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Résumé — Les réseaux de neurones pour l’amélioration de la simulation hydrodynamique du
comportement des écoulements polyphasiques dans les conduites — Les simulateurs d’écoulements
multiphasiques sont généralement utilisés pour dimensionner le schéma de production. L’un des
problèmes rencontrés est de prédire de façon exacte une chute de pression et l’arrêt de circulation. Ceci
peut être résolu grâce à l’utilisation d’un schéma numérique précis et un comportement
thermodynamique approprié lié à un modèle hydrodynamique adapté et robuste. 

Dans le code Tacite, développé par l’IFP, un modèle hydrodynamique mécanique a été développé. Ce
modèle est capable de prédire le régime d’écoulement, les vitesses de phases et les chutes locales de
pression pour tous profils et tous diamètres. Il contient les lois de fermeture fondées sur les régimes
d’écoulements. Ce modèle mécanique a été validé sur différentes bases de données. 

Les deux limitations de ce type de modèle hydrodynamique peuvent être les perturbations mathématiques
(continuité et dérivabilité ne sont pas toujours garanties) et le temps de calcul. Ceci peut être gênant
lorsque l’on utilise un schéma numérique précis requérant des calculs de dérivées, et dans l’objectif du
temps réel.

Cet article présente une démarche s’appuyant sur les réseaux de neurones pour remplacer le module
hydrodynamique du modèle diphasique selon deux objectifs :

– éliminer les problèmes de discontinuité durant les calculs hydrodynamiques ;

– réduire significativement le temps de calcul.

Cette méthode a été testée sur des données expérimentales et simulées. Les résultats présentés prouvent la
pertinence de cette approche.
Mots-clés : écoulements polyphasiques, réseaux de neurones, hydrodynamique.

Abstract — Neural Networks Tools for Improving Tacite Hydrodynamic Simulation of Multiphase
Flow Behavior in Pipelines — Transient multiphase flow simulators are generally used to dimension the
production scheme. One of the problems encountered is to predict accurately the pressure drop and the
liquid holdup. This can be solved using an accurate numerical scheme and an appropriate
thermodynamic behavior linked to an accurate and robust hydrodynamic model.

In the Tacite Code, developed by IFP, a mechanistic hydrodynamic model has been developed. This
model is able to predict the flow regime, the phase velocities and the local pressure drop for all slopes
and all diameters. It contains closure laws based on flow regimes. This mechanistic model has been
validated against various data banks. 
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NOTATIONS

VM barycentric mixture velocity (m/s)
DV difference between gas velocity and liquid velocity
β fraction of separated flow
VG gas velocity
VL liquid velocity.

INTRODUCTION

The Tacite compositional Code [1] is able to simulate the
behavior of transient multiphase flow in pipeline with
process equipment such as controllers, valves, separators or
lateral injectors. This code is composed of three main parts:
the thermodynamic module describes the thermodynamic
state of the system and calculates the fluid physical
properties, the hydrodynamic module mainly indicates the
local pressure drop and phases velocities, and a precise and
robust numerical scheme gives each time a solution [2, 3].

However, this simulator is also able to give precisely the
flow regime during time at each point of a pipeline. But there
are two limitations with such an hydrodynamic model:
continuity, derivability are not always guaranteed and the
computing time is too excessive. This can be troublesome for
real time purposes or when using an accurate numerical
scheme that required derivative computation.

This paper presents a system based on artificial neural
network as an alternative to this hydrodynamic model used
for two phases flow configurations in transient cases. Main
objectives of this approach are to always assure continuity
between different flow regimes and to significantly reduce
computational time. Moreover this model has to be compa-
tible with the computational environment of the Tacite model.

The first part of this paper gives a short presentation of the
Tacite hydrodynamic model and neural networks principles.
In the second part, we describe the structure of the neural
network system developed for the hydrodynamic estimation
and we explain technical choices for making use of it.
Simulations are finally presented to allow comparison
between the existing hydrodynamic model and the neural
network system.

1 TACITE HYDRODYNAMIC MODEL

In this section, we describe the hydrodynamic model
considered as a reference for Tacite development: this model
takes into account flows regimes and the existing knowledge
in hydrodynamic area. There are three main flow regimes
considered with Tacite:
– in stratified flow, a liquid layer flows beneath the gas

stream. The phases interact through the interface which
may be smooth or wavy;

– in dispersed flow, the gas is assumed to be distributed in
the form of spherical bubbles, and the liquid phase is
continuous;

– in the intermittent flow, liquid slugs containing dispersed
bubbles alternate with gas pockets where the flow is
essentially stratified.
Finally, main outputs of this model are DV, the difference

between gas velocity and liquid velocity, and β, the fraction
of separated flow; the others follow directly from these
values.

This model is strongly nonlinear, because of the nature of
described phenomena. Then, sometimes, it can not assure
continuity and derivability of the solutions. This implies long
time computation. In order to accelerate obviously time
computation required for the estimation of hydrodynamic
flow characteristics and for the numeric scheme resolution, it
seems necessary to assure DV continuity and derivability and
to estimate β without help of a choice module. Indeed, the
Tacite hydrodynamic module solves two implicit functions
and calculates by iterations hydrodynamic flow charac-
teristics; an explicit C∞ function would give faster these
results.

2 ARTIFICIAL NEURAL NETWORKS

Artificial neural networks are a statistical approach of data
processing, based on training methods [4-6]. Initially this
approach was used for automatic classification. Today, its
ability to approximate complicated systems behavior allows
to consider it also as a modelling tool. This approach is then
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The two limitations of such an hydrodynamic model may be its mathematical disturbance (continuity,
derivability are not always guaranteed) and the time consuming. This can be troublesome when using an
accurate numerical scheme that requires derivative computation and for real time purposes.

This paper presents a neural network based approach to efficiently replace the hydrodynamic module in
the two phase model with the following two objectives: 

– to avoid discontinuity problems during hydrodynamic computations;
– to reduce significantly computational time.

This method was tested with experimental and simulated data. The results given in this paper prove the
relevancy of this approach.
Keywords: multiphase flow, neural networks, hydrodynamic.
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dedicated to facilitate the resolution of problems which were
previously difficult or impossible to solve. They are often
characterized by their nonlinearity, and the large number of
their entries. 

In their concept, artificial neural networks are a simplified
simulation of biological neural networks. They are structured
in many layers of neurons (Fig. 1), through which the
information signal travels to be processed.
– As input, each neuron receives signals sent by other

neurons. It then applies on them a generally nonlinear
function, named activation function, in order to produce
its output.

– Neurons are connected between them to transmit
information. Each link is associated with a weight to
modulate the importance of each information part in the
neural network by multiplying the signal transmitted.
Then, the neuron inputs are weighted sums of connected
neuron outputs (Fig. 2).
The development of a neural network consists in the

determination of its structure and its optimum weights. To
realize this optimization, the network has to be trained with
help from a database. We can then distinguish two main
categories of artificial neural networks: the unsupervised one
[7] and the supervised one. 
– The first one is usually used for classification, because of

their capacity of self-organization; no feedback information
about output results are given to help the network in its
data analysis. 

– With the supervised method, the network development is
realized with help from input and output information, to
determine optimum link weights. 

Whatever the nature of neural network, this approach
requires an important database. This database is divided in
three portions, each one representing the behavior of the
system in all its definition domain, respectively dedicated for
neural network training, calibration and generalization. 

The training set is used to develop the network. During
this phase of work, different algorithms can be chosen,
depending of the neural network nature; they are used to
calculate optimum link weights to estimate the desired
outputs. 

The calibration database helps to identify the good
moment to stop the training process. Indeed, when the
training is too long, the network is overtrained; it memorizes
the examples proposed by the training database, but its
outputs are not representative of system response in all its
definition domain. It is unable to interpolate the system
behavior between two examples extracted from training
database. Then the calibration database is used during the
training process to evaluate the generalization capacity of the
network. When the difference between desired outputs and
calculated outputs for this database increases, the training
process must be stopped. 

The generalization database contains signals that the
network never processed. It is used only when a network is
chosen, its structure determined and optimum weights
estimated. Then this base allows to test its generalization
ability: the estimation error given by the difference between
desired outputs and the same outputs calculated by the
network represents an evaluation tool for the estimation of its
performances.
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3 HYDRODYNAMIC MODELLING 
USING ARTIFICIAL NEURAL NETWORKS

In this section, we present the solutions chosen to generate a
model based on artificial neural networks able to estimate at
each time the flow regime in the case of two phases flows.
Technical choices are described, which take into account
environmental constraints.

3.1 Databases

3.1.1 Description

One must keep in mind that the reference model to develop is
the Tacite hydrodynamic model. For this reason, a database
was created, according to the physical domain of inputs
variations and corresponding outputs calculated by Tacite.
This database can be as big as needed for neural networks
development. Furthermore, generalization performances of a
neural network are particularly better when the training
database gives a good representation of outputs variations.
Thus, DV outputs contained in the database dedicated for
Tacite hydrodynamic modelling are uniformly distributed on
a given interval.

Moreover, beside this synthetic database, an experimental
one is also available. It is the Boussens database [8] which
was used for the validation of our reference hydrodynamic
model.

3.1.2 How to Use these Data?

These databases allow to elaborate neural networks system
and to optimize it. They are also useful to evaluate the system
behavior facing new unknown data. In the case of networks
elaboration, a first package of synthetic data is used for
neural networks training and a second one helps to determine
overtraining. 

In order to validate the system with unknown data, two
other groups of data are processed:
– The first one is composed of the last unused data extracted

from the synthetic database (near 36 000 points). This
makes it possible to compare the outputs given by the
neural network system and Tacite hydrodynamic module
in the case of inputs and outputs never processed in
elaboration phases. These comparisons must prove
validity and efficiency of technical choices.

– The second one is the Boussens database. It represents
particular experimental cases. The use of this database
aims at showing the neural network system behavior in
case of field data. 
For those different validation tests, performances have to

be evaluated:
– Concerning DV estimation, a comparison between the

(DV/VM) ratio estimated by the system and that contained

in the synthetic database is done. Indeed, this ratio is of
prime necessity for process implemented in other Tacite
modules. The compatibility between neural networks
system and the environment represented by Tacite is then
measurable thanks to this ratio. The same comparison is
performed for Boussens data.

– Evaluations of the performances are more complex with β
estimation: regression and classification capacities of the
system have to be proved. Then, a confusion table is
calculated: it gives the percentage of well classification of
β, for each class of β, obtained when using either neural
networks or Tacite module. Furthermore, in the case of 
0 < β < 1, the regression ability of the system is evaluated
by comparing β given by Tacite with β processed by
networks.

3.2 Neural Networks

DV and β can be separated as outputs of two different
systems. Indeed, they are not correlated, and DV continuity
and derivability are not imposed in the case of β estimation.

As inputs and outputs are well known for each DV and β
estimation, the supervised neural network methods seem to
fit the best.

Taking into account these considerations, DV estimation is
realized thanks to Multi Layer Perceptron (MLP) neural
networks [4-5]. 

The system dedicated to DV estimation is described in
Figure 3. It consists of three elements:
– normalization: as the magnitude orders of the 10 inputs

can highly differ between them, it is necessary to
normalize them;

– the MLP neural networks link the 10 inputs with DV by a
nonlinear transformation;

– after MLP process, DV varies in [0;1] interval. Then a
denormalization function is required to obtain its real
value. 
In the case of β estimation, MLP neural networks are used

for classification and regression. The system developed for
this study is able to give the nature of flow regime in the case
of one or two phases. As for DV estimation, inputs have to
be normalized. But there is no need for β denormalization: β
value always varies between 0 and 1 (Fig. 4).  

Training phases are realized thanks to the training part of
the synthetic database. The second part of those data is also
used, to determine the overtraining threshold. For each neural
network to be realized, different structures are tested, whose
differences are the number of hidden layers, the number of
neurons in each layer, the activation function, and the cost
function to minimize as estimation of the distance between
the objective (Tacite reference hydrodynamic module
outputs) and neural network ones. 
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Depending on the nature of the regression and of the
classification, a structure is finally chosen for each part of the
neural networks system, to optimize DV and β estimation.
This optimization represents an important work which
determines the results quality.

3.3 Results

3.3.1 Validation of DV Estimation

Figures 5 and 6 show neural networks generalization
performances for DV regression in the case of synthetic
database. They represent synthetic database values as
function of estimated values, respectively for DV and
(DV/VM) ratio. Qualitatively, only a few points are far from

the first bisector. Table 1 gives statistical quantities to
quantitatively compare the (DV/VM) ratio contained in the
synthetic database (SD) with the same ratio calculated by the
neural networks system. This table shows that the system is
able to reproduce the statistical behavior of the Tacite
module. Moreover, one can define the relative error as: 

where NN = neural network and K = total number of data.
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The difference DV between gas velocity and liquid velocity
estimated by the neural networks system as function of DV
given by Tacite.

Figure 6

The ratio between the difference DV between gas velocity
and liquid velocity estimated by the neural network system
and the barycentric mixture velocity, VM, as function of the
same ratio given by Tacite.
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TABLE 1

Statistics concerning the ratio between the difference DV
between gas velocity and liquid velocity 
and the barycentric mixture velocity, VM, 

in the case of synthetic database

Mean Standard deviation

Synthetic database 0.69 0.63

Neural networks estimations 0.7 0.55

When applied to the synthetic database and its estimation
by neural networks, we obtain:

This relative error is low. Figure 7 shows the error E
distribution for each estimation: more than 85% of unknown
examples presented to the neural networks system are
estimated with less than 10% of relative error. These results
confirm that the system developed comes up to modelling
expectations: C∞ property of DV response obtained with
neural network method doesn’t generate big relative errors.

In the case of Boussens measurements, the results are
good too. Table 2 gives statistical results corresponding to
the same ratio estimation, which are well estimated too.
However, these results are less satisfactory than the previous
ones, because of the nature of the noised measurements used
to calculate (DV/VM)Boussens ratio. 

Figure 7

Distribution of relative error for the ratio between the
difference DV between gas velocity and liquid velocity and
the barycentric mixture velocity, VM, for neural network/
Tacite comparison.

TABLE 2

Statistics concerning the ratio between the difference DV
between gas velocity and liquid velocity estimated 

by the neural network system and the barycentric mixture velocity, 
VM, in the case of synthetic database

Mean Standard deviation

Boussens database 1.7 4.33

Neural networks estimations 1.3 4.01

TABLE 3

Confusion table for β classification in the case of general database

Estimation

Data C1 = {β = 0} C2 = {0 < β < 1} C3 = {β = 1}

C1 = {β = 0} 87.3% 10.7% 2% 100%

C2 = {0 < β < 1} 3.1% 81.5% 15.4% 100%

C3 = {β = 1} 0.2% 4.8% 95% 100%

3.3.2 Validation of β Estimation

As explained previously, performances evaluation of β
estimation is composed of two parts: β classification and β
regression in ]0;1[ interval. A confusion table helps to show
classification ability of the system; a representation of βTacite
as function of βNN is dedicated to regression performances. 

In terms of classification, Table 3 shows that the system can
classify very efficiently unknown data to determine the nature
of flow regime (dispersed = C1; intermittent = C2; stratified 
= C3). Indeed, the results concerning well classification are
respectively 87,3% for dispersed regime (β = 0), 81.5% for
intermittent one (0 < β < 1) and 95% for stratified one (β = 1).
The worst result is obtained for β ∈ ]0;1[, due to difficulties to
classify the values at the border of the other classes.

Concerning β regression in the case of an intermittent
flow regime, Figure 8 shows how the system is able to
evaluate β value. Even if those results are not as accurate as
the ones obtained for DV regression, their precision is
adequate: β influence is less than DV one for the computation
of  numerical flux and derivatives. 

All previous results are globally well and validate the
process chosen in this study. Then, a general system elaborated
with help from a synthetic database including all physical
intervals of inputs variations can be generated to give good
estimations of main hydrodynamic quantities, with a important
reduction of computation time: the factor of reduction is nearly
15 (mean of nearly 36 000 calculations of synthetic data). This
method can be improved by elaborating specific models,
linked to particular production fields. The next paragraph
explains this process in the case of Boussens field.
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Figure 8

Regression of the fraction of separated flow in the case of 
0 < β <1 synthetic database.

3.3.3 Validation of the Method for Boussens Field

As explained in the previous part about DV estimation, inputs
variations are different for Boussens field than for synthetic
database. It is then possible to generate a synthetic database
dedicated to this case by changing variations intervals of
inputs definitions. The system optimization is based on this
specific database, to take into account field specificity. The
system structure (number of hidden layers, number of
neurons for each layer, activation function, etc.) are adapted
to field characteristics. Then, the estimation results are
remarkably improved. Indeed, we can for example compare
confusion tables previously obtained in general cases with
the one stemmed from specific optimization (Table 4):
results are well and confirm a saving of precision.

This system was tested with Boussens data, where some
data are calculated with help from measurements. In this
case, β classification results are given by Table 5. Taking
into account that it is very difficult to distinguish β values
near 0 or equal to 0 (respectively near 1 or equal to 1) by
measurements, β is generally well estimated. But some
values near 0 are attributed to the second class, and there is
the same phenomenon near 1. This explains the percent equal
to 42.4% and 28.6% of the confusion table. Moreover, values
associated with these bad classified points are estimated near
0 (respectively near 1) with β regression. Then, their bad
classification is directly linked with measurements precision.
In conclusion, even if those results are not as excellent as
synthetic ones, they give generally a good β estimation and
show that the precision obtained with a process of specific
neural network system optimization is useful to make the
system robust with noise measurements. 

TABLE 4

Confusion table for β classification in the case of specific database

Estimation

Data C1 = {β = 0} C2 = {0 < β < 1} C3 = {β = 1}

C1 = {β = 0} 99.49% 0.5% 0.01% 100%

C2 = {0 < β < 1} 1% 98.3% 0.7% 100%

C3 = {β = 1} 0.05% 2.9% 97% 100%

TABLE 5

Confusion table for β classification in the case of Boussens database

Estimation

Data C1 = {β = 0} C2 = {0 < β < 1} C3 = {β = 1}

C1 = {β = 0} 57.6% 42.4% 0% 100%

C2 = {0 < β < 1} 0% 85.6% 14.4% 100%

C3 = {β = 1} 0.3% 28.6% 71.1% 100%

CONCLUSION

The aim of this study was to model effluents hydrodynamic
behavior in pipelines thanks to derivable solutions, even at
flow regime transitions. Modelling constraint was to be
compatible with the physical environment of the existing
model, in order to replace it directly. Then, the modelling
reference was the Tacite hydrodynamic module and
development validations had to be realized by comparing
system results with Tacite ones. 

The main parameters to characterize hydrodynamic
behavior are the difference of velocity between gas and
liquid named DV, and β, the separated flow fraction. This
paper shows that those parameters are well estimated using
neural networks methodology. Moreover, the efficiency of
this development is all the more proved because computing
time is significantly reduced: the saving of time is nearly 15. 

Furthermore, this method shows that synthetic databases
are more useful and efficient for such developments than real
ones, because of their ability to take into account all possible
real cases. But we have seen that if such a process can be
used generally, the neural networks model can be adapted to
specific field applications in order to be more precise and
then to give excellent performances. In conclusion, this
method is efficient, fast to process and adaptable to each case
of production field, to obtain still better precision. This model
is then a new tool to follow along time the flow behavior in a
production field.
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