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Résumé — Vibrations transverses modales de risers verticaux tendus. Approche analytique
simplifiée — Le présent article est consacré à l’analyse structurelle des vibrations transverses modales
d’un riser vertical tendu. Ces vibrations, souvent de type VIV (Vortex Induced Vibrations), apparaissent
en présence d’un courant lorsque la fréquence des lâchers tourbillonnaires coïncide avec une des
fréquences propres de la structure.

Une approche analytique simplifiée est proposée pour le cas d’un riser possédant des caractéristiques de
poids apparent et de masse linéique uniformes. Des formules très simples sont ainsi obtenues pour les
paramètres structurels les plus significatifs : fréquences propres, positions des nœuds et des ventres,
débattements angulaires en tête et en pied, valeurs et positions des points de courbure maximale.

Les formules obtenues permettent de mieux comprendre la réponse structurelle d’un riser en eau
profonde en condition dite « d’accrochage », pour le phénomène de VIV. 
Mots-clés : riser, vibration, VIV.

Abstract — Transverse Modal Vibrations of Vertical Tensioned Risers. A simplified Analytical
Approach — The paper examines the physics of riser transverse modal vibrations of the type induced by
VIV (Vortex Induced Vibrations). It presents a simplified analytical solution for such vibrations of
vertical tensioned risers with uniform linear characteristics. The solution leads to simple expressions for
the principal factors of concern including the natural frequencies, the positions of the nodes and anti-
nodes, the maximum angular movements at the riser lower end, and the positions and values of maximum
riser curvature. 
The expressions increase understanding of VIV of deepwater risers under “lock-in” conditions.
Keywords: riser, vibration, VIV.
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NOMENCLATURE

E Young’s modulus
I sectional inertia
L riser length
Ln length between nodes
St Strouhal number
Ta effective tension at anti-node
Tb effective tension at riser bottom end
Tt effective tension at riser top end
Tx effective tension at height x
Tpn nth mode natural period 
U current velocity
Yx modal shape
Ya modal amplitude
a anti-node number
c celerity of riser transverse waves
cRm riser mean celerity 
cm mean celerity between nodes
fs Strouhal frequency (Hz)
g gravitational acceleration
k intermediate node number
m linear mass (including added mass)
n mode number
t time
w apparent linear weight
x distance  - vertical axis
y distance - horizontal axis
z a dimensionless parameter
φ phase angle (radians)
θb riser bottom end angle 
ωn nth Mode circular frequency (rad/s).

INTRODUCTION

Vortex induced vibration (VIV) of risers is a subject of
increasing concern as drilling and production operations
move into ever deeper waters. Riser designers and operators
are aware that VIV may cause unacceptable levels of fatigue
damage to deepwater risers. A large body of literature on the
subject is now available. To cite only a part: an overview of
the subject is presented in [1]. Experimental data acquired on
real deepwater risers as part of the “Norwegian Deepwater
Programme” and on the Schiehallion riser have been
published in [2-5]. 

Methods of optimising natural damping, by deliberately
staggering riser joints of different diameters, have been
explored in [6] and [7]. The possibility of coupling between
transverse and axial responses at very high modes has been
reported in [8]. 

The experimental data on very deep risers mentioned
above are particularly significant and have so far shown the
response of the four instrumented risers [2-5] to be
principally at low Modes (1 to 4). Greatest responses
reported are single-mode, where amplitudes of the order of
0.5-1 diameters are mentioned. Multi-mode responses have
also been observed but with lesser amplitudes. VIV “lock-in”
was recorded in the 2nd Mode of the “Helland-Hansen” riser,
with a modal period of about 20 s. 

A clear understanding of deepwater riser modal response
is important. It is the ambition of this paper to contribute to
that understanding. The approach used is “simplified analysis”
applied to a vertical riser with uniform characteristics of linear
mass (including added mass), linear apparent weight and
hydraulic diameter. The riser is assumed to be connected to
the sea floor and is free to rotate at its extremities.

Simple expressions are derived for all the parameters of
major concern including:
– the natural frequencies and periods of the modes; 
– the positions of the nodes and anti-nodes according to the

mode excited;
– the angular movement at the riser foot;
– the curvature at the anti-nodes and particularly the lowest

anti-node;
– the position and value of maximum curvature. 

The expressions increase understanding of VIV response
of deepwater vertical tensioned risers. It must be stressed
however that they say nothing about the natural vibrations of
other types of riser such as catenary risers, compliant vertical
risers, closely spaced groups of vertical risers or hung-off
risers. 

Two approximations are involved in the “simplified
analysis” presented in Section 4 of this paper. The first
consists of neglecting the riser flexural rigidity (EI) and thus
treating the riser as a tensioned “cable”. This leads to a modal
equation in terms of Bessel functions. The second
approximation consists of making a slight modification to the
“cable vibration equation” (already proposed in [9]) which
leads to simpler expressions than those involving Bessel
functions. 

A way of modifying the solution of Section 4 to take into
account flexural rigidity (EI) is explored in Section 5. The
validity of the approximations is tested by comparing the
results of the “simplified analysis” (with and without EI)
with those of the “Bessel analysis”, and also with results of
the “Deeplines” commercial riser analysis program [10]—a
finite element program based on a 3D version of Equation (2)
of this paper. Comparisons are made in the Appendix for a
severe case of a large diameter drilling riser, filled with
heavy mud, operating with very low top tension. 

Throughout this article all references to “tension” imply
“effective tension”.
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1 BACKGROUND

Before proceeding further, basic points about transverse
vibrations of vertical connected risers must be mentioned.

1.1 Undamped Transverse Vibrations

When an undamped riser is forced to vibrate transversely (for
example by an imposed top end sinusoidal movement)
transverse waves descend the riser, are reflected back at the
riser foot, and then re-ascend the riser to the top end where
they arrive out of phase (say by angle φ) with the exciting
movement. At the top end they are reflected again and begin
a second descent/re-ascent of the riser following which they
arrive back at the top end, this time out of phase by 2φ with
the exciting movement. 

In the absence of damping these reflections continue
indefinitely. Under sustained excitation a multitude of waves
propagate along the riser, each out of phase with the previous
one by an angle φ. The resultant fluctuates, but never exceeds
the maximum effect of a train of π/φ waves. The cumulative
effect of the remainder is zero since the waves cancel out.

The exception to the above is provided by modal
vibrations for which the reflected waves are all in phase with
each other (φ = 0). All descending waves are perfectly
superimposed and cannot be distinguished from each other.
Likewise for the ascending waves. Hence modal vibrations

are the resultant of the interaction between only two waves –
one descending and one ascending. 

Figure 1 illustrates the case of a riser with positive weight
in water and very low top tension, vibrating in the third
Mode. The figure shows the profiles of the riser (black) and
of the descending and ascending waves (blue and red
respectively) at eight equal time intervals during a half
modal period. For clarity one wave crest of each of the two
component waves is highlighted with beads. Figures 1a and
1i show the riser in the positions of “zero amplitude” where
the descending and ascending waves are perfect mirror
images of each other. They cancel completely and the riser is
straight. In this position the “crests” of the ascending and
descending waves pass each other at the nodes.

As the descending and ascending waves progress along
the riser they evolve both in amplitude and wavelength
(similarly to ocean waves approaching a shore). This is the
result of the non-constant tension.

Figure 1e shows the riser in a position of “maximum
amplitude” where the two waves combine perfectly and
cannot be distinguished from each other. In this position the
“crests” of the waves pass each other at the anti-nodes. 

Fundamental to the rest of the paper is the fact that the
time required for the descending and ascending waves to
travel between adjacent nodes (Fig. 1a to 1i) is equal to half
the modal period. Likewise the time for them to travel
between a node and an adjacent anti-node (or vice versa) is
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Figure 1

Third mode vibration of a riser with low top tension.

Evolution of descending wave (blue) and ascending wave (red) and the reulting riser profile during one half modal period.
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equal to a quarter of the modal period (Fig 1a to 1e and 
Fig. 1e to 1i). It follows that the period of the fundamental
(Mode 1) is equal to the time required for the waves to travel
twice the length of the riser. 

1.2 VIV “Modal Vibrations”

Well documented experimental data relevant to VIV
vibrations of risers (see [11, 12]) have confirmed that the
vortex shedding frequency for a fixed cylinder is a function
of the ratio of current velocity to diameter as given by the
Strouhal relation [13]:

(1)

where the Strouhal number is generally about 0.2. However
if the cylinder is elastically supported and has a natural
frequency close to the one given by Equation (1) then the
vortex shedding frequency will adapt itself to the natural
frequency of the cylinder and the Strouhal relation will be
modified. This situation is known as “lock-in”. 

Experimental data has shown that under “lock-in”
conditions the cylinder vibrates at one of its natural
frequencies, but with amplitudes auto-limited to about +/–1
diameter. For greater amplitudes the vortices cease to excite
the motion. They have a damping effect. This limit in
amplitude is also considered to apply to risers although real
field data is sparse and difficult to interpret.

Hence when subjected to VIV, riser response at a natural
frequency does not increase indefinitely, and amplitudes of
the “peaks” of the lateral movement are all approximately
equal. They do not increase with depth as given by the mode
shape shown in Figure 1. 

VIV “lock-in” on a riser causes the mode shape to be
modified by a continual transfer of energy. This is
continually added to the riser in the upper regions (where the
modal amplitude would otherwise be smaller than the mean)
and damped out from the lower regions (where the
amplitudes would otherwise be greater than the mean).

2 BASIC EQUATIONS
VIBRATION OF A TENSIONED BEAM

A riser is basically a vertical tensioned beam for which the
equation of transverse vibration is as follows (see Figure 2
for riser axes):

(2)

Equation (2) only has an exact analytical solution for the
case of constant tension (w = 0). The solution is then [14]:

(3)

Figure 2

Riser axes.

The natural circular frequency ωn and the natural period
TPn

for Mode “n” are then given by:

(4)

Given that the transmission time of transverse waves
between adjacent nodes is equal to half the modal period
(Section 1.1), Equation (4) can be rewritten as:

(5)

where Ln is the length between nodes. And the “cable” and
“beam” celerities are respectively:

(6)

(7)

Hence  the celerity c' in the tensioned beam is given by:

(8)

For a deepwater riser beam celerity is generally small
compared to cable celerity and has little influence. 
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For example: for a steel riser of length 2000 m, dia-
meter 22”, thickness 1”, linear mass 1.2 tonnes/m under 
150 tonnes constant tension, vibrating in the 10th Mode:
celerity is c’ only 2.6% greater than ccable.

For less severe cases such as risers of smaller diameter,
with lower bending stiffness, vibrating at lower modes, with
higher axial tensions, the influence of flexural rigidity is even
less.

Hence flexural rigidity (EI) generally has small influence
on the natural period of lateral vibrations of a vertical
weightless deepwater riser except for very high modes. It is
reasonable to expect the same to be true of vertical risers that
are not weightless (with positive apparent weight in water).
Hence as a first approximation the riser will be treated as a
cable. This approximation has been justified in previous
publications (see [9]).

3 MODAL VIBRATION
VERTICAL RISER WITHOUT FLEXURAL RIGIDITY 
(EI = 0)

If flexural rigidity (EI) is neglected Equation (2) reduces to:

(9)

Putting:

(10)

and putting 
y = Yx sin (ωnt) (11)

where Yx is the mode shape,  Equation (9) can be rewritten as:

(12)

This has solution:

(13)

where J0(zx), Y0(zx) are Bessel functions of the first and
second kind of order zero. Constants A and B can be found
by iteration since “y” is zero at the extremities.

Although Equations (11) and (13) give the exact solution
of Equation (9) and hence an approximate solution of
Equation (2), the solution is not of great practical value since
Bessel functions are difficult to evaluate. They have been
evaluated for the example in Appendix. For simplicity, in the
rest of the paper, analysis based on Equation (13) is referred
to as “Bessel analysis”.

4 SIMPLIFIED ANALYSIS
VERTICAL RISER WITHOUT FLEXURAL RIGIDITY 
(EI = 0)

A simpler expression (than Eq. (13)) for the mode shape of a
riser without flexural rigidity can be found by making a slight
modification to Equation (9). This plainly needs to be done
with great care if the results are to be of value. The validity of
such a modification can be verified directly by comparing
results with those obtained with the “Bessel analysis” 
(Eq. (13)) and with results of the “Deeplines” riser analysis
program. This is presented in Appendix for a particular
example.

The three terms of Equation (9) represent lateral force
components (per unit length) at a point “x” above the riser
foot. Their physical significance must first be examined (see
Fig. 3).

The first term is the restoring force resulting from the
effect of axial tension acting in the curved riser. This is
opposed by the inertia force given by the last term. These
forces are of constant direction between adjacent nodes.

The middle term is the result of the component of linear
apparent weight perpendicular to the riser. Since the riser is
near vertical this term must already be small. Furthermore
this force component changes direction between nodes.
Above the anti-node it acts with the first term (see Fig. 3).
Below the anti-node it opposes it. Its resultant when
integrated between adjacent nodes is zero. Hence this term
must be of much less significance than the other two.

Without further justification it is proposed to halve the
middle term of Equation (9) in order to allow a simpler
analytical solution:   

(14)

Figure 3

Force component acting between nodes.
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using the substitutions given by Equations (10) and (11),
Equation (14) becomes:   

(15)

which has solution:

(16)

where Ya is the modal amplitude (a constant) and zb is the
value of zx at the riser foot.

Figure 4

Riser 5th mode vibration. Comparison of mode shapes.

The amplitudes at the anti-nodes according to Equation
(16) are all equal to Ya. This is in contrast to the “Bessel
expression” (Eq. (13)) for which they increase in amplitude
as they descend the riser (see Fig. 4).

But since vertical tensioned risers subjected to VIV do
tend to vibrate with virtually equal amplitudes at the anti-
nodes, from the point of view of amplitude, the “simplified
solution” (Eq. (16)) is a closer representation of VIV induced
modal response than the mathematically more exact “Bessel
expression” of Equation (13). 

Equation (16) allows a wealth of important parameters
related to lateral vibrations of vertical tensioned risers to be
calculated very easily. 

4.1 Riser Natural Circular Frequencies 
and Natural Periods 

The natural circular frequencies and periods can be found by
considering the riser extremities where the lateral
displacement “y” is zero. For Mode “n” Equation (16) gives:   

zt – zb = nπ (17)

where zt and zb are the values of “z” at the riser top and
bottom ends. Noting that wL = Tt – Tb, substitution from
Equation (10) yields:

(18)

(19)

Coherent units (such as SI units) must be used when
evaluating ωn or tpn

.

4.2 Riser Mean Celerity

Since the period of the fundamental (first Mode) is equal to
the time for transverse waves to travel twice the length of the
riser (Section 1.1), the riser mean celerity is: 

(20)

Hence from Equation (19):

(21)

Thus the riser mean celerity is the mean of the cable
celerities at the upper and lower extremities.
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Finally the simplest way of determining the natural period
of the fundamental (first Mode) is to calculate the mean
celerity from Equation (21) and then determine the period of
the fundamental (Tp1

) from:

(22)

From Equation (19) the natural period for Mode “n” is
then given by: 

(23)

4.3 Evaluation of the Dimensionless Parameter zx

The value of zx at any point height x can be found from the
corresponding tension (Tx) and the mode number. From
Equation (10):

(24)

Thus from Equation (17):

(25)

4.4 Positions of Nodes and Anti-Nodes

At the nodes the riser lateral displacement “y” is zero.
Hence from Equation (16):

(26)

where “k” takes integer values between zero and n, the mode
number.

For adjacent nodes (noted by subscripts k and k + 1): 

(27)

Hence from Equations (25) and (26):

(28)

At the anti-nodes the amplitudes are a maximum. Hence
from Equation (16):

(29)

where “a” takes integer values between 1 and n, the mode
number.

From Equations (26) and (29), for the anti-node “a”
between adjacent nodes “k” and “k + 1”:

(30)

Hence from Equation (25):     

(31)

Hence for Mode “n”, the scale of , between the

riser top end and the riser foot is divided into

“2 n” equal intervals by all the nodes and anti-nodes. This

allows the tensions and positions of all the nodes and anti-

nodes to be found very easily.

4.5 Mean Celerities between Adjacent Nodes

The transmission time tk, k+1 of transverse waves between any
two adjacent nodes (subscripts k and k + 1) is equal to half
the natural period of the mode (see Section 1.1). Hence from
Equation (19): 

(32)

Calling Lk, k+1 the distance between the two nodes, and
noting that wLk, k+1 = Tk+1 – Tk then from Equation (28): 

(33)

but from Equation (31):

(34)

where Ta is the tension at the intermediate anti-node. 

Hence:

(35)

Thus the mean celerity between adjacent nodes:
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This result can also be obtained by assuming that the
celerity at all points of the riser is given by ,
and then integrating over the length between adjacent nodes
in order to find the mean celerity. This proves that such an
assumption is coherent with Equation (16) and thus with
Equation (14).
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4.6 Bottom end Angle

The slope of the riser can be found by differentiating
Equation (16) which gives:

(37)

Thus at the nodes:

(38)

Hence the bottom end angle:

(39)

It is interesting to note that the riser bottom end angle as
given by Equation (39) depends on four parameters, none of
which is related to the water depth or riser length. 

The above is particularly striking for drilling risers. Am-
plitude (Ya) is approximately equal to the riser hydrodynamic
diameter (i.e. diameter of buoyancy units). The bottom end
tension of a drilling riser is normally chosen to be just
sufficient to lift clear the LMRP in case of riser disconnect.
Hence it is independent of water depth. Likewise the riser
linear mass (including contents and added mass) does not
increase necessarily with water depth. The natural circular
frequency which may be excited depends on the riser
hydraulic diameter and current velocity according to the
Strouhal relation (see Eq. (1)).

Equation (39) can be further simplified. From Equation
(32):

(40)

Calling Lb, b+1 the length between the riser foot and the
first node above it, and Ta1

the tension at the intermediate
anti-node, then from Equations (35) and (40):

(41)

substitution in Equation (39) gives:

(42)

Finally the bottom end angle depends on geometrical
parameters of the riser profile (riser amplitude and height of
first node) amplified by . (Note: if curvature were

completely circular between the riser foot and the 1st node,
the bottom end angle would be given by 4Ya/Lb,b+1. For a
pure sinusoid it would be equal to πYa/Lb,b+1.

4.7 Riser Curvature (1/R) at the Anti-Nodes

Since riser curvature 1/R = d2y/dx2, differentiation of Equa-
tion (37) yields:

(43)

At the anti-nodes {} = 1 and the curvature is then given
by:  

(44)

Since tension decreases with depth, Equation (44) has its
greatest value at the lowest anti-node, where from Equation
(41):

(45)

Thus the curvature at the lowest anti-node depends only
on the amplitude of the riser vibration and the height of the
first node. Neither water depth nor riser length enter into the
equation.

(Note: if curvature were completely circular between the
riser foot and the 1st node, it would be equal to 8Ya/L

2
b,b+1.

For a pure sinusoid it would also be given by Equation (45)).

4.8 Maximum Riser Curvature (1/R) 

Since riser tension decreases with depth the maximum
curvature will occur for d3y/dx3 = 0 at some point below the
lowest anti-node. 

Differentiation of Equation (43) shows this occurs for 
zx = zcmax

where 

(46)
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depends only on zb and can be found by iteration. The

corresponding tension can then be found (from Eq. (25)).
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curvature gets closer and closer to the riser foot and curvature
amplification increases.

– For zb = 7, it is at the 3/4 position (above the riser foot)
and the curvature amplification factor is equal to 1.07. 

– For zb = 3.3, it is at the mid-height; with curvature
amplification equal to 1.25. 

– For zb = 2.2, it is at the quarter-point; with curvature
amplification of 1.57. 

– For , it is theoretically at the riser foot; with
curvature amplification of 2.1. 
For zb to be equal to , it can be shown that the top

tension factor Tt / wL must be less than 1.15 for 1st Mode
vibrations; less than 1.05 for 2nd Mode vibrations and even
less for higher modes. These cases are of little practical
interest.

5 SIMPLIFIED ANALYSIS 
WITH FLEXURAL RIGIDITY (EI)

In Section 2 the solution for a tensioned beam under constant
tension was presented. It is interesting to see if similar
equations can be justified for such a beam under uniformly
varying tension. Equation (2) with the “dy/dx” term modified
(as in Section 4) becomes:

(47)

The procedure consists firstly of replacing Tx by T’x =
Tx + Q in Equation (10) between nodes, where Q is a constant
to be determined (values of Q being different for each pair of
nodes); and secondly of assuming that there is a solution
between nodes of the form:

(48)

Primed values of all parameters (T’k, T’a, z’, ω’n, c’, etc.)
apply to the case with rigidity (EI). Since the assumed form
of the solution is the same as in Section 4, the equations of
that section can be applied between pairs of nodes (providing
primed values are used throughout). Substitution of Equation
(48) in Equation (47) leads to the requirement:

(49)

The first term of Equation (49) is the bending moment in
the riser, which is thus replaced by a force Q acting at
distance y from the riser axis i.e. along the axis of the
deflected riser, which is what is already implied by the initial
assumption above. 

A “mean” constant value of Q is required. This can be
found by integrating Equation (49) between adjacent nodes
(k to k + 1). From Equation (48) this leads to: 

(50)

hence from Equation (27):

(51)

Since the transmission time between adjacent nodes is
equal to half the modal period, it follows that:

(52)

Equations (10), (51), (52) give: 

(53)

Finally from Equation (36): 

(54)

From Equation (34), factor { } in Equation (54) becomes:

(55)

This factor is equal to unity for the cases of constant
tension and zero tension, which is coherent with the require-
ments of Section 2. In fact the factor can never differ greatly
from 1 for practical riser cases. For the example in Appendix,
it varies from 1.4 for Mode 1 (for which EI has negligible
effect), to 1.03 for the length above the riser foot for Mode 5.
It approaches more closely to 1 for higher modes.

The mean celerity between adjacent nodes is given by
Equation 36 using primed values T’a and c’m. Between nodes
k, k + 1:

(56)
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where c2
beam = Q/m. Tension is lowest between the riser foot

and the first node. Hence that is where cable celerities have
their lowest values. It is also where the inter-nodal distance is
shortest, hence where Q is greatest (see Eq. (54)) and hence
where beam celerity is greatest. Therefore it is between the
riser foot and the first node that EI has its greatest effect.

Since the value of Q is different for each pair of nodes, the
procedures of Sections 4.1, 4.2 and 4.5 cannot be used to find
the natural periods and the positions of nodes. Another
approach must be used.

The modal period and the distance between nodes can be
expressed in terms of the values (between nodes) of the mean
celerities or of (see Eq. (36)). Since the transmission
time between adjacent nodes is equal to half the modal
period, and since the sum of the nodal lengths is equal to the
riser length, it follows that: 

(58)

hence the modal period is given by: 

(59)

and the lengths between nodes: 

(60)

Hence: 

(61)

Equation (59) gives the modified modal periods. The
modified lengths between nodes can be calculated from
either Equations (60) or (61). The bottom end angle and the
riser curvature can then be found from the Equations (42) and
(45) of Section 4 using the primed parameters.

6 VALIDATION 

The above equations have been validated by comparing
results for different cases using four methods of calculation: 
– “simplified analysis” (as presented in Section 4), 
– “Bessel analysis” (Section 3); 
– finite element analysis with  “Deeplines”; 
– “simplified analysis (with EI)” (Section 5).

An example is given in Appendix for a large diameter
drilling riser operating in deep water with very low top
tension. Modal periods are presented in Table 1. Detailed
results of node heights, bottom end angles and riser curvature
for the 5th Mode are compared in Tables 2 to 6. 

The principal results (height of lowest node, curvature at
lowest anti-node and angle at riser foot) are compared in
Table 7 for all methods except “Bessel” for various modes
between 1 and 50.

Differences between results of the “simplified analysis”
and the “Bessel analysis” are solely due to the halving of the
second term of Equation (9).
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TABLE 1

Riser natural periods for Modes between 1 and 50

Riser natural periods (s)

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 Mode 8 Mode 10

“Simplified analysis”
(cable) Section 4 77.5 38.7 25.8 19.4 15.5 12.9 9.7 7.7

“Bessel analysis” 78.8 38.9 25.9 19.4 15.5 12.9 9.7 -

“Deeplines” 78.1 38.6 25.7 19.2 15.4 12.7 9.4 7.5

“Simplified analysis”
(with EI) Section 5 77.5 38.7 25.8 19.3 15.4 12.8 9.5 7.6

Mode 15 Mode 20 Mode 25 Mode 30 Mode 35 Mode 40 Mode 45 Mode 50

“Simplified analysis”
(cable) Section 4 5.2 3.87 3.10 2.58 2.21 1.94 1.72 1.55

“Deeplines” 4.8 3.52 2.74 2.21 1.83 1.54 1.32 1.15

“Simplified analysis”
(with EI) Section 5 4.9 3.54 2.74 2.21 1.83 1.54 1.32 1.15
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TABLE 3

Riser vibration in 5th mode.

Comparison of values of dimensionless parameter “zx”

“Simplified analysis” “Bessel analysis”

(Tension)1/2 zx (Eq. 25) zx

(tf)1/2 Node anti-node node anti-node

Node 5 27.75 22.489 22.470

25.81 20.918 20.876

Node 4 23.87 19.347 19.330

21.93 17.776 17.732

Node 3 20.00 16.205 16.189

18.06 14.635 14.585

Node 2 16.12 13.064 13.050

14.18 11.493 11.437

Node 1 12.24 9.922 9.911

10.30 8.351 8.283

Node 0 8.37 6.781 6.775

Differences between results of the “Bessel analysis” and
those obtained with “Deeplines” are due to the effect of riser
flexural rigidity (EI). (Results obtained with “Deeplines”
without flexural rigidity were found to be in good agreement
with those of the “Bessel analysis” and are not presented
separately in the Appendix). 

Differences between results of “Deeplines” and of “sim-
plified analysis (with EI)” are due to the approximations
introduced in Section 5.

6.1 Riser Natural Periods

Riser natural periods obtained by the four methods are
compared in Table 1 for various modes between 1 and 50.
“Bessel analysis” could not be used beyond the eighth mode. 

Agreement between natural periods calculated by the
“simplified analysis” (Eqs (22) and (23)) and the “Bessel
analysis” improves as the mode number increases (1.7%
difference for the fundamental; 0.5% for Mode 2; negligible
for Mode 3 and above).

The modal periods calculated by “Deeplines” and the
“simplified analysis with (EI)” are in remarkably good
agreement. They are shorter than those given by the “Bessel
analysis” (up to Mode 8) because of the slight increase in
celerity caused by flexural rigidity. The influence of flexural
rigidity becomes significant for Modes 15 and above. It
increases with the mode number.

6.2 Positions of Nodes and Anti-Nodes

Table 2 gives the positions of the nodes and anti-nodes found
by the first three methods. According to the “simplified
analysis” their positions are defined by equal intervals of

between the riser head and foot. The positions for
the nodes agree with those of the “Bessel analysis” to within
a few centimetres. 

Tension

81

TABLE 2

Riser vibration in 5th Mode.

Comparison of positions of nodes and anti-nodes

“Simplified analysis” Section 4 “Bessel analysis” “Deeplines”

Tension)1/2 Tension Height above riser foot (m) Height above riser foot (m) Height above riser foot (m)

(tf)1/2 (tf) node anti-node node anti-node node anti-node

Node 5 27.75 770 2000 2000 2000

25.81 666.2 1703 1699 1701

Node 4 23.87 569.9 1428 1428 1432

21.93 481.1 1174 1170 1175

Node 3 20.00 399.8 942 942 948

18.06 326.1 731 727 734

Node 2 16.12 259.9 542 542 549

14.18 201.1 374 370 377

Node 1 12.24 149.9 228 228 234

10.30 106.2 103 99 104

Node 0 8.37 70 0 0 0
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TABLE 4

“Simplified analysis (with EI)”. 

Vibration in 5th Mode. Node heights and modal period (see Section 5)

Ta Ln Q T’a L’n Node Height

Between nodes (tf) (m) (tf) (tf)1/2 (tf) (m) above riser

Table 2 Table 2 Eq. (54) Eq. (34) Eq. (61) foot (m)

Riser head 2000
4 to riser head 666.2 571.7 1.0 25.84 668.0 567.7

3 to 4 481.1 485.9 1.38 22.01 484.4 483.4
Node 4 1432.3

2 to 3 326.1 400.0 2.03 18.18 330.6 399.3
Node 3 948.9

1 to 2 201.1 314.13 3.27 14.38 206.7 315.8
Node 2 549.6

Riser foot to 1 106.2 228.3 6.06 10.64 113.3 233.8
Node 1 233.8

Σ = 91.05 Σ = 2000
Riser foot 0

Modal period with rigidity (Eq.(59)): Tp = 2 x 2000 / (91.05 ) = 15.4 s

TABLE 5

Riser vibration in 5th Mode.

Angles at riser foot

Angles at riser foot

“Simplified analysis” “Simplifed analysis

(cable) Section 4
“Bessel analysis” “Deeplines”

(with EI)” Section 5

0.97° 1.07° 0.93° 0.94°

TABLE 6

Riser vibration in 5th Mode.

Curvature (1/R) at points below lowest anti-node

Height “simplified analysis” “Simplified analysis”

above riser (cable) Section 4 “Bessel analysis” “Deeplines” (with EI) Section 5

foot (m) m–1 m–1 m–1 m–1

Anti-node 0.00019 0.00019 0.00018 0.00018

90 0.00020 0.00020 0.00019 0.00019

77 0.00020 0.00021 0.00020 0.00019

63 0.00020 0.00022 0.00020 0.00019

50 0.00019 0.00021 0.00018 0.00017

40 0.00017 0.00020 0.00017 0.00016

30 0.00015 0.00019 0.00014 0.00014

g1 2.

′Ta
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For the anti-nodes agreement is less good (4 to 5 m
difference for each anti-node). This is because the middle
term of Equation (9) does contribute to the celerity of the
transverse waves. Between any node and the anti-node below
it, this term combines with the restoring force (see Fig. 3)
and has the effect of slightly increasing celerity. Between the
anti-node and the node below it, the opposite is the case.
Since this term has been halved for the “simplified analysis”
the effect is reduced (compared with the “Bessel analysis”)
and as a result the anti-nodes are raised slightly.

Between two adjacent nodes the two effects virtually
balance each other, hence the excellent agreement for the
positions of the nodes. 

The nodes given by “Deeplines” are higher than those
found by the “Bessel analysis”. Flexural rigidity has the
effect of increasing the celerity, and this effect is greatest at
the riser lower end where tension is lowest. This has the
effect of slightly raising all the nodes. 

The values of the dimensionless parameter “z” for the
“simplified analysis” (given by Eq. (24)) and for the “Bessel
analysis” are given in Table 3 for comparison. 

Table 4 presents the calculation of the modified node
heights (and natural period), according to the “simplified
analysis (with EI)” (Section 5). This requires a number of
iterations which increases with the mode number. For the 5th

Mode results presented in Table 4, three iterations were
required. Calculated node heights agree with the results of
“Deeplines” given in Table 2 to within 1 m.

6.3 Angles at the Riser Foot

Table 5 gives the riser bottom end angles for the 5th Mode as
calculated by the four methods. 

“Deeplines” and the “simplified analysis (with EI)” gives
the smallest values which is not surprising since it is at the
riser bottom end that flexural rigidity has it greatest effect [9]. 

The “middle term” is greater in Equation (9) than in
Equation (14). This leads to a greater calculated angle for the
“Bessel analysis” than for the “simplified analysis”. 

6.4 Curvature at the Lowest Anti-Node and Below

Table 6 gives the riser curvature (1/R) calculated by the four
methods. There is good agreement between them. Flexural
rigidity reduces curvature slightly for “Deeplines” and
“simplified analysis (with EI)” as would be expected.

The position of maximum curvature is about 40 m below
the lowest anti-node according to the “Bessel analysis”. For
the others it is about 25 m below it. 

6.5 Influence of Rigidity (EI)

Equations (41) and (45) show that the principal parameter
that influences maximum curvature and bottom end angle is
the height of the lowest node. 

As shown in Section 5, EI increases celerity between
nodes (Eqs (54), (56) and (57)). This effect is greatest at the

TABLE 7

For Modes between 1 and 50: 
height of 1st node; curvature at lowest anti-node; angle at riser foot

Height of 1st node (m) Curvature (m-1) Angle
at the lowest anti-node at riser foot

Simplified Simplified Deeplines Simplified Simplified Deeplines Simplified Simplified Deeplines

Mode analysis analysis (with EI) analysis analysis (with EI) analysis analysis (with EI)

(cable) (with EI) (cable) (with EI) (cable) (with EI)

1 2000 2000 2000 0.0000025 0.0000025 0.0000027 0.19° 0.19° 0.26°

2 731.7 732.6 731.4 0.000018 0.000018 0.000019 0.39° 0.39° 0.44°

3 428.1 430.4 430.7 0.000054 0.000053 0.000055 0.58° 0.58° 0.61°

4 298.7 302.5 303.3 0.00011 0.00011 0.00011 0.78° 0.76° 0.77°

5 228.3 233.8 234.5 0.00019 0.00018 0.00018 0.97° 0.94° 0.93°

10 103.4 114.6 115.1 0.00092 0.00075 0.00075 1.94° 1.72° 1.67°

20 49.0 64.0 64.0 0.0041 0.0024 0.0023 3.88° 2.92° 2.87°

30 32.1 47.1 47.2 0.0096 0.0044 0.0042 5.83° 3.91° 3.84°

40 23.8 38.1 38.1 0.0174 0.0068 0.0064 7.77° 4.78° 4.73°

50 19.4 32.2 32.1 0.0263 0.0095 0.0088 9.52° 5.64° 5.60°
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riser lower end and reduces progressively with height above
the riser foot. As can be deduced from Equation (60), this
causes inter-nodal lengths to be increased in the lower part of
the riser and decreased in the upper part (see Table 4). Hence
all nodes are raised. 

For modes between 1 and 50, Table 7 compares values of
the following, as calculated by the different methods: height
of the lowest node, curvature at lowest anti-node and angle at
the riser foot. 

Tabulated values show excellent agreement between
“Deeplines” and the “simplified analysis with (EI)” for all
modes. 

At low modes all three methods agree which is not
surprising since EI then has negligible effect. The influence
of the rigidity EI can be seen to increase progressively with
the mode number.

SUMMARY AND CONCLUSIONS

This paper has attempted to understand the physics of riser
modal vibration of the type induced by VIV using an analytical
approach based principally on two simplifications. The first
consists of neglecting flexural rigidity and treating the riser as
a tensioned cable. The second consists of slightly modifying a
term of little significance in the basic vibration equation. 

The method has led to very simple formulae for all the
phenomena of interest, for a riser with uniform character-
istics. Extension of the method to include the effect of
flexural rigidity (EI) in a riser with varying tension has also
been presented in Section 5. 

The results obtained have been found to be in good agree-
ment with more precise but more complicated analytical
calculations involving Bessel functions, and with results of
the “Deeplines” finite element riser analysis program.

Given the above simplifications the principal conclusions
are as follows:
– the mean celerity in the riser is equal to the mean of the

celerities at the riser extremities (Eq. (21));
– the riser fundamental (1st Mode) natural period is the time

required for a transverse wave to run twice the length of
the riser. Hence it is equal to twice the riser length divided
by the mean celerity (Eq. (22));

– natural periods of higher modes are equal to the 1st Mode
natural period divided by the mode number (Eq. (23));

– the nodes and the anti-nodes divide the scale of 
between the riser extremities into equal intervals. For the
“nth” Mode there are “2 n” such intervals (Eq. (31));

– the maximum angle at the riser foot is independent of the
water depth. It depends on geometrical factors namely: the
amplitude of the vibration; the height of the first node
above the riser foot; and on the tension ratio between the
first anti-node and the riser foot (Eq. (42));

– curvature at the lowest anti-node is independent of water
depth. It only depends on the amplitude of the vibration
and the height of the first node (Eq. (45));

– maximum curvature occurs between the riser foot and the
lowest anti-node. Its precise position and value can be
found by iteration (Eq. (46)). 
In Section 5 it is shown that flexural rigidity EI can be

treated as an equivalent additional axial tension between
nodes. This causes celerities to be increased, particularly in
the lower part of the riser. As a result node heights are raised
which has the effect of reducing maximum curvature and
angles at the riser foot. Natural periods are reduced.

The paper shows that deep water modal vibrations are
little different from such vibrations in lesser depths. Water
depth is not the major factor in determining the principal
consequences of such vibrations. Far more significant is the
height of the first node.

What does increase with water depth is the probability that
a modal period will be close to a potential excitation period,
given by the Strouhal relation (Eq. (1)). But then the
probability of damping (due to nonuniform current profile
and direction) also increases with water depth. These two
important aspects of riser VIV response are beyond the scope
of this paper.

The above conclusions are valid for deepwater vertical
risers with uniform characteristics. They help contribute to
the understanding of the more general case of a riser with
non-uniform characteristics, which can only be treated by
more sophisticated methods such as finite element analysis.
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APPENDIX 

Modal Vibration of a Deepwater Drilling Riser. Comparison between Analyses 

Results obtained by the “simplified analysis”, “Bessel analysis”, the “Deeplines” riser program and “simplified analysis with
(with EI)” are compared for a drilling riser with the characteristics given below.

Example Riser Characteristics

Riser length (L) 2000 m 

Riser pipe diameter 0.5588 m (22”)

wall thickness 0.0254 m  (1”)

flexural rigidity    (EI) 318.6 × 106 N-m2

(32 477 tonnes f-m2)

hydraulic diameter 1 m

Apparent linear weight (w) 3,433.5 N/m
(0.35 tonnes f/m)

Total apparent weight (wL) 6.867 × 106 N

Top tension factor (Tt /wL) 1.1

Top end effective tension (Tt) 7.5537 × 106 N
(770 tonnes f)

Bottom end effective tension (Tb) 0.6867 × 106 N
(70 tf )

Mass (+ added mass) (m) 1200 kg/m
(1.2 tonnes/m).

General Parameters

Amplitude of vibrations (Ya) 1 m
Gravitational acceleration  (g) 9.81 m/s.


