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Résumé — Formulation du couplage partiel entre un simulateur réservoir et un simulateur de
géomécanique — La compaction des roches-réservoirs à forte porosité est un phénomène complexe qui
dépend du comportement constitutif de la roche-réservoir, du chemin de contrainte suivi par le
réservoir, etc. La compaction des réservoirs pétroliers faiblement consolidés ne peut donc pas être
modélisée à partir des simulateurs réservoirs traditionnels. En effet, ces simulateurs réduisent les effets
mécaniques à un paramètre de compressibilité de pore qui ne reproduit pas parfaitement la complexité
des phénomènes mécaniques. Une analyse plus précise de la compaction d’un réservoir pétrolier
nécessite donc le recours à une modélisation thermo-hydro-mécanique du comportement du réservoir et
de ses épontes. Les équations résultant d’un tel modèle peuvent être soit résolues simultanément dans un
même simulateur (couplage total), soit résolues séparément dans un simulateur réservoir et un
simulateur géomécanique avec échange de données entre les deux (couplage partiel). L’article présente
trois formulations de couplage partiel obtenues sous les hypothèses d’un comportement linéaire
élastique de la roche-réservoir et d’un écoulement monophasique. Ce cadre poroélastique permet un
calcul simple de la correction de porosité à apporter à la porosité lagrangienne utilisée dans un
simulateur réservoir traditionnel en fonction d’une variable calculée par le simulateur géomécanique : la
déformation volumique, la variation de volume poreux ou la variation de contrainte moyenne. La
première formulation est testée numériquement dans un cas unidimensionnel où l’on étudie le balayage
à l’eau d’une éprouvette cylindrique initialement saturée en huile et à déformation latérale nulle. Cette
expérience « numérique » illustre l’importance des effets mécaniques sur l’écoulement des fluides et
valide le couplage partiel proposé. L’exemple souligne aussi les effets de la compressibilité de pore
dans les simulations réservoirs partiellement couplées. En fait, cette compressibilité de pore s’interprète
comme un paramètre de relaxation qui contrôle la vitesse de convergence de l’algorithme itératif de
couplage partiel.

Abstract — Coupling Fluid Flow and Rock Mechanics: Formulations of the Partial Coupling
between Reservoir and Geomechanical Simulators — During high porosity reservoir production, the
rock compaction is a complex phenomenon that depends on the rock constitutive behavior, the reservoir
stress path, etc. Reservoir compaction can hardly be analyzed with conventional reservoir simulators as
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NOTATIONS

Latin letters

b Biot’s stress coefficient
cp pore compressibility
cf fluid compressibility
cb drained bulk compressibility
cs matrix bulk compressibility
G rock shear modulus
k intrinsic permeability
Kd drained bulk modulus
Kf fluid bulk modulus
Ks matrix bulk modulus
Kuni bulk modulus in uniaxial condition
M Biot’s modulus
p pore pressure
t time
u skeleton displacement vector
Vb bulk volume
Vp pore volume.

Greek letters

φ Lagrange’s porosity
ϕ Euler’s porosity
ε strain tensor
εv volumetric strain
µ fluid dynamic viscosity
ρf fluid density
σm mean total stress.

INTRODUCTION

Hydrocarbon or gas reservoir production induces variations in
time and space of reservoir pressure, saturation and
temperature. In turn, changes in thermal and hydraulic
reservoir properties may cause a modification of the stress
state in and around the reservoir. The stress changes may then
alter the reservoir fluid flow parameters and then the reservoir
production scenario. Furthermore, they may also cause a
threat to well integrity when the change in stress state leads to
significant ground strains around wells. Geomechanical
effects can be particularly pronounced in stress sensitive
reservoirs as poorly compacted reservoirs and fractured or
faulted consolidated reservoirs. For poorly compacted
reservoirs, the stress changes may have benefit effects on
fluid recovery due to the reservoir compaction. However, the
reservoir compaction may also reduce the reservoir
permeability, cause surface subsidence and create damage on
well equipment. Fractured and faulted reservoirs are
particularly affected by stress changes induced by reservoir
thermal variations (cold water injection, steam injection, etc.).
The resulting stress changes may enhance or reduce the
fracture conductivity or create preferred flooding directions.

Most of the time, in standard reservoir simulators, the
description of the mechanical behavior of the reservoir and
its possible adjacent formations are neglected or reduced to a
weak contribution. This is for instance the case for reservoir
compaction that is only accounted for in standard reservoir
simulator with a pore compressibility factor. This simplified
approach has been found to be insufficient to provide an
exact description of the realistic phenomena that may occur
in a stress dependent reservoir. The influence of geo-
mechanics in reservoir simulations has been illustrated by
Rhett and Teufel (1992), Ruistuen et al. (1996) and Gutierrez
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the pore compressibility factor, the only mechanical parameter used in such simulators, is not sufficient
to represent the complex phenomena involved. In order to solve correctly this problem, the full thermo-
hydro-mechanical equations must be addressed. The corresponding set of equations can be either solved
simultaneously (fully coupled scheme) or using a conventional reservoir simulator in conjunction with
a geomechanical simulator and information exchanges between the two simulators (partial coupling).
The paper presents three formulations of the partial coupling, which are obtained in the framework of
single-phase flow and a linear elastic isotropic rock behavior. This simple framework makes possible an
easy and rigorous derivation of the porosity correction to be appended to the reservoir Lagrange’s
porosity used in the reservoir simulator. The porosity correction depends on the pore compressibility
factor and a mechanical contribution that can be expressed either in terms of volumetric strain, pore
volume change, or the mean total stress change. One formulation is tested on a numerical test that
depicts the water flood through a laboratory core sample initially saturated with oil and constrained to
uniaxial strain. The numerical test illustrates the importance of the mechanical effects on the fluid flow
problem and validates the partial coupling proposed. The example also highlights the role of the pore
compressibility factor in the partially coupled reservoir simulation. Actually, in the partially (iteratively)
coupled approach, the pore compressibility factor can be interpreted as a relaxation parameter
controlling the convergence speed of the iterative process between reservoir simulation and
geomechanical simulation.
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and Lewis (1998) who provided evidence that reservoir
compressibility and permeability strongly depend on the
stress path followed by the reservoir. This result demon-
strates that the pore compressibility used in reservoir
simulators is not sufficient enough to reproduce pore volume
changes induced by pressure and temperature variations (see
Tortike and Farouq, 1993; Settari and Mourits, 1998). Osorio
et al. (1998, 1999) emphasised the role of the reservoir
surrounding domain (the reservoir extended stress-disturbed
region induced by reservoir production) in their coupled
fluid-flow/geomechanical modeling. They particularly
investigated the effects of the mechanical boundary condi-
tions (applied on the reservoir surrounding domain) and the
mechanical parameters on the reservoir productivity. The
water weakening effect described by Sylte et al. (1999)
and Hermansen et al. (2000) (reduction of the reservoir
mechanical strength with increasing water saturation) can’t
be accounted for with a conventional reservoir simulator.
Chin and Thomas (1999) investigated the role of the rock
constitutive behavior, stress-dependent permeability, over-
burden/reservoir interaction and water weakening effect
on the oil recovery of a poorly compacted reservoir. In
the case of fractured reservoirs, Gutierrez and Makurat
(1997) showed that fracture permeability changes due to
temperature and fluid pressure variations induced by
reservoir production can significantly alter the water flood
behaviour of the reservoir. The evidence of preferred
flooding directions during water flood in both “naturally
fractured” and “unfractured reservoirs” have been illustrated
by Koutsabeloulis et al. (1994) and Heffer et al. (1994).

The previous references show that, for stress dependent
reservoir, a conventional reservoir simulation may lead to
significant inaccuracies in the oil production forecast given
by the numerical simulations. These inaccuracies can be
reduced when the problem is analysed in its whole from
the thermo-hydro-mechanical point of view. There are
two different approaches for solving the thermo-hydro-
mechanical equations: the fully coupled approach simul-
taneously solves the all set of equations in one simulator,
whereas the partially coupled approach uses a conventional
reservoir simulator in conjunction with a conventional
geomechanical simulator. This paper presents different
formulations of the partially coupled approach, which
describe the porosity changes resulting from the stress
computation and that have to be implemented in a
conventional reservoir simulator to account for compaction
phenomenon. Partial coupling formulations are derived
under isothermal conditions and assuming a linear poro-
elastic behavior of the rock saturated with one fluid. The
linear poroelastic framework used in this paper makes
possible an easy presentation of the partial coupling
methodology and formulations. Finally the last section of the
paper compares conventional reservoir, partially coupled and
fully coupled modeling on a dead oil case with porosity

changes induced by pressure changes. This simple one-
dimensional example illustrates the effects of the rock
mechanical behavior on the fluid flow problem and the role
of the pore compressibility factor on the partially coupled
approach.

1 LINEAR POROELASTICITY

We recall in this section the basic equations that govern the
problem of consolidation of a porous medium as firstly
introduced by Biot (1941). The porous medium is considered
as the superposition of a moving fluid saturating the
connected porous space and a deformable skeleton (the solid
matrix and the connected pore space without the fluid). The
following assumptions on the fluid and the skeleton are
introduced:
– the fluid flows through the porous medium according to

Darcy’s law;
– the fluid is compressible;
– the porous medium is isotropic;
– the skeleton transformations are infinitesimal;
– the behavior of porous medium is poroelastic (i.e. linear

and reversible).
In what follows, we use the sign convention of continuum

mechanics for which stress and strain are positive in tension.
According to the previous assumptions, one can obtain in
Euler coordinates the governing equations describing the
deformation of the skeleton and the motion of the fluid in the
porosity. Using the skeleton displacement vector and the
fluid pressure as primary variables, the governing equations
read (Biot, 1941; Boutéca, 1992; Coussy, 1995; Lewis and
Schrefler, 1998):

(1)

(2)

with ∇2 = the Laplacian operator, and ∇ = the gradient oper-
ator. The displacement vector defines the strain tensor ε with:

(3)

The volumetric strain εv appearing in Equation (1) is given
by the trace of the strain tensor:

(4)

The Biot’s modulus M is related to the rock and fluid
characteristic with (Coussy, 1995):
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where φ0 is the reference porous medium porosity
(Lagrangian or Eulerian definition). The Biot’s coefficient b
is related to the matrix and drained bulk moduli Ks and Kd
with the Biot relation:

(6)

Equation (1) arises from the fluid mass balance equation
whereas Equation (2) characterises the equilibrium equations
in case of zero body forces. Equations (1) and (2) are fully
coupled because the displacement vector and the pore
pressure appear in each equation. On the one hand, the
displacement vector acts on the pressure Equation (1) by
means of the volumetric strains. The resulting term (i.e. the
right hand side of Equation (1)) accounts for the effects of the
rock bulk volume variations induced by the skeleton
deformation on the pressure changes. On the other hand, the
pore pressure gradient affects the stress equilibrium equation
through the right-hand side of Equation (2). The full set
of Equations (1-4) with boundary conditions and initial
condition can be solved analytically for simplified geometry
or numerically for more general cases.

2 CONVENTIONAL RESERVOIR APPROACH
BASED ON RESERVOIR COMPRESSIBILITY

In reservoir engineering, the effects of the stress variations on
the fluid behavior are neglected or simplified so that the
reservoir engineer focuses on the fluid flow problem.
Incorporating Darcy’s law in the fluid mass balance equation,
one obtains:

(7)

The porosity appearing in Equation (7) must be
considered as an Euler’s porosity, i.e. the ratio of the pore
volume and the bulk volume defined in the deformed
configuration:

(8)

where Vp is the pore volume in the deformed configuration
and Vb is the bulk volume in the deformed configuration.
However, the porosity used in reservoir simulators refers to
the initial configuration (Settari and Mourits, 1994) and
therefore must be considered as a Lagrange’s porosity, i.e.
the ratio of the pore volume Vp defined in the deformed
configuration and the bulk volume Vb

0 in the initial
configuration: 

(9)

Within the assumption of infinitesimal deformation,
Euler’s and Lagrange’s porosities are related with the
volumetric strain by:

(10)

Note that the initial Euler’s and Lagrange’s porosities are
equal as long as no deformation has occurred, and they are
noted φ0 in this paper. Furthermore, Equation (10) shows that
the assumption that the Lagrange’s porosity may be used in
reservoir simulators only holds for non deformable porous
media. In reservoir simulators, it is a common practise
to introduce a pressure dependency to the reservoir porosity
(i.e. the Lagrange’s porosity). A typical equation for the
Lagrange’s porosity is (we recall that the temperature is
supposed constant here):

(11)

According to Equation (11) and assuming a linear
constitutive behavior, the reservoir porosity linearly depends
on the pore pressure and the proportionality coefficient, the
pore compressibility cp, can be computed from:

(12)

where Vp
0 is the pore volume in the reference configuration.

This coefficient accounts for the in situ pore volume strains
that follow from changes in the reservoir pore pressure. It is
measured by reservoir engineers under a reservoir specific
and constant stress path. Note that exponential dependency of
the porosity-pressure relationship are also used in reservoir
simulators. Equalling Expression (11) of the Lagrange’s
porosity used in reservoir simulator and the expression of
the Euler’s porosity deduced from linear poroelasticity
equations for isotropic material, Settari and Mourits (1994)
show that the pore compressibility should be given by (at the
first order):

(13)

where cs and cb are material properties: cs = 1/Ks is the matrix
compressibility and cb = 1/Kd is the drained compressibility.
In addition to the pore compressibility term, Settari and
Mourits (1994) propose to add to the reservoir porosity given
by (11) with (13) a porosity correction deduced from a
geomechanical simulation and given by:

(14)

where σm is the mean total stress = σii/3, resulting from the
geomechanical simulation.

The following developments show how Equation (7) used
with a Lagrange’s porosity can be transformed in a pressure
diffusion equation representative of the problem solved in a
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reservoir simulator. Conventional reservoir simulators
consider compressible fluid with a density depending on the
pore pressure. The linearized form of the fluid state law
reads:

(15)

where ρf
0 is the initial fluid density and cf is the fluid

compressibility accounting for fluid density changes with
pore pressure and is defined by:

(16)

According to the reservoir approach, we use the
Lagrange’s porosity in Equation (7). Expanding the first term
of the left-hand side of Equation (7), we get:

(17)

Introducing expressions (11) and (16) of the Lagrange’s
porosity and the fluid density, and linearizing the resulting
equation yields the following pressure diffusion equation (see
also Boutéca, 1992; Cossé, 1993, in the case of a non-
deformable porous media for which cp = 0).

(18)

Equation (18) can be used with boundary and initial
conditions to predict pressure variations in the reservoir. Note
that according to this equation, the pore compressibility
remains the only mechanical parameter involved in a
reservoir simulator.

3 FROM POROELASTICITY TO A RESERVOIR
SIMPLIFIED DIFFUSIVITY EQUATION

This section shows how the diffusion Equation (18) can be
recovered from simplifying assumptions in the geo-
mechanical model (i.e. Eqs. (1) and (2)). As for the reservoir
engineering approach, the whole attention is paid to the
pressure diffusion Equation (1) whereas the mechanical
problem given by Equation (2) is simplified. First, we
assume that the rock matrix is uncompressible (i.e. Ks = ∞)
so that Equations (5) and (6) give the following approxi-
mations of the Biot’s modulus and coefficient:

(19)

Next, the right-hand side of Equation (1) has to be
approximated as a function of the pore pressure. Using the
last approximation of the Biot’s modulus and the fact that the
pore and bulk volume variations are equalled for an

uncompressible matrix, the right-hand side of Equation (1) is
approximated on the form:

(20)

with the pore compressibility given by Equation (12). When
introduced in Equation (1), approximations (19) and (20)
provide the pressure diffusion Equation (18) usually
encountered in reservoir engineering.

Despite the “realistic” hypothesis of an uncompressible
rock matrix, the diffusion Equation (18) and more generally
the standard reservoir approach disregarding geomechanical
coupling has been found to be inappropriate in numerous
studies concern with stress dependent reservoirs (e.g. Chin et
al., 1998; Gutierrez and Lewis, 1998; Osorio et al., 1998;
Settari and Mourits, 1998). This comes from the lack of
consideration for the geomechanical problem that can
significantly influence reservoir engineer predictions.

4 STRESS DEPENDENT RESERVOIR SIMULATORS

A stress dependent reservoir simulator is a reservoir
simulator that integrates the geomechanical problem.
Therefore, a stress dependent reservoir simulator solves the
fluid pressure problem (i.e. Eq. (1)) with the stress problem
(i.e. Eq. (2)) and possibly the thermal problem. The hydro-
thermo-mechanical problem can then be solved using
different degrees of coupling as firstly described by Settari
and Mourits (1994) and Settari and Walters (1999).
– The fully coupled approach consists in simultaneously

solving the all set of equations that govern the hydro-
thermo-mechanical problem (i.e. Eqs. (1) and (2) in our
case). However, in the fully coupled approach, the
hydraulic or geomechanical mechanisms are often
simplified by comparison with conventional uncoupled
geomechanical and reservoir approaches.

– In the partially coupled approach, the stress and flow
equations are solved separately for each time step but
information is passed between the reservoir and
geomechanical simulators. Therefore the reservoir and
geomechanical problems have to be reformulated
according to the original fully coupled problem. The
partial coupled approach is termed explicit if the
information exchange between both simulators is only
performed once for each time step, or iterative if it is
repeated until convergence of the stress and fluid flow
unknowns. Contrarily to the fully coupled approach, the
partial coupling looks more flexible and benefits from the
high developments in physics and numerical techniques of
both the reservoir simulator and the mechanical software.
The fully coupled approach does not produced particular

difficulties because the all equations are solved in the same
simulator. This is not the same for the partial coupling, for
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which the coupling methodology is detailed in the next
subsections. The key idea of the partially coupled approach
is the reformulation of the stress-flow coupling such that
a conventional stress analysis code can be used in conjunc-
tion with a standard reservoir simulator. We present in
this section how this reformulation can be realised for
Equations (1) and (2).

4.1 Formulation of the Stress-Flow Coupling
in the Stress Simulator

This is the easy part of the partial coupling because the right-
hand side of Equation (2) is the only term that distinguishes
Equation (2) from the stress equilibrium equation encounter-
ed in classical mechanics. As previously mentioned, the
partial coupling is based on an exchange process between the
reservoir and the stress simulators. Thus, assuming that the
pressure is known from the last reservoir simulation, one can
evaluate the right-hand side of Equation (2) with reservoir
pressure values. Consequently, pore pressure variations (and
more generally temperature changes) computed by the
reservoir simulator are converted in distributed load in the
stress simulator. 

When applying the distributed loads, the stress analysis
performed on the reservoir and its adjacent formations
provides the rock stress and strain. The rock strain and thus
the volumetric strain is in turn used in the standard reservoir
simulator with the methodology described in the next section.

4.2 Formulation of the Stress-Flow Coupling
in the Reservoir Simulator

According to the methodology of partial coupling, Equa-
tion (1) arising from the poroelasticity theory has to be
reformulated with a left-hand side similar to the left-hand side
of the diffusion Equation (18) that is representative of the
problem solved in reservoir simulators. This section details
different possible expressions of the right-hand side of the
equation resulting from this process. These expressions use
the values of the pressure computed at the previous iteration
and, depending on the stress simulator outputs, the volumetric
strain, the pore volume variation or the average total stress.

Following the previous methodology, Expression (5) of the
Biot’s modulus M is introduced in Equation (1). One obtains: 

(21)

Equation (21) constitutes an appropriate formulation for
the partial coupling. According to this formulation, a source
term given by the right-hand side of Equation (21) and
depending on the pore compressibility factor must be

considered in the standard reservoir simulator. When
discretizing Equation (21), the pore pressure time derivative
appearing in the source term has to be approximated with the
pore pressure time derivative computed at the previous
reservoir iteration (iteratively coupled) or time step (explicitly
coupled). The volumetric strain derivative of Equation (21) is
evaluated with the difference between the last volumetric
strain computed with the stress simulator and the same
quantity given at the beginning of the time step. Hence the
partial coupling can be simply achieved with a modification
of the second member of the linear system classically solved
in conventional reservoir simulators. Furthermore, the second
member modification due to the partial coupling can be
simply carried out when adding the right-hand side of
Equation (21) to the Lagrange’s reservoir porosity at the
current time step (Bévillon and Masson, 2000). Thus the
porosity correction expressed in terms of pore pressure and
volumetric strain variations to be appended at each iteration
(iteratively coupled) or time step (explicitly coupled) reads:

(22)

The pore volume compressibility cp appears in Equations
(21) and (22). In conventional reservoir simulation this
parameter is determined by the reservoir engineer. In partial
coupling, it can be considered as a numerical parameter
because whatever the value used by the reservoir engineer is,
the geomechanical simulator gives the exact porosity from
which the correction to be applied to the reservoir simulator
is calculated. Hence the main role of the reservoir pore
compressibility appears to act for the stabilisation of the
partially coupled approach. Indeed, if no compressibility is
considered, Equation (21) takes the form:

(23)

Therefore, for uncompressible fluid, the stability of the
coupled approach is not always ensured (see Bévillon
and Masson (2000) for a stability criterion). Despite the
numerical nature of the pore compressibility parameter, the
convergence rate of the method depends on the magnitude of
the pore volume correction to be applied in the reservoir
simulation. Most of the time, the stress path followed by the
reservoir is estimated from ideal cases where either the total
stresses are blocked, or lateral displacements are blocked and
the vertical load is constant (i.e. œdometric deformation).

In the case where the total stresses are blocked (i.e.
∂σkk = 0), the pore compressibility is given by:
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In case of œdometric deformation (i.e. ∂σz = 0 et ∂εr = 0),
the pore compressibility is given by:

(25)

Equation (21) can be reformulated introducing the pore
volume correction or the mean total stress instead of the
volumetric strain. The linear theory of poroelasticity (for an
isotropic porous medium) gives the following relation
between the Lagrange’s porosity, the total volumetric strain
and the pore pressure (Coussy, 1995; Dangla, 1999):

(26)

Introducing Equation (26) in Equation (21), it comes:

(27)

Equation (27) provides a second possible formulation that
can be used for the coupling between the reservoir and the
geomechanical simulators. Contrarily to the first formulation,
the modification of the second member of the conventional
reservoir simulator now depends on the pore pressure deriv-
ative (taken at the previous iteration or time step) and the
Lagrange’s porosity variation (i.e. the pore volume change)
given by the last stress simulation. With this formulation,
the pore compressibility always appears as the numerical
parameter and the right-hand side of Equation (27) can still be
interpreted as a reservoir porosity correction of the form:

(28)

Note that for an uncompressible rock matrix for which
b ≈ 1, cs ≈ 0 and dVp ≈ dVb, both Formulations (21) and (27)
are the same. Finally, let us introduce a last formulation of
the partial coupling approach using the mean reservoir stress.
For an isotropic porous medium, the first law of behavior of
linear poroelasticity leads to:

(29)

with σm the mean total stress = σii/3. Subtracting Equa-
tion (29) to the same equation multiplied by cs/cb, we get
with Equation (6):

(30)

This last equation can be introduced in (21) to give:

(31)

Equation (31) provides a third possible formulation for the
coupling between the reservoir and the geomechanical
simulators. This formulation defines a porosity correction to
be appended to the reservoir porosity and depending on the
pore pressure derivative (taken at the previous iteration or
time step) and the mean total stress computed by the stress
simulator:

(32)

Note that when using the pore compressibility factor (13)
recommended by Settari and Mourits (1994), the term in
factor of the pressure time derivative vanishes and the same
reservoir porosity correction as the one proposes by the
previous authors is obtained (see Eq. (14)). Contrarily to
Formulations (21) and (27), the last formulation (32) using
the geomechanical mean total stress variable does not easily
generalise to complex rock constitutive behavior. The
different formulations of the partial coupling approach for
linear poroelasticity are gathered in Table 1. The main
advantage of these formulations compared to the formulation
proposed by Settari and Mourits (1994) is that the pore
compressibility factor is not fixed but can be chosen by the
reservoir engineer according to either a known physical value
or either stability considerations.

TABLE 1

Porosity correction as a function of the geomechanical variable

Geomechanical 
Reservoir (Lagrange) porosity correction

variable

Volumetric strain

εv

Pore volume 

Vp

Mean total stress

σm

5 EXAMPLE FOR A DEAD OIL CASE

The aim of this section is two folds: firstly, to highlight the
differences between reservoir and hydro-thermo-mechanical
simulators as mentioned in the Introduction, and secondly to
illustrate the methodology of partial iterative coupling as
introduced in Section 4. The section also analyses the
influence of the pore compressibility factor on the iteration
numbers required in the iteratively coupled simulation.
Numerical tests presented here are realised on a one-
dimensional example that makes possible an easy devel-
opment and comparison between reservoir, fully coupled and
iteratively coupled reservoir simulators.
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5.1 Example Description

We consider an isotropic porous cylinder of radius R = 0.25 m
and length L = 1.50 m (Fig. 1). For this given geometry, we
successively describe the mechanical and fluid flow problems
addressed.

Figure 1

Cylinder with no lateral movement.

For the mechanical problem, we consider that there is no
lateral movement in the x- and y-directions and we assume
that the strains only occurs in the z-direction (uniaxial strain
hypothesis). The boundary condition consists in a total
displacement ∆uz that is applied to the whole cylinder in the
z-direction. According to the geometry of the problem the
strain and stress tensors read in cylindrical coordinates:

(33)

Using the law of linear poroelasticity for an initial
isotropic state given with a null fluid pressure and a total
stress σ0, the stress and strain are related to the fluid pressure
with:

(34)

(35)

where Kuni is the bulk modulus in uniaxial condition and λd is
the Lame’s constant in drained conditions. Kuni and λd are
related to the rock shear modulus G and the drained bulk
modulus Kd with:

(36)

(37)

The stress equilibrium equation written with no body
forces shows that the uniaxial total stress σz is constant
(i.e. does not depends on the cylindrical coordinates r,
θ and z). Using this result and the boundary condition (i.e.

we integrate Equation (34) in the z-

direction. One obtains:

(38)

Equation (38) provides a useful relation that relates the
uniaxial stress variation (σz – σ0) to the total pressure change
in the cylinder. When the uniaxial stress variation is known,
it is possible to compute the strain εz as a function of the
pressure with:

(39)

Note that if we assume that the vertical load is constant
(i.e. σz = σ0), the volumetric strain is proportional to the pore
pressure variation and the proportionality coefficient
can be used to compute the pore compressibility factor
in œdometric deformation (Eq. (25)). As a consequence, in
œdometric deformation, the change in Lagrange’s porosity is
proportional to the pore pressure change. This is not the case
for the mechanical problem considered here where we
assume that the total vertical displacement is blocked instead
of a constant vertical load. Thus, for the present case, the
Lagrange’s porosity change depends not only on the pore
pressure change but also on the vertical stress variation
(Eq. (39)). Furthermore, as the vertical stress variation
depends on the total pressure variation (Eq. (38)), the local
porosity change can’t be proportional to the local pressure
change. This result explains the discrepancy between
conventional reservoir simulation and fully coupled reservoir
simulation presented in Section 5.2. 

For the fluid flow problem, we consider that the cylinder
is initially saturated with oil and that a constant water flux is
imposed at the top of the cylinder, a null pressure being
imposed at the bottom boundary. The fluid flow problem can
be interpreted as an isothermal water flood through a
laboratory core sample. The mass balance equations for the
oil and water read (gravity effects are neglected):

(40)

(41)

where Sw is the water saturation, for fluid i (i = o for oil and
i = w for water), ρi is the fluid mass density, µi is the fluid
dynamic viscosity, kri is the fluid relative permeability, and
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pi is the fluid pressure. For the simulations presented here,
the following assumptions are introduced:
– capillary effects are neglected, so that po = pw = p. This

assumption allows us to define a single pressure for the
fluid mixture, which can be considered as the equivalent
pressure of the single-phase flow model supposed in linear
poroelasticity;

– relative permeabilities follow the quadratic laws of the
form:

(42)

– the oil is noncompressible;
– the water is assumed compressible, with its mass density

determined by (cw is the water compressibility and ρw
0 is

the initial water mass density):

(43)

Finally, Table 2 gives parameter values used in the
simulations presented in the following sections. Fluid flow
and mechanical parameters correspond to an elastic highly
deformable rock with an uncompressible rock matrix and
high porosity and permeability. The fluid flow problem is
solved with a finite volume method on a 150 grid size mesh
whereas mechanical unknowns are computed from the direct
discretization of the mechanical Equations (38) and (39).

TABLE 2

Fluid flow and mechanical parameters

Oil viscosity 0.500 Pa·s

Water viscosity 0.001 Pa·s

Intrinsic permeability 5 10–14 m2

Initial porosity 0.30

Initial oil density 950 kg·m–3

Initial water density 1000 kg·m–3

Water compressibility 4 10–10 Pa–1

Water top influx 0.02 kg·m–2·s–1

Drained elastic modulus 3 109 Pa

Poisson’s ratio 0.3

Drained bulk modulus 2.5 109 Pa

Rock shear modulus 1.15 109 Pa

Biot’s coefficient 1

Total displacement along z 0 m

5.2 Comparison between Fully Coupled
and Conventional Reservoir Simulations

This section compares the solutions obtained with a reservoir
simulator and a fully coupled simulator.
– The reservoir simulator solves Equations (40) and (41)

(with (42) and (43)) with the finite volume method
(Eymard et al., 2000). The scheme derived for the
resolution of Equations (40) and (41) uses a pore
compressibility factor cp as described in Section 2 of this
paper. Its value is fixed to the pore compressibility factor

in œdometric condition. Taken into account the uncom-
pressible rock matrix assumption, the pore compressibility
factor equals 1/(φ0Kuni). The time step size of the reservoir
simulator is not constant but computed according to a
predictor-corrector criterion.

– The fully coupled approach simultaneously solves the two
mass balance Equations (40) and (41) with the finite
volume method and Equation (38) discretized with the
unknown values of the pore pressure. This means that,
assuming that the number of finite volume cells is N, the
fully coupled approach turns to simultaneously solve
2N+1 equations (i.e. Equations (40) (41) for each finite
volume cell + Equation (38)) with 2N+1 unknowns (i.e.
water saturation and pore pressure at each finite volume
cell + the uniaxial stress). Due to the uncompressible rock
matrix assumption, the porosity of each finite volume cell
appearing in the mass balance Equations (40) (41) is
computed as the initial porosity plus the volumetric strain
(i.e. εz) of each finite volume cell. These last values are
deduced from the discretized form of Equation (39).
Figure 2 compares the oil production (i.e. the oil volume

recovered from the sample) obtained with the two
simulations. The oil productions obtained with each
simulator significantly differ during the two hours of the
“numerical” experiment. As previously mentioned, the
discrepancy between the two simulations arises from the fact
that the reservoir simulation assumes œdometric deformation
whereas in the fully coupled simulation the total vertical
displacement is supposed to be zero. Note that the gap in oil
production slowly decreases as time flows since the final
volume of oil produced must converge at infinity towards the
volume of oil initially present in the core sample (i.e. φπR2L
≈ 0.088 m3). Figure 2 also shows that the water breakthrough
(characterised by the change in slope of the oil production
curve) occurs first for the fully coupled simulation after
approximately half an hour and next for the conventional
reservoir simulation after 40 min of water injection.

Figure 2

Comparison of the oil production for the fully coupled model
(solid lines) and the reservoir model (solid line and ).
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Figure 3 displays the pore pressure obtained with both
simulators at different values of time. One can notice that the
pressure plots strongly differ since the short time values. This
difference arises from the pore volume reduction that is
predicted in the bottom of the cylinder (Fig. 4) by the
coupled simulation due to the boundary condition of zero
displacement. The pore volume reduction leads to an
instantaneous increase of the pressure for the fully coupled
approach and that cannot be accounted for with the reservoir
approach (Gutierrez and Lewis, 1998). The pore pressure
increase together with the pore pressure boundary condition
at the bottom of the cylinder initiate an early oil production in
the fully coupled simulation than for the conventional
reservoir simulation (Fig. 2).

Figure 3

Comparison of the pressure in the cylinder for the fully
coupled model (solid lines) and the reservoir model (dashed
line) at different values of time: ( ) 1 min, (■ ) 15 min,
(O) 30 min.

Figure 4

Comparison of the porosity in the cylinder for the fully
coupled model (solid lines) and the reservoir model (dashed
line) at different values of time: ( ) 1 min, (■ ) 20 min,
(O) 30 min.

Figure 5 displays the water saturation obtained with both
approaches. The water saturation profiles are very closed at
the beginning of the experiment. However, the water
saturation “front” computed with the fully coupled simulator
progresses more rapidly in the cylinder. This leads to an early
water breakthrough for the fully coupled model than for the
reservoir model (see also Fig. 2). Finally, Figure 4 presents
the porosity obtained with the reservoir simulator (initial
porosity + porosity change due to pressure change according
to the pore volume compressibility factor) and the fully
coupled simulator (initial porosity + volumetric strain
computed from Equation (39)). On the one hand, the porosity
change computed with the reservoir simulator is necessarily a
porosity increase due to the pore pressure increase. On the
other hand, the fully coupled simulator predicts a porosity
reduction in the bottom zone of the cylinder. This is due to
the null strain boundary condition imposed to the whole
cylinder. Due to the porosity increase in the top zone of the
cylinder, the null boundary displacement of the whole
cylinder necessarily implies a porosity decrease (and then a
fluid compression) in the bottom of the cylinder. This effect
cannot be accounted for in the reservoir simulator where the
mechanical problem is not addressed.

Figure 5

Comparison of the saturation in the cylinder for the fully
coupled model (solid lines) and the reservoir model (dashed
line) at different values of time: ( ) 1 min, (■ ) 15 min,
(O) 30 min.

5.3 Comparison between Fully Coupled
and Partially (Iteratively) Coupled Simulations

This section compares the solutions obtained with the fully
coupled simulator and the iteratively coupled reservoir
simulator. The fully coupled simulator is described above, so
we just describe the iteratively coupled simulator as firstly
introduced in Section 4. The iteratively coupled simulator is
based on an iterative scheme between reservoir simulation
and mechanical simulation (illustrated here by the resolution
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of Equations (38) and (39)). The reservoir simulator uses
the œdometric pore compressibility cp = 1/(φ0Kuni) and a
porosity correction given by Equation (22) with cs = 0 and
b = 1 due to the incompressible rock matrix assumption. The
mechanical simulator consists here in the computation of the
uniaxial stress σz (see Equation (38)) using the finite volume
pore pressures given by the reservoir simulator. Using these
last values and Equation (39), it is possible to compute the
new volumetric strain that will be used to compute the
porosity correction needed for the next reservoir simulation.
Reservoir simulator and mechanical simulator are run at each
time step until a convergence criterion in porosity is reached:
the difference between the “reservoir porosity” and the
“mechanical porosity” must be less than 10–6 times the initial
porosity. This criterion is used for all the iteratively coupled
simulations because it ensures an acceptable convergence of
the pressure, and therefore, a high convergence of the
porosity, saturation and oil production. 

Figure 6 compares the oil production obtained with the
fully coupled simulator and the iteratively coupled simulator.
As expected, the two approaches exactly give the same
results. This can also be observed on Figure 7 were the pore
pressures obtained with both simulators are superimposed.
These comparisons validate the partially coupled approach
introduced in this paper. 

Figure 6

Comparison of the oil production obtained with the fully
coupled simulator (solid lines) and the iteratively coupled
simulator ( ).

Iteratively coupled simulations presented on Figures 6 and
7 are realised with a pore compressibility value fixed to the
œdometric compressibility: cp = 1/(φ0Kuni). In the partially
coupled approach, this parameter of the reservoir simulator is
in fact a “numerical parameter” that can be interpreted as a
relaxation factor. To illustrate the role of this parameter,
Figure 8 plots, for different values of the pore compressibility
factor, the iteration numbers required to reach the same
convergence level of the partial coupling scheme at each time 

Figure 7

Comparison of the pressure in the cylinder for the fully
coupled simulation (solid lines) and the iteratively coupled
simulation at different values of time: (×) 30 s, ( ) 2 min,
(■) 5 min, (O) 10 min.

Figure 8

Iteration numbers obtained with the iteratively coupled
simulator for different values of the reservoir compress-
ibility: ( ) cp = 1.5/(φ0Kuni), (■ ) cp = 1/(φ0Kuni), (O) cp =
0.6/(φ0Kuni).

step. The oil production history obtained for the different
iteratively coupled simulations are superimposed and thus
not compared on an additional figure. As shown by Figure 8,
the beginning of the numerical experiment involves small
time steps that necessitate high iteration levels due to the low
stability of the system for small time step sizes. Figure 8
demonstrates that 1/(φ0Kuni) is not the optimum parameter
for the iteratively coupling scheme because the iteration
numbers can be reduced when using a pore compressibility
equal to 0.6/(φ0Kuni). Note that it was not possible to reduce
the iteration numbers when reducing the pore com-
pressibility to 0.5/(φ0Kuni) for which divergence problem
starts to occur. 
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CONCLUSIONS

1. For stress dependent reservoir as highly fractured and high
porosity reservoirs, a geomechanical modeling must be
associated to the reservoir simulation. The paper proposes
three formulations of the partial coupling approach that
are based on information exchanges between conventional
reservoir and geomechanical simulators. For an isotropic
porous medium and assuming a linear isothermal poro-
elastic behavior of the rock, we derive three formulations
of the porosity correction that should be added to the
reservoir porosity in order to correctly account for the pore
volume variation predicted by the geomechanical
reservoir simulator. The porosity correction depends on
the pore compressibility factor used in the reservoir
simulator and a mechanical contribution that can be
expressed either in terms of pore volume change,
volumetric strain or the mean total stress change.

2. The last part of the paper compares a fully coupled
simulation with conventional reservoir simulation and
iteratively coupled reservoir simulation. The comparison
is carried out on a simplified one-dimensional example for
which the fluid flow problem is nonlinear and the
mechanical problem is linear with the rock matrix
assumed to be non compressible. For the example
considered, the numerical test illustrates the importance of
the geomechanical problem on the fluid flow problem and
reveals that the iteratively coupled formulation proposed
is as rigorous as the fully coupled simulation.

3. The example also illustrates the role of the pore
compressibility factor in the partially coupled reservoir
simulation. This parameter can be interpreted as a
relaxation parameter that controls the convergence speed
of the iteratively coupled process between reservoir
simulation and geomechanical simulation. This parameter
has to be chosen carefully in order to reduce the iteration
numbers and avoid divergence of the process.

4. The formulations described in the paper need to be
extended to non isothermal conditions and to nonlinear
elasticity in order to account for realistic phenomena that
can be observed during reservoir production.

5. Finally, the number of geomechanical simulations can be
reduced if the mechanical problem is solved after long
period of time including several conventional reservoir
time steps. This is the idea of the stress dependent reservoir
simulator ATH2VIS that uses the conventional reservoir
simulator ATHOS™ developed at IFP in conjunction with
the VISAGE™ system (VIPS Limited, 2001).
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