The Technology of Finite Elements

The technology of finite elements is based on discrete func-
tions (i.e. functions depending on a finite number of para-
meters). These discrete functions are polynomials on each
triangle of the triangulation considered, thus allowing easy
computation of basic mathematical quantities: the values of
the function or of some of its derivatives or its integral on
some domain, etc. The nature of the polynomial function
depends in particular on the problem to be solved (Lagrange
versusHermite interpolation in our case). The discrete func-
tions considered belong to a (finite dimensional) vector space
generated by somebasis functions:any discrete function is
a linear combination of these basis functions. The above
mentioned computation of basic mathematical quantities is
then straightforward once the basis functions are exhibited.
In the finite elements we consider, the support of these basis
functions is a set of triangles at the vicinity of a specific
interpolation node(Fig. 14). It is normal to define the
basis functions piece by piece,i.e. separately in each of
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qi

Figure 14

In the different finite elements considered in this paper, the
basis functions are associated with a specific vertex of the
triangulation whose location is defined by vector�qi (and, for
Hermite interpolation, with the quantity to be interpolated at
this vertex). The basis functions have their support localized
on the triangles that surround the vertex considered.

q1 = (0,0)^

q2 = (0,1)^

q3 = (1,0)^

q1
q3

q2F

F -1

Figure 15

Piecewise construction of some basis functions associated with
node �qi . To construct the piece of basis function associated with
triangleT on the right, we use the affine invertible transforma-
tion F−1 that maps it onto the reference triangle on the left. We
introduce a local (i.e.attached to the triangle considered) node
numbering: node�qi in the global numbering becomes�q1 in the
local numbering. Note that these nodes�q1 have a specific role:
the vertex shared by all the triangles in Figure 14. This affine
transformation maps�q1, �q2, �q3 into points with coordinates
(0,0), (0,1) and (1,0), respectively. The basis function on the
right hand triangle is straightforwardly obtained once the basis
function on the reference triangle is exhibited. This task is
simplified in practice by using barycentric coordinates.

these triangles, and then to assemble the contribution of the
different pieces.

It is classic to construct a piece of basis function associ-
ated with a specific triangle from a piece of basis function
defined on a reference triangle, and to obtain the piece of
basis function on the triangle of interest using the affine
transformation that maps it into the reference triangle. This
construction relies on the following general result.

Theorem: Consider two triangles (Fig. 15), one of them
being considered as a reference triangle. Consider the affine
invertible transformation F that maps the reference triangle
T̂ onto the other triangle T. Consider a general interpolation
problem on triangleT̂: we seek a function within a specific

space (or subspace) of polynomials (for instance, the space of
third order polynomials that match a given linear equation),
this space being called the space of interpolation functions
and denoted by P, whose values, or the values of some
derivatives, at some points (called interpolation nodes) in
triangleT̂, match some specified values (called interpolation
values). Assume that this interpolation problem in triangle
T̂ gives rise to a uniquely defined interpolation operatorΠ̂:
for whatever specified interpolation values, there exists a
unique interpolation function in P that matches these inter-
polation values. Then the associated interpolation problem
on triangle T (the problem in which the interpolation values
are to be matched at the interpolation nodes defined as
the images by F of the interpolation nodes in triangleT̂)
has a unique solution in the space of interpolation func-
tions defined by the composition of polynomials in P with
F−1.

This result is obvious for simple interpolation problems
such as the simplest implementation of Lagrange interpol-
ation but, contrary to what may appear at first glance, is
not that obvious for more complex problems, such as those
associated with Hermite interpolation. The reader can refer
to textbooks on the finite elements method such as [8], for a
proof of this theorem.

From a practical standpoint, this theorem also gives the
construction of a piece of basis function in any triangle
once the basis function has been exhibited on the reference
triangle. Barycentric coordinates play an important role here
since they remain invariant in the affine transformation con-
sidered. In general, the use of barycentric coordinates greatly
simplifies the expression of basis functions in triangleT. If
the locations of the vertices of triangleT are defined by
vectors�q1, �q2, �q3, the barycentric coordinatesλ1, λ2, λ3 of
a point whose location is defined by vector�q are defined as
the solution of:

�q =
3∑

j=1

λj �qj (22)

with:
3∑

j=1

λj = 1 (23)

It is easy to check that the barycentric coordinates of the
vertex at�q1 are(1, 0, 0) and thatλ1 remains constant while
moving in a direction parallel to vector�q3 − �q2.

The nature of the affine transformationF also plays an
important role in the derivation of error estimates, which
is an important point for our goal of accurate numerical
integration (see [8] for a detailed analysis). All this is
rather formal, merely the guideline for solving our 2D Lag-
range and Hermite interpolation problems. In addressing
these problems, we will stop being formal and become very
concrete.
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4.2 Numerical Integration by Means of Lagrange
Interpolation

4.2.1 First Order Lagrange Interpolation in 2D
(P1 Finite Elements)

In 2D Lagrange interpolation, we calculate an interpolation
function that assumes specified values at the interpolation
nodes. The simplest choice (first order Lagrange interpola-
tion) consists in finding an interpolation function that is affine
on each triangle in the triangulation (P1 finite elements): this
function is defined in a unique way from the values specified
at the interpolation nodes. This interpolation function obvi-
ously displaysC0 regularity. It is straightforward to realize
that the interpolation function can be written as:

fint( �q) =
∑

i

f ( �qi)ei( �q) (24)

where basis functionei( �q) is the piecewise affine function
such that:

ei
( �qj

) = δij (25)

Its support is localized on the triangles around node�qi
(Fig. 14). To exhibit the piece of basis function associated
with a triangle which has�qi as summit we use a reference
triangle: the affine transformationF−1 that maps the original
triangle onto the reference triangle maps�qi into the point
with coordinates(0, 0) (Fig. 15). The basis function on the
reference triangle is quite simple. In terms of barycentric
coordinates its expression isλ1 (1 is the number of the
summit with coordinates(0, 0)). It is also the expression
of the piece of basis function for the right hand triangle in
Figure 15: barycentric coordinates are invariant in the affine
transformation.

4.2.2 Numerical Integration

Thanks to Equation (24) integration of the interpolation func-
tion is quite simple. The integral is a weighted summation
of the valuesf

( �qi

)
:

∫
Ω

fint (x,y) dxdy =
∑

i

wi f
(�qi

)
(26)

with:

wi =
∫
Ω

ei( �q) dxdy (27)

In fact, since basis functions are simple first degree poly-
nomials on each triangle,wi has a rather simple expression:
it is one third of the sum of the areas of the triangles sur-
rounding nodei.

4.2.3 Error Estimate

We wish to estimate the errorEL involved in the numerical
integration formula (26), namely the error made in replacing
function f (x,y) by function fint (x,y) in the integral. The
derivation of the error estimate (see [8] for instance) is fairly
technical and we merely give the result:

EL≤ ‖ f − fint‖L1(Ω) ≤ CL
f h2 (28)

Hereh is the characteristic dimension of the triangles in
the triangulation, constantCL

f depends on the deformations
of the triangles in the triangulation (the best triangles are
equilateral triangles) and on the norm of functionf in the
Sobolev spaceW2,1+ε (Ω) (ε is an arbitrary strictly positive
number). Such a norm is large whenever the second order
derivatives of functionf are large. Note that, for this error
estimate, we find the same order as in the 1D situation.

4.3 Numerical Integration by Means of Hermite
Interpolation

4.3.1 A Finite Element for 2D Hermite Interpolation

We now wish to find an interpolation functionfint( �q) which
takes specified values at the vertices of the triangulation and
whose gradient also takes specified values at these vertices.
Functionfint( �q) thus has to fulfill the system of equations:

fint
(�qi

) = f
(�qi

)
(29)

∇xfint
(�qi

) = ∇xf
( �qi

)
(30)

∇y fint
(�qi

) = ∇yf
(�qi

)
(31)

where∇x and∇y are thex andy components of the gradi-
ent operator�∇, respectively. Quantitiesf

(�qi

)
, ∇x f

(�qi

)
,

∇y f
(�qi

)
are given data fori = 1, . . . , I .

Note that this interpolation function is a well-known finite
element that is described for instance in the book of [9]
(Chapter 10: bending of plates). We also suggest [8]
(Chapter 5, example 2.2) for a complete treatment of the
problem.

As usual we shall now seek an interpolation function
fint( �q) which is a superposition of basis functions:

fint( �q) =
I∑

i=1

f
(�qi

)
e0

i ( �q) +
I∑

i=1

∇x f
(�qi

)
ex

i ( �q)

+
I∑

i=1

∇y f
(�qi

)
ey

i ( �q) (32)

where basis functione0
i ( �q) is defined by:

e0
i

( �qj

) = δij (33)

∇xe
0
i

( �qj

) = 0 (34)

∇ye
0
i

( �qj

) = 0 (35)
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Figure 16

The three kinds of basis functions for Hermite interpolation in 2D for a reference triangle. In the first (left) the function has value one at the
origin, zero at the other two vertices and, at all vertices, the derivatives along edges are zero. In the second (middle) the function has value zero
at all vertices and, at all vertices, the derivatives along edges are zero except for edge [�q1, �q2] at the origin, where this derivative has value one.
In the third (right) the function has value zero at all vertices and, at all vertices, the derivatives along edges are zero except for edge [�q1, �q3] at
the origin, where this derivative has value one.

ex
i ( �q) by:

ex
i

( �qj

) = 0 (36)

∇xe
x
i

( �qj

) = δij (37)

∇ye
x
i

( �qj

) = 0 (38)

andey
i ( �q) by:

ey
i

( �qj

) = 0 (39)

∇xe
y
i

( �qj

) = 0 (40)

∇ye
y
i

( �qj

) = δij (41)

The above equations must be fulfilled for alli andj with
values 1, . . . , I . On each triangle, each basis function has to
fulfill 9 conditions: on each triangle, the basis functions are
to be sought within the space of third order polynomials (in
fact, a subspace of spaceP3 of third order polynomials since
the definition of these polynomials requires the specification
of 10 coefficients).

To exhibit the piece of basis functione0
i associated with a

triangle which has�qi as summit we can equivalently impose
that at all summits of the triangle, the derivatives along the
edges are zero and exhibit this function by using a reference
triangle (Fig. 16, left). This function can be expressed
in terms of barycentric coordinates (λk is the barycentric
coordinate associated with vertex numberk in the numbering
associated with the triangle) in closed form:

e0
i = λ2

1 (3 − 2λ1) + 2λ1λ2λ3 (42)

Instead of exhibiting basis functionsex
i andey

i , we shall
exhibit basis functions for which we impose, at the different

vertices, conditions on derivatives along edges instead of
derivatives along thex or y directions (it is straightforward to
obtain basis functionsex

i andey
i once the new basis functions

have been exhibited). Again making use of the reference
triangle and of the node numbering attached to this triangle,
the basis functionse2

i as described in Figure 16 (middle) can
be expressed in terms of barycentric coordinates as:

e2
i = 1

2
λ1λ2 (1 + λ1 − λ2) (43)

whereas the basis functionse3
i as described in Figure 16

(right) can be expressed as:

e3
i = 1

2
λ1λ3 (1 + λ1 − λ3) (44)

It can be verified that the basis functions obtained by
assembling the pieces described above haveC0 regularity
(instead ofC1 regularity in the 1D situation).

4.3.2 Numerical Integration

Once again, numerical integration turns out to be a weighted
summation of the different quantities that have been inter-
polated:

∫
Ω

fint (x,y) dxdy =
∑

i

w0
i f

(�qi

) +
∑

i

wx
i ∇xf

(�qi

)

+
∑

i

wy
i ∇yf

( �qi

)
(45)
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with:

w0
i =

∫
Ω

e0
i ( �q) dxdy (46)

wx
i =

∫
Ω

ex
i ( �q) dxdy (47)

wy
i =

∫
Ω

ey
i ( �q) dxdy (48)

4.3.3 Error Estimate

The derivation of the error estimateEH involved in the numer-
ical integration formula (45) is technical. In [8] (example V-
2-2, page VI-23) we find the following result:

EH≤ ‖ f − fint‖L1(Ω) ≤ CH
f h3 (49)

Again,h is the characteristic dimension of the triangles in
the triangulation; constantCH

f depends on the deformations
of the triangles in the triangulation (the best triangles are
equilateral triangles) and on the norm of functionf in the
Sobolev spaceW3,1+ε (Ω) (ε is an arbitrary strictly positive
number). Such a norm is large whenever the third order
derivatives of functionf are large: thus the Hermite interpol-
ation quadrature formula is more accurate than the one based
on Lagrange interpolation only for smooth functionsf . Note
that we loose one order inhas compared with the 1D situation
(Eq. (14)): this is because the space of finite elements is no
longer P3 but just a subspace ofP3. However, this error
estimate will turn out to be quite compatible with the errors
that arise from a numerical evaluation of derivatives (see next
section).

4.3.4 Numerical Differentiation

If we wish to use a quadrature formula based on Hermite
interpolation with no direct measurements of the derivat-
ives, we must evaluate these derivatives by some numerical
procedure. Here we resume for the 2D situation what was
previously done for the 1D situation, restricting ourselves to
a specific order of accuracy, namelyn = 2. The aim is again
to obtain an estimation of the gradient of functionf ( �q) at a
given interpolation node (which we place, by an appropriate
translation of the origin, at�q = �0) of the form:

�∇f ( �q = �0) =
∑

k

�αk f ( �qk) + O(h2) (50)

where first, subscriptk refers to a local (i.e. relative to
the node placed at�q = �0 which corresponds tok = 0)
numbering5 of nodes (the global numbering is defined by
subscripti ); secondly, the summation onk takes place only

(5) This local node numbering must not be confused with the one attached
to a specific triangle that we used previously.

at those interpolation nodes located at the vicinity of the one
at �q = �0; and thirdly, the vectors�αk (as well as the number
of neighbor interpolation nodes that have to be involved in
the summation) must be determined so as to yield an error
estimate inO(h2).

We begin with the Taylor expansion at the vicinity of
�q = �0:

f
( �qk

) = f (�0)+ �∇f (�0). �qk+
1

2
�qk.([D2f (�0)] �qk)+O(h3) (51)

where. denotes the dot product inR2 and[D2f (�0)] denotes
the 2× 2 matrix of second order derivatives of functionf at
�q = �0.

If the �αk’s in Equation (50) are chosen so as to satisfy:

∑
k

�αk = �0 (52)

∑
k

( �qk. �u
) �αk = �u ∀�u ∈ R2 (53)

∑
k

(�qk.
(
[A] �qk

)) �αk = �0 (54)

∀ [A], a 2×2 symmetric matrix, then we obtain a second order
accurate estimate (keep in mind the scaling based argument
given in Appendix C) of�∇f ( �q = �0) given by Equation (50).

The total number of conditions to be fulfilled by the�αk’s
is 12: 2 are given by Equation (52), 4 by Equation (53),
and 6 by Equation (54). Hence the�αk’s can be computed
by solving the linear system (52)–(54) involving the values
of function f at �q = �0 and at 5 properly chosen (so that the
linear system is not singular) neighbor interpolation nodes
with locations�qk (typical situations are shown in Figure 17).

This technique can be applied for each interpolation node:
if f denotes the vector whose components are the values
f
( �qi

)
, i = 1, . . . , I (subscripti refers to the global num-

bering of interpolation nodes), we can construct, from this
vector, the vector�∇hf (here again, subscripth refers to the
characteristic dimension of the triangles) whose components
are estimates of the gradient off evaluated at the different
interpolation nodes�qi, i = 1, . . . , I . Since the evaluation
of this gradient involves a linear process(see Eq. (50)), the
construction of this vector is nothing but the application of
a linear operator (aI × I matrix) denoted�∇h to vector f .
The technique described above explains how to construct
operator�∇h.

It is straightforward to use this numerical differentiation
technique together with the numerical integration formula
based on Hermite interpolation: instead of Equation (45) we
obtain: ∫

Ω

fint (x,y) dxdy � w0.f + �w. �∇hf (55)

wherew0 is the vector that gathers the weightsw0
i defined

in (46) (the first dot product involves a summation over
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Figure 17

Typical situations for the choice of 5 neighboring interpolation nodes, with locations�qk, in the vicinity of the interpolation node�q0, for the
numerical differentiation procedure. Left: a simple choice of 5 neighbors�qk among those associated with the 6 neighbors of�q0. Middle:
necessity to find one summit,�q5, in a neighboring triangle. Right: as�q0 is on the boundary of the integration domain, it appears necessary to
find two other summits,�q4 and �q5, in two neighboring triangles.

subscripti), and �w is the vector (with the same dimensions
as �∇hf ) that gathers the weightswx

i andwy
i defined in (47)

and (48), respectively (the second dot product involves a
summation over all components of the vectors considered,
namely over subscripti and over thex andy components).

As shown in Appendix D, the error made when using
numerical integration formula (55) is inO

(
h3

)
.

4.4 Application to Kirchhoff Migration
(Diffraction Stack)

We shall now apply these interpolation procedures to our
concrete problem,i.e.the numerical integration for Kirchhoff
migration.

For givenM and �h, the Lagrange interpolation function
m̃v

el(M ; �q, �h), that interpolates the differentmv
el(M ; �qi, �h)

defined by Equation (2) fori = 1, . . . , I , can be written,
according to Equation (24), as:

m̃v
el(M ; �q, �h) =

∑
i

mv
el(M ; �qi, �h)ei( �q) (56)

Equation (26) then provides the migrated imagem̃v
�h at a

subsurface pointM as a weighted summation of the values
of mv

el at midpoints�qi of the acquisition:

m̃v
�h(M) =

∫
Ω

m̃v
el(M ; �q, �h) dxdy =

∑
i

wim
v
el(M ; �qi, �h)

(57)
with wi defined by (27).

Note that weightswi do not depend on the pointM
where the image is to be computed. Note also that, by
linearity of the migration operator,wimv

el(M ; �qi, �h) is the
elementary migrated image associated with the seismic trace
wi d

( �qi, �h, tv(M ; �qi, �h)
)
.

Thus, for a given offset gather, we can compute once and
for all the weightswi associated with each midpoint�qi and
scale the corresponding seismic trace by multiplying it bywi .
The use of the simple numerical diffraction stack (4) with

scaled seismic traces yields the same result as the numerical
integration formula (57): this simple preprocessing makes
the mere numerical diffraction stack a consistent approxim-
ation of the continuous diffraction stack.

The same kind of procedure also applies to Hermite inter-
polation. The Hermite interpolation functioñmv

el can indeed
be written, accordingly to equation (32), as:

m̃v
el(M ; �q, �h) =

∑
i

mv
el(M ; �qi, �h)e0

i ( �q)

+
∑

i

∇xm
v
el(M ; �qi, �h)ex

i ( �q) (58)

+
∑

i

∇ym
v
el(M ; �qi, �h)ey

i ( �q)

where the basis functionse0
i , ex

i , ey
i are defined by Equa-

tions (33) to (41).
If the derivatives are evaluated by the numerical differenti-

ation procedure described above, the corresponding migrated
imagem̃v

�h at a subsurface pointM is defined, according to
Equation (55), by:

m̃v
�h(M) = w0.mv

el(M) + �w. �∇hmv
el(M) (59)

wherew0, �w and �∇h are defined in (55) andmv
el(M) denotes

the vector whose components are the valuesmv
el(M ; �qi, �h) of

the elementary migrated images.
Introducing �∇T

h ,the transposed operator of�∇h, the quad-
rature formula can be rewritten as:

m̃v
�h(M) =

(
w0 + �∇T

h �w
)

.mv
el(M) (60)

This formulation is interesting since vectorw0 + �∇T
h �w

gives the weights to be applied to each elementary migrated
imagemv

el(M ; �qi, �h). As in the Lagrange interpolation, these
weights are independent on the subsurface pointM , and a
preprocessing involving a scaling of each seismic trace in the
common offset gather by the corresponding weight makes
the mere numerical diffraction stack a consistent and very
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Figure 18

Migration using a Lagrange numerical integration formula, of small offset (0.2 km) data associated with an actual marine acquisition geometry
(Fig. 2). ConstantY sections (top) and constantX sections (bottom) in the depth migrated data volume obtained with the correct migration
velocity (v = 3.0 km/s).

accurate (error inO(h3)) approximation of the continuous
diffraction stack.

In conclusion, our numerical integration formulas based
on Lagrange and Hermite interpolation can be very easily
implemented in any Kirchhoff migration program involving
a superposition of elementary migrated images. The addi-
tional cost is a scaling of the seismic traces, which is quite
negligible compared with the cost of running the migration
itself.

5 NUMERICAL RESULTS

5.1 Application to the Test Example

We shall now test the diffraction stack based on the Lagrange
and Hermite interpolation schemes on the previously studied
synthetic data built using a real marine acquisition geometry.

Using the Lagrange numerical integration formula, the
corresponding migrated data associated with a small offset

(0.2 km) are shown in Figure 18. A substantial improve-
ment is observed in the quality6 of the migrated images
as compared with those obtained with the mere diffrac-
tion stack formula (4)(Fig. 2): a considerable number of
migration artefacts has been removed. The same kind of
result is obtained for the large offset (3 km) (Figure 20,
to be compared with Figure 3). For the large offset,
however the number of remaining artefacts is much lar-
ger than for the smaller offset. The remaining artefacts
are caused by local sparsities in the midpoint distribution.
In such a situation, as explained in the Section 2, we do
not have enough samples (values taken by the elementary
migrated images at the image point considered) to correctly
represent the function to be integrated. This situation is

(6) Note that image quality is essentially evaluated here by a visual cri-
terion. It thus depends on the graphical representation mode selected.
In all the experiments, the scaling factor used for the displays is the
same so as to allow comparison between results.
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Figure 19

Migration using a Hermite numerical integration formula, of small offset (0.2 km) data associated with an actual marine acquisition geometry
(Fig. 2). ConstantY sections (top) and constantX sections (bottom) in the depth migrated data volume obtained with the correct migration
velocity (v = 3.0 km/s).

frequently encountered when migrating data associated with
large offsets.

Using the Hermite interpolation scheme (which is, the-
oreretically, more accurate than the Lagrange scheme), the
corresponding migrated data associated with a small off-
set (0.2 km) and with a large offset (3 km) are shown in
Figures 19 and 21, respectively. The result is apparently
degraded by a kind of random noise as compared with the
result obtained by Lagrange interpolation.

In order to understand this surprising result we shall carry
out a similar experiment with a survey involving a finer
sampling in midpoints (actually the same data than those
used in Figure 5). This finer sampling was obtained by
adding midpoints to the original acquisition geometry. These
additional midpoints are located at the barycenter of each
triangle in the triangulation built from the original acquisition
(Fig. 22)and the added traces correspond to offset such that
‖�h‖ = 3 km with azimuth equal to zero. With this finer
sampling interval, our numerical integration formulas can be
expected to be more accurate.

The results obtained by means of Hermite interpolation
are shown in Figure 23: despite irregularities in the midpoint
distribution, they appear as perfect (these results should be
compared with those in Figure 5 obtained by migrating the
same data but with the mere diffraction stack formula (4)).
Both theory and software thus seem to be correct. These
good results may serve as a reference (i.e. be considered as
correct) and therefore be used to evaluate the error made
when computing the results with the original acquisition.
The errors(Figs. 24, 25 and 26)evaluated for offset 3 km
(which gave rise to the strongest artefacts) are the differences
between the reference result(Fig. 23) and the results in
Figures 3, 20 and 21, respectively.

Comparing the observed errors we note that:

– the use of a consistent numerical integration formula
drastically improves the quality of the migrated images as
compared with those obtained with the mere diffraction
stack;

– in the vicinity of the reflector, results obtained by means
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Figure 20

Migration using a Lagrange numerical integration formula, of large offset (3 km) data associated with an actual marine acquisition geometry
(Fig. 3). ConstantY sections (top) and constantX sections (bottom) in the depth migrated data volume obtained with the correct migration
velocity (v = 3.0 km/s).

of Hermite interpolation are more accurate than those
obtained by Lagrange interpolation;

– at some distance above the reflector, the use of Hermite
interpolation reveals many more migration smiles, hence
the random noise observed in Figures 19 and 21.

These experimental results are well explained by the
theory:

– the Hermite based integration formula can be expected
to be more accurate than the formula based on Lagrange
interpolation when the function to be integrated is smooth,
that is, as shown in Figure 6, at the vicinity of the reflector;

– however, if the function to be integrated is rough (typically
the situation shown in Figure 7), that is, at some distance
above the reflector, the Lagrange based integration for-
mula turns out to be more robust.

This relative robustness, however, is still not sufficient
to achieve a correct numerical integration when we move
far above the reflector: the midpoint distribution is then not

dense enough to make the samples correctly represent such
a rapidly varying function.

5.2 Application to a Real Data Set

We shall now compare the behavior of the mere diffraction
stack and the diffraction stack based on the Lagrange inter-
polation scheme on a real data set. The Lagrange interpola-
tion scheme was chosen because this technique appeared in
the previous section as the most robust.

The real data set came from a marine acquisition in the
North Sea. This data set covers a narrow salt body (about
3 km wide). The data acquisition system was a single-source
double-streamer. In theory, the spacing between both the
streamers and the navigation lines was 75 m. The spacing
between both the shots and the receivers was 25 m. From the
prestack data, we built a cube of near offset data (offset range
[80 m, 100 m]). Figure 27 shows the midpoint distribution of
a part of the acquisition and the triangulation that was used
for the Lagrange interpolation scheme (again the midpoints
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Figure 21

Migration using a Hermite numerical integration formula, of large offset (3 km) data associated with an actual marine acquisition geometry
(Fig. 3). ConstantY sections (top) and constantX sections (bottom) in the depth migrated data volume obtained with the correct migration
velocity (v = 3.0 km/s).

Figure 22

Densification of midpoints in an acquisition. The midpoints
in the original acquisition are shown by circles: they are the
vertices of the triangles in the original triangulation. New
midpoints (squares) are added to the original acquisition as
the barycenters of the triangles from the original triangulation.
They serve to refine the original triangulation: the refined tri-
angulation is obtained by splitting each triangle in the original
triangulation into three pieces.

are the vertices of the triangles). We can clearly observe
the non uniform distribution of midpoints in the acquisition.
This figure also clearly shows the navigation direction and
the ordinate of obstacles met by the ship.

We applied a 3D prestack common offset time migration
software to the cube of near offset data. This software carries
out a mere diffraction stack but takes account of the true
locations of the source-receiver pairs. The migration velocity
model is a 1D model with constant gradient. Although this
model is quite simple, it provides a reasonable approximation
of the velocity distribution in the sediments surrounding the
salt body. A cross-line section in the cube of migrated
data is shown in Figure 28. Many migration smiles can
be observed. This is not surprising given the irregularity
in the midpoint distribution. Note that the migration smiles
could also have been caused by inaccuracies in our migration
velocity model. However the effect of these inaccuracies
should not be important in the shallower part of the migrated
image.
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Figure 23

Migration using a Hermite numerical integration formula, of large offset (3 km) data associated with the refined actual marine acquisition
geometry. ConstantY sections (top) and constantX sections (bottom) in the depth migrated data volume obtained with the correct migration
velocity (v = 3.0 km/s).

Figure 24

Evaluation of the error involved using the mere diffraction stack formula (4): this error was evaluated by computing the difference between the
results shown in Figure 3 (obtained by the mere diffraction stack) and those shown in Figure 23 (used as reference). ConstantY sections (top)
and constantX sections (bottom).
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Figure 25

Evaluation of the error involved in the migration scheme based on Lagrange interpolation: this error was evaluated by computing the difference
between the results shown in Figure 20 (obtained by numerical integration) and those shown in Figure 23 (used as reference). ConstantY
sections (top) and constantX sections (bottom).

Figure 26

Evaluation of the error involved in the migration scheme based on Hermite interpolation: this error was evaluated by computing the difference
between the results shown in Figure 21 (obtained by numerical integration) and those shown in Figure 23 (used as reference). ConstantY
sections (top) and constantX sections (bottom).



F. Assouline and P. Lailly/ Numerical Integration for Kirchhoff Migration 407

Figure 27

Part of the triangulation of another marine acquisition from the
North Sea.

Thus we focus our interest on this shallower part namely
in depths less than 1 second two-way travel-time. Figure 29
shows the result obtained by applying the same migration
software to the data after they have been scaled (prepro-
cessing associated with the Lagrange interpolation scheme)
so as to compensate for irregularities in the midpoint distri-
bution. This figure shows that the migration smiles, instead
of disappearing, appear to be strengthened: in fact, large tri-
angles have been generated in those areas where the midpoint
distribution is sparse (i.e.at the vicinity of acquisition holes),
hence giving huge weights to the seismic traces associated
with the vertices of these triangles(Figs. 30 and 31)

To overcome this difficulty, we set an upper bound,
namely 1800, to the weight values. In doing so, the migration
result(Fig. 32, top)appears somewhat clearer but basically

Figure 28

Cross-line section in the cube of real data migrated using the mere diffraction stack.

tim
e

1 s

0 s 200 400 inline number

Figure 29

Cross-line section (the same as in Figure 28) in the cube of real data migrated using the scheme based on Lagrange interpolation. The migration
smiles appear strengthened compared with the result in Figure 28.
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Figure 30

Histogram of the weight distribution (output of the Lagrange
interpolation scheme) used to scale the traces in order to com-
pensate for irregularities in the midpoint distribution. Large
weight values are associated with midpoints surrounded by
large triangles.

quite similar to the one obtained using the mere (unweighted)
diffraction stack(Fig. 28). Figure 32 bottom shows the
differences between the two results (after scaling to allow

quantitative comparison). The difference basically consists,
as expected, of migration smiles caused by the irregular
midpoint distribution. On average, the amplitude of the
difference turns out to be ten times smaller than the amplitude
of the individual results: we can thus understand why the
results obtained using the mere diffraction stack and those
based on a consistent numerical formula yield appeared so
similar!

In conclusion, the application of a consistent numerical
integration formula to carry out a Kirchhoff migration does
not drastically improve the quality of migrated images in
practice. Moreover, this approach cannot compensate for
large acquisition holes: yet, the weights have to be truncated
to avoid spurious migration smiles arising from those areas
where the midpoint distribution is sparse. However, once this
upper bound has been properly chosen, the method can be
applied at negligible additional cost to yield a result at least
more satisfactory from a quantitative standpoint. Hence the
main context for an application of this approach is quantit-
ative migration (seee.g.[10]) for reservoir characterization.

CONCLUSION

Theoretically speaking, Kirchhoff migration cannot be per-
formed with a mere discrete diffraction stack since, for irreg-
ularly sampled data,i.e.for a non uniform midpoint distribu-
tion in an acquisition, it yields an inconsistent approximation
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Figure 31

Color plot of weight values as a function of midpoint location (zoom).
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Figure 32

Top: same as the left part of Figure 29 but with weight values truncated above 1800.
Bottom: difference between the results in Figures 32 top and 28, after normalization of these results.

of the continuous version of the diffraction stack. In fact,
using a mere discrete diffraction stack gives a result which
is a superposition of elementary migrated events (migra-
tion smiles) and this superposition does not give rise to the
construction of the migrated event (the envelope of the ele-
mentary migrated events). To carry out a migration with non
uniformly distributed midpoints, a consistent approximation
of the continuous diffraction stack must be used. This can
be done by implementing a numerical integration based on
interpolation procedures. Two interpolation schemes have
been examined: first order Lagrange interpolation and third
order Hermite interpolation.

The implementation of these schemes is straightforward:
we can use any available code computing a mere discrete
diffraction stack after a simple scaling of the input seismic
traces, the scaling factor being determined by the selected
(Lagrange or Hermite) numerical integration technique. In
turn, since this scaling is quite cheap, using the proposed
schemes does not really increase the CPU time required to
run the migration.

We have shown that, when the correct migration velocity
is used, the results obtained with either scheme are very

good, provided the midpoint distribution is dense enough
to account correctly for the variations of the function to
be integrated. This also holds for an erroneous migration
velocity.

The technique we have investigated is designed to com-
pensate for irregularities in the midpoint distribution. The
difficulty raised by the sparsity of midpoints is another
problem. More specifically, variations in the function to
be integrated can be extremely rapid and it is therefore quite
common, especially when shallow dipping events are to be
imaged, that the distance between midpoints is too large to
allow correct imaging: the image is then contaminated by
migration smiles. This difficulty is often referred to as the
aliasing of the migration operator. A number of filters have
been designed to remove these artefacts (for instance [4]
or [5]) and implemented in industrial migration programs.
The counterpart is an unavoidable degradation of the spatial
resolution. Since the schemes we propose amount to a data
preprocessing, they can, and must, be used in combination
with these filters.

From the practical standpoint, the numerical integration
formula based on Lagrange interpolation is more robust than
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the formula based on Hermite interpolation. An upper bound
must also be set for the weights scaling the input seismic
traces: lack of care at this stage can be harmful. The
improvement provided by the method is in fact slight: its
main field of application is for the quantitative determination
of reservoir heterogeneities.

Of course, if we are interested in true amplitude imaging,
a Kirchhoff migration based on a diffraction stack turns out
to be simplistic, and dedicated techniques (seee.g. [10])
must be used. These techniques, obviously, also require
numerical integration when applied to real, discrete data.
The ones presented in this paper also apply to these more
sophisticated imaging techniques, provided the function to
be integrated is modified accordingly.

Finally, we have concentrated on common offset depth
migration, but the techniques proposed are also applicable
to time migration or when imaging is carried out in another
domain: shot record domain, common angle domain ([11]
for instance), etc.
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APPENDIXES

A ERROR ESTIMATE OF LAGRANGE INTERPOLATION
IN 1D

We use theP1 finite element technique to interpolate a func-
tion f (x) on [a, b]. We have discretized interval[a, b] by
introducing some nodes with abscissasxi , for i = 1, . . . , I ,
these nodes being such thatx1 = a andxI = b. The nodes
may be irregularly distributed on[a, b]. For an arbitrary
function f (x) ∈ C2([a, b]), we consider the functionfint(x)

obtained by aP1 finite element interpolation technique. To
estimate the error involved in this interpolation, we present
a classical proof (more precisely an adaptation of a very
general proof (Engels, 1980, for instance) to our simple inter-
polation procedure) based on a study of the error function

ε(x) defined by:

ε(x) = f (x)− fint(x) x ∈ [a, b] (A1)

On interval[xi, xi+1] the error function vanishes forx = xi

andx = xi+1. On interval[xi, xi+1] we introduce an arbit-
rary additional node with abscissax = u (u given arbitrary
but different fromxi andxi+1) and construct a higher order
Lagrange interpolated functionf 1

int(x) defined by:

f 1
int(x) = fint(x)+ w(x)

w(u)

(
f (u) − fint(u)

)
(A2)

where:
w(x) = (x − xi)(x − xi+1) (A3)



F. Assouline and P. Lailly/ Numerical Integration for Kirchhoff Migration 411

We find that:

f 1
int(x) = f (x) for x = xi, x = xi+1 and x = u (A4)

We introduce the higher order error functionε1(x)defined
by ε1(x) = f (x) − f 1

int(x). This error function can be rewrit-
ten as:

ε1(x) = ε(x)− w(x)

w(u)
ε(u) (A5)

Because of (A4),ε1(x) has at least 3 zeros in[xi, xi+1].
Hence, by Rolle’s theorem,

d2ε1

dx2
(x) has at least one zero

ξ in ]xi, xi+1[. Hence there existsξ ∈]xi, xi+1[ (which, of
course, depends onu) such that:

d2ε1

dx2
(ξ) = 0 = d2ε

dx2
(ξ) − w′′(ξ)

w(u)
ε(u) (A6)

and therefore:

ε(u) = w(u)

w′′(ξ)

(
d2f

dx2
(ξ) − d2fint

dx2
(ξ)

)
(A7)

Noting that
d2fint

dx2
(ξ) = 0 and thatw′′(ξ) = 2 (see (A3)),

we finally obtain∀u ∈]xi, xi+1[:

ε(u) = w(u)

2

d2f

dx2
(ξ) (A8)

The total quadrature errorEL is then:

EL =
∣∣∣∣∣∣

b∫
a

ε(u) du

∣∣∣∣∣∣ ≤ 1

2

I−1∑
i=1

xi+1∫
xi

∣∣∣∣w(u)
d2f

dx2

(
ξ(u)

)∣∣∣∣ du (A9)

Using the assumption thatf ∈ C2([a, b]), there exists C
such that: ∣∣∣∣d2f

dx2
(x)

∣∣∣∣ ≤ C ∀x ∈ [a, b] (A10)

Noting that
∫ xi+1

xi

|(x− xi)(x− xi+1)| dx = 1

6
(xi+1 − xi)

3,

we obtain:

EL ≤ C

12

I−1∑
i=1

(xi+1 − xi)
3 (A11)

Finally, introducing the minimum sampling intervalh =
mini=1,...,I−1(xi+1 − xi) and assuming that the discretization
is such that the ratio between the largest and the smallest
sampling intervals is bounded by a boundB in O(1) (B,
which is of course less than(b − a)/h, must be inO(1)

otherwise the nodes would not yield a genuine discretization
of [a, b]), we obtain:

EL ≤ C

12

I−1∑
i=1

B3h3 ≤ C(b − a)

12
B3h2 (A12)

B ERROR ESTIMATE OF HERMITE INTERPOLATION
IN 1D

We use a finite element technique to implement a Hermite
interpolation of a functionf (x)on[a, b]. We have discretized
interval [a, b] by introducing some nodes with abscissasxi ,
for i = 1, . . . , I , these nodes being such thatx1 = a and
xI = b. The nodes may be irregularly distributed on[a, b].
Functionf being given inC4([a, b]), we denote byfint(x) the
corresponding interpolation function. It is given by:

fint(x) =
I∑

i=1

(
f (xi)e

0
i (x)+ f ′(xi)e

1
i (x)

)
(B13)

wheree0
i (x) ande1

i (x) are third degree polynomials on each
interval[xi, xi+1] defined by:

e0
i

(
xj

) = δij ;
de0

i

dx
(xj) = 0 ∀i, j ∈ [1, I ] (B14)

e1
i

(
xj

) = 0;
de1

i

dx
(xj) = δij ∀i, j ∈ [1, I ] (B15)

Our goal is to estimate the error involved in the interpol-
ation procedure and, from this to derive the error involved
in the associated quadrature formula. To do this, we use an
adaptation of a very classical technique ([12] for instance).

We introduce the error functionε(x) defined by:

ε(x) = f (x)− fint(x) x ∈ [a, b] (B16)

and we analyze this function on an interval[xi, xi+1] (with i
arbitrary∈ {1, . . . , I − 1}).

On interval]xi, xi+1[ we introduce an arbitrary additional
node with abscissau and construct another interpolation
functionf 1

int(x) defined by:

f 1
int(x) = fint(x)+ w2(x)

w2(u)

(
f (u) − fint(u)

)
(B17)

with w(x) = (x − xi)(x − xi+1).

We find that:

f 1
int(x) = f (x) for x = xi, x = xi+1 and x = u (B18)

and that:

df 1
int

dx
(x) = f ′(x) for x = xi and x = xi+1 (B19)

Besides,ε1(x) = f (x)− f 1
int(x) satisfies:

ε1(x) = ε(x)− w2(x)

w2(u)
ε(u) (B20)

Now, because of (B18) and (B19),ε1(x) has at least one
single and 2 double distinct zeros,i.e. at least 5 zeros in
[xi, xi+1]. By recursive application of Rolle’s theorem, we
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determine that
d4ε1

dx4
has at least one zeroξ (which, of course,

depends onu) in ]xi, xi+1[. Hence:

d4ε1

dx4
(ξ) = 0 = d4ε

dx4
(ξ) −

d4w2

dx4
(ξ)

w2(u)
ε(u) (B21)

and using
d4w2

dx4
(ξ) = 4! we obtain:

ε(u) = w2(u)

4!
(

f ′′′′(ξ) − f ′′′′
int (ξ)

) ∀u ∈]xi, xi+1[ (B22)

and considering thatf ′′′′
int is identically zero, we end up with:

ε(u) = w2(u)

4! f ′′′′(ξ(u)
) ∀u ∈]xi, xi+1[ (B23)

The total quadrature errorEH is then:

EH ≤
b∫

a

|ε(u)| du = 1

4!
I−1∑
i=1

xi+1∫
xi

w2(u)
∣∣ f ′′′′(ξ(u)

)∣∣ du

(B24)
As f ∈ C4([a, b]), ∣∣f ′′′′(ξ(u)

)∣∣ is bounded by some con-
stant D.

Noting that:
xi+1∫
xi

w2(u) du = (xi+1 − xi)
5

30
(B25)

we obtain:

EH ≤ D

4!30

I−1∑
i=1

(xi+1 − xi)
5 (B26)

Introducingh andB as defined in Appendix A, the same
reasoning leads to the result:

EH ≤ D

4!30
(b − a)B5h4 (B27)

C SCALING ARGUMENT

Theαk’s are the solution of system (17)–(20) for givenxk’s.
If, by scaling of discretization, eachxk becomesλxk, each
αk becomesαk/λ. Besides,h is the characteristic size of the
intervals involved in the discretization: this quantity can be
viewed as the result of a scaling byh of an original discret-
ization. This shows that theαk’s areO(h−1), so that, for a

function f (x) ∈ C4([a, b]), the quantity
∑

k
αk x4

k

d4f

dx4
(ξk)

is O(h3).

D OVERALL ERROR ESTIMATE OF HERMITE
INTERPOLATION IN 1D INCLUDING NUMERICAL
DERIVATION

When a numerical derivation procedure is used to carry out
a Hermite interpolation, the interpolation function obtained
is f̄ int(x) whereas it would have beenfint(x) if the derivatives
f ′(xi), (for i = 1, . . . , I ) had been available. Regarding

numerical integration, we compute
∫ b

a
f̄ int(x)dx instead of∫ b

a
fint(x)dx.

The overall errorĒH is then given by:

ĒH =
∣∣∣∣∣∣

b∫
a

(
f (x) − f̄ int(x)

)
dx

∣∣∣∣∣∣

≤
∣∣∣∣∣∣

b∫
a

(
f (x)− fint(x)

)
dx

∣∣∣∣∣∣

+
∣∣∣∣∣∣

b∫
a

(
fint(x)− f̄ int(x)

)
dx

∣∣∣∣∣∣ (D28)

Then
ĒH ≤ EH + ED (D29)

whereEH is the error evaluated in Appendix B.ED is the error
arising from the numerical evaluation of the derivatives,i.e.:

ED =
∣∣∣∣∣∣

b∫
a

(
fint(x)− f̄ int(x)

)
dx

∣∣∣∣∣∣

=
∣∣∣∣∣∣

I∑
i=1

(
f ′(xi) − f ′

num(xi)
) b∫

a

e1
i (x)dx

∣∣∣∣∣∣ (D30)

wheref ′
num(xi) is the numerical evaluation off ′(xi) by finite

differences. We have seen that, when this evaluation makes
use of two interpolation nodes in the vicinity ofxi , the
error | f ′(xi) − f ′

num(xi)| is O(h2). Besides, a straightforward
calculation shows that:

b∫
a

∣∣e1
i (x)

∣∣ dx ≤ 1

6
B2h2 (D31)

with B andh as defined in Appendix A.
Hence finallyED isO(h3), and, according to the estimation

of EH given in Appendix B, so is̄EH.


