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Résumé — Poromécanique : de la poroélasticité linéaire à la poroélasticité non linéaire et la
poroviscoélasticité — Compte tenu des répercussions sur les calculs de productivité et de réserves, une
modélisation fiable du comportement des roches est essentielle en ingénierie de réservoir. Cet article
étudie plusieurs aspects du comportement poroélastique des roches dans le cadre de la mécanique des
milieux poreux saturés définie par Biot. Les lois de comportement de la poroélasticité linéaire et non
linéaire sont tout d’abord établies à partir d’une décomposition fondamentale de l’état de contraintes, qui
permet de relier de façon claire les modèles linéaire et non linéaire. Les notions de contrainte effective et
de compressibilité sont abordées. Une loi de comportement incrémentale linéaire est définie à partir de la
loi de comportement non linéaire proposée en introduisant des propriétés élastiques tangentes. Ces
coefficients sont par nature exprimés en fonction des déformations et de la pression de pore, mais l’on
établit ici des expressions explicites en fonction des contraintes et de la pression de pore. Des essais
effectués sur un grès de réservoir illustrent ces différents points. Enfin, une loi de comportement de la
poroviscoélasticité est présentée et appliquée à des données expérimentales provenant d’une argile.
Mots-clés : mécanique des roches, poroélasticité, poroélasticité non linéaire, propriétés tangentes, poroviscoélasticité, contrainte
effective, grès, argile.

Abstract — Poromechanics: From Linear to Nonlinear Poroelasticity and Poroviscoelasticity — Due
to the impact on productivity and oil in place estimates, reliable modeling of rock behavior is essential in
reservoir engineering. This paper examines several aspects of rock poroelastic behavior within the
framework of Biot’s mechanics of fluid saturated porous solids. Constitutive laws of linear and nonlinear
poroelasticity are first determined from a fundamental stress decomposition, which allows to clearly
connect linear and nonlinear models. Concept of effective stress and rock compressibility are considered.
Linear incremental stress-strain relations are derived from the proposed nonlinear constitutive law by
defining tangent elastic properties. These characteristics are naturally functions of strains and pore
pressure, but explicit expressions as functions of stresses and pore pressure are established herein.
Experiments performed on a reservoir sandstone illustrate these points. A constitutive law of
poroviscoelasticity is finally presented and applied to experimental data obtained on clay.
Keywords: rock mechanics, poroelasticity, nonlinear poroelasticity, tangent properties, poroviscoelasticity, effective stress,
sandstone, shale.
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NOMENCLATURE

Latin letters

b Biot coefficient

bt tangent Biot coefficient

D nonlinear characteristic

F nonlinear characteristic

Fo free energy of the theory of elasticity

G shear modulus

Gt tangent shear modulus

H nonlinear potential

I1 = tr ε= = ε11 + ε22 + ε33
first strain invariant

I2 = ε11 ε22 + ε22ε33 + ε33ε11 –  ε12 ε21 – ε23ε32 – ε31ε13
second strain invariant

I3 = det (ε=) 
third strain invariant

k intrinsic permeability

Kfl fluid bulk modulus

Ko drained bulk modulus

K t
o tangent drained bulk modulus

Ks bulk modulus of the solid matrix

m fluid mass variation

M Biot modulus

pc = – σ mean pressure

pp pore pressure 

q = deviatoric stress

Vb bulk volume

Vp pore volume

w relative flow vector of fluid mass.

Greek letters

β coefficient of proportionality between the viscous
porosity and the volumetric viscous strain, φv = β εv

ε= strains

ε  = trε= volumetric strain

strains produced by 

deviatoric strain

eulerian porosity

γ poroviscoelastic characteristic which connects the relaxed
and instantaneous shear moduli,

η shear viscosity

η fl fluid dynamic viscosity

κo poroviscoelastic characteristic which connects the relaxed
and instantaneous drained bulk moduli, 

ρ fl
o fluid density

σ= Cauchy’s stresses

mean stress

σ=
– = σ= + pp 1= effective stress of Terzaghi

ζ bulk viscosity.

Superscripts

e elastic part
v viscous part
0 instantaneous characteristic
∞ relaxed characteristic.

INTRODUCTION

Predicted production and restitution rates rely on the accurate
representation of reservoir poromechanical behavior. Most
engineering reservoir models use rock compressibility as a
constant mechanical key parameter. Yet, various meanings
are still attached to this concept. Moreover rock properties
can be stress-dependent and/or time-dependent. This paper
studies rock poroelastic behavior within the framework of
Biot’s mechanics of fluid saturated porous solids.

Constitutive laws of linear and nonlinear poroelasticity are
first determined from a fundamental stress decomposition,
which allows to clearly connect linear and nonlinear models.
The physical meaning of Biot’s and Terzaghi’s effective
stresses is clarified. The definition of formation compressi-
bility and expressions of Zimmerman’s compressibilities in
terms of linear poroelastic properties are recalled. In order to
derive linear incremental stress-strain relations from the
proposed nonlinear constitutive law, tangent elastic
properties depending on strains and pore pressure are defined
and expressed as explicit functions of stresses and pore
pressure. Experiments performed on reservoir sandstone
illustrate these points. A constitutive law of porovisco-
elasticity is then presented and applied to experimental data
obtained on clay.

The models proposed in this paper are derived for an
isotropic homogeneous porous material, saturated with a

σ
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viscous compressible fluid, under the hypothesis of small
perturbations (Coussy, 1994; Charlez, 1991). Only isothermal
transformations are considered.

1 FUNDAMENTAL STRESS DECOMPOSITION

Consider a representative elementary volume of a saturated
bulk porous material submitted to stresses σ= and pore
pressure pp. The stress decomposition defined in Figure1
allows to derive the constitutive law from the behavior of the
dry material (i.e. without any fluid in the porous space) and
the behavior of the matrix (solid and unconnected porosity)
(Biot, 1973). The total loading state [T] is simply described
by the superposition of two elementary loading states:

[B] (for bulk) stresses σ=
– and zero pore pressure;

[S] (for solid matrix) stresses – pp 1= and pore pressure pp

(1)

where σ=
– amounts to the effective stress of Terzaghi. Note

that the stress convention of the mechanics of continuous
media is adopted. Hence – pp 1= denotes a compressive stress.

Component [B] involves no fluid pressure. Hence, from a
mechanical point of view, it corresponds to the loading of the
dry material by a stress field , whereas
component [S] corresponds to the hydrostatic loading of the
solid matrix with pressure pp.

Van der Knapp brought out that elastic porous media
submitted to isotropic loading exhibit a partial linear
behavior with regard to the solid matrix compressibility (Van
der Knapp, 1959). Biot extended this work to the general
case by introducing the concept of semilinearity (Biot, 1973),
which stipulates that the solid matrix strains depend linearly
on stresses and pore pressure, whereas the strains due to the
effective stresses involve nonlinear modifications of local
geometries, such as changes in contact areas, crack closure...

Hence, both in linear and nonlinear poroelasticity, the
solid matrix is supposed isotropic and linearly elastic with
bulk modulus Ks and shear modulus Gs. Under this
assumption, elementary loading state [S] leads to a
deformation state:

(2)

Indeed, loading [S] involves no change of the (eulerian)

porosity. Hence , where denotes the strain

of the solid matrix.
Thus, to the stress decomposition defined in Figure 1

corresponds the following strain decomposition:

(3)

where denotes the strains produced by σ=
–.

2 LINEAR POROELASTICITY 

2.1 Mechanical Part of the Linear Constitutive Law
and Biot’s Effective Stress

In addition to the assumption of isotropic and linear elastic
behavior of the solid matrix, the law of linear poroelasticity
relies on the following assumption: the equivalent dry
material is isotropic and linearly elastic with bulk modulus Ko
and shear modulus G. Deformation state is then given by:

(4)

Let

with:

(5)b
K
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Figure 1

Fundamental stress decomposition (Note that, according to the stress convention of the mechanics of continuous media, compressive stresses
are negative while pressures are positive).
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The mechanical part of the linear constitutive law is
obtained by introducing Equations (1), (3) and (5), into
Equation (4):

(6)

(7)

b is the well-known Biot coefficient and is
the effective stress of linear elasticity.

Note the difference between Equations (4) and (7): Biot’s
effective stress is the stress that produces total strains ε=,
while stress that amounts to Terzaghi’s effective stress
only produces strains . For an incompressible solid matrix
(i.e. 1/Ks = 0), we simply have . Boutéca and
Guéguen (1999) clearly show the different roles played by
Terzaghi’s and Biot’s effective stresses from experiments
performed on Tavel limestone for which b = 0.65.

2.2 Hydraulic Part of the Linear Constitutive Law

The variation in fluid mass content m per unit of initial
volume (taken positive for an incoming fluid) can be
expressed as (Coussy, 1994):

(8)

where φ is the (eulerian) porosity, ε = tr ε= and subscript o
denotes the reference state.

After linearization, we get:

(9)

Loading [S] leads to no porosity change. Taking Equation
(2) into account, Equation (9) leads to:

(10)

where Kfl is the fluid bulk modulus.
As loading [B] keeps pore pressure constant, m[B] only

results from the change in pore volume. Taking the relation
into account, we obtain:

(11)

The assumptions of linear behavior of the dry material and
the solid matrix yield: and , where

is the mean stress in the solid matrix. As pore pressure is

zero, we have . Taking Equation (5) into
account, Equation (11) becomes:

(12)

Equations (10) and (12) lead to:

(13)

The hydraulic part of the linear constitutive law is
obtained by introducing Equation (3) into Equation (13):

(14)

where M is Biot modulus:

(15)

2.3 Rock Compressibility

Formation compressibility is defined as the in situ pore
volume strains that follows changes in reservoir pore
pressure:

Thus, formation compressibility depends on the produc-
tion induced changes in effective stress state. These changes
are usually described by the reservoir stress path, defined as
the change in effective minimum horizontal stress divided by
the change in effective vertical stress from initial reservoir
conditions.

Zimmerman’s compressibilities describe the volumetric
response of a sandstone to applied isotropic stresses

and pore pressure pp (Zimmerman, 1991):

The so-defined porous rock compressibilities can be
expressed as a function of linear poroelastic properties Ko
and b (Boutéca, 1992).

Equation (6) yields:

From which we get:
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Expressions of Cpc and Cpp are derived from the change in
pore volume:

Taking Equations (4), (1) and (6) into account, we finally
obtain:

From which we get:

Note that for an incompressible solid matrix (i.e. b = 1),
we simply have:

The actual stress path followed by the reservoir can be
significantly different from the one predicted by the isotropic
loading or uniaxial strain boundary models (Bévillon, 2000).
Reservoir simulations conducted for weakly cemented
sandstone show a significant increase in production rate
when changing the formation compressibility from a high
stress path value to a low value (Ruisten et al., 1996).
Moreover, for highly compacting reservoir, the bulk com-
pressibility depends on stresses and pore pressure (see
Paragraph 3). The concept of rock compressibility is thus to
be handled cautiously.

3 NONLINEAR POROELASTICITY

3.1 Mechanical Part of the Nonlinear Constitutive Law

From a mechanical point of view, loading [B] corresponds to
the loading of the dry material. Stresses and strains are
thence related through the free energy Fo of the theory of
elasticity:

(16)

where Fo is a function of the three strain invariants:
. Biot adopted an expression derived

from the second-order elasticity theory (Biot, 1963). The free
energy Fo is then the sum of the classical potential of linear
elasticity W and a nonlinear potential H:

(17)

(18)

(19)

where Ko is the drained bulk modulus, G is the shear
modulus and D, F, N, are nonlinear parameters.

Introducing Equations (17) and (18) into Equation (16)
leads to the nonlinear stress-strain relation associated with
loading [B], which is to be compared to Equation (4):

(20)

The mechanical part of the nonlinear constitutive law is
then given by:

(21)

and is to be compared to Equation (6).

3.2 Hydraulic Part of the Nonlinear Constitutive Law

Due to the assumption of linear behavior of the solid matrix
(see Paragraph 1), elementary variation in fluid mass content
m[S] is still given by Equation (10):

(22)

The expression of elementary variation in fluid mass
content m[B] includes an additional nonlinear term. Indeed,
the introduction of Equation (20) into Equation (11) yields:

(23)

Equations (22) and (23) lead to Equation (24), which is to
be compared to Equation (13):

(24)

The hydraulic part of the nonlinear constitutive law is
obtained by introducing Equation (3) into Equation (24):

(25)

and is to be compared to Equation (14).

3.3 Additional Hypothesis

We make herein the reasonable assumption that there is no
effect of pure distortion on the variation in fluid mass
content. Introducing Equation (19) into Equation (24) yields:
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where the invariant accounts
for the distortion since it becomes zero for . Hence,
the above hypothesis implies: N = 2D.

The nonlinear constitutive law is then written:

(26a)

or

(26b)

(27)

where

When considering the principal directions, Equation (26a)
gives:

(28a)

Other principal stresses are simply derived by cyclic
permutation.

Figure 2

Definition of a tangent drained bulk modulus.

3.4 Definition of Tangent Properties

Nonlinear elastic behavior is often handled by deriving linear
incremental stress-strain relations and introducing tangent
elastic properties depending on the actual state (see Eq. (29)
and Fig. 2).

3.4.1 Tangent Drained Bulk Modulus and Tangent Biot
Coefficient

Differentiating Equations (28a) and (27) yields:

(29)

(30)

Equations (29) and (30) allow to derive explicit expressions
of the tangent drained bulk modulus and the tangent Biot
coefficient as functions of the volumetric strain :

(31)

(32)

Note that we have:

(33)

3.4.2 Tangent Shear Modulus for Axisymmetric Loading

Deriving an explicit expression of the tangent shear modulus
is a more complex issue, which involves the deviatoric stress
q and the deviatoric strain εd:

(34a)

(34b)

Note that we have q = q– and εd = ε–d.
However, a simple expression of Gt can be obtained under
the assumption of axisymmetric loading, which remains a
rather general case. Taking for example axis 1 as axis of
symmetry (i.e. ε22 = ε33) and assuming that |σ11| > |σ22|,
Equations (34a) and (34b) read:

Equation (28c) gives then:
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Differentiating Equation (35) finally yields:

(36)

which allows to derive an explicit expression of the tangent
shear modulus as a function of the deviatoric strain εd:

(37)

3.4.3 Linear Incremental Constitutive Law 
for Axisymmetric Loading

A simple calculation shows that under the assumption of
axisymmetric loading, the nonlinear constitutive law can be
written in the following linear incremental form:

(38a)

(38b)

where tangent properties Kt
o, G

t and bt, are given by Equa-
tions (31), (32) and (37).

3.5 Expression of Tangent Properties as Functions 
of Stresses and Pore Pressure

3.5.1 Expression of Kt
o and bt

Equation (31) defines the tangent drained bulk modulus as a
function of ε–. As ε– = 0 when σ– = 0 , solving Equation (28a)
for ε– gives:

(39)

Introducing Equation (39) into Equation (31) yields:

Denoting by pc the mean pressure (i.e. pc = –σ) and taking
Equation (1) into account, we finally get:

(40)

It follows from Equation (40) that D + 2F < 0. 

Introducing Equation (40) into Equation (33) and taking
Equation (5) into account give:

(41)

is an “effective stress” in that it relates the
drained bulk modulus and Biot coefficient to stresses and
pore pressure (Boutéca and Guéguen, 1999).

3.5.2 Expression of Gt

In the case of an axisymmetric loading, Equation (37) defines
the tangent shear modulus as a function of εd. As εd = 0 when
q = 0, solving Equation (35) for εd gives:

(42)

Introducing Equation (42) into Equation (37) yields:

(43)

It follows from Equation (43) that F – D > 0.

3.6 Application to Experimental Results

Cyclic loading was performed on a 19.8% porosity reservoir
sandstone, which contains mainly quartz (70%), the
remaining part including feldspar, mica and clay minerals.
The experimental setup consists of a pressure cell and two
volumetric pumps (Laurent et al., 1993). The sample is
coated with impermeable materials, which allows application
of pore pressure and isotropic confining pressure.

Nine experiments were conducted on the same sample.
Figures 3a and 3b show the applied stress paths (Boutéca et
al., 1998). Experiment 1 is a loading cycle. The loading
procedure consists of an increase of the confining pressure at
constant pore pressure, followed by a loading sequence
repeated several times: confining pressure is first maintained
constant while pore pressure is increased, then confining
pressure is increased at constant pore pressure. The
unloading procedure is performed along the same stress path.
Experiments 2 to 5 are loading cycles conducted at constant
pore pressure, loading and unloading following the same
stress path. Experiment 6 is a loading cycle similar to cycle 1.
In experiment 7, confining and pore pressures are increased
following the same load path. In experiment 8, pore pressure
is decreased while confining pressure is maintained constant.
And, in experiment 9, confining pressure is decreased at
constant pore pressure.

Stress-strain curve corresponding to experiment 1 is
plotted in Figure 4. Despite a slight hysteresis, the reservoir
sandstone shows a nonlinear elastic behavior.

3.6.1 Checking of the Semilinearity Assumption

According to the definition of semilinearity, the solid matrix
strains depend linearly on stresses and pore pressure.
Experiment 7 allows to check this hypothesis. The stress path
followed in this experiment involves no effective stress σ–.
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Figure 4

Experiment 1. Stress-strain curve (despite a slight hysteresis
the reservoir sandstone shows a nonlinear elastic behavior).

Figure 5

Simulation of experiment 7. Stress-strain curve (checking of
the semilinearity assumption: linear behavior of the matrix).
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According to Equation (2), ∆ε should then be a linear
function of ∆pp:

(44)

where ∆ε = ε – εo and ∆pp = pp – po
p (index o denoting the

initial state).
Figure 5 shows that it is actually the case. One can then

consider that Biot’s semilinear theory should apply. Equa-
tion (44) gives: Ks = 33 505 MPa.

3.6.2 Simulation of Loading Conducted 
at Constant Pore Pressure

Loading conducted at constant pore pressure pp = po
p allows a

simple identification of the semilinear model described by
Equations (1), (3), (27) and (28). The volumetric strain
variations are then directly related to the mean effective
stress σ– = –(pc – po

p). So that loading and unloading stages
may be compared, the strain variations are calculated with
respect to the strain corresponding to the lowest confining
pressure (this reference state being denoted by index o).

Writing Equation (28a) for actual and reference states and
subtracting the two obtained equations yield:

(45)

where ∆pc = pc – po
c and ∆ε = ε – εo = ε– – ε–o.

Similarly, Equation (27) leads to:

(46)

where ∆m = m – mo.
Taking Equations (31) and (32) into account, we finally

get:

(47a)

(47b)

where and are given by Equa-

tions (40) and (41).
Equations (47a) and (47b) depend on three material

characteristics: Ko, (D + 2F)/3 and Ks. Parameters Ko and 
(D + 2F)/3 are derived from Equation (47a) and experiment 9,
whereas Ks has been derived from experiment 7 (see Table 1).
The data of experiment 9 are plotted in Figures 6 and 7
together with the theoretical results computed from
Equations (47a) and (47b). These curves show that, in
experiment 9, the rock is actually behaving as a semilinear
porous material according to Biot’s theory.

TABLE 1

Material characteristics derived from experiments 7 and 9

Parameter Value Experimental data

Ko 920 MPa Experiment 9

–(D + 2F)/3 301 350 MPa Experiment 9

Ks 33 505 MPa Experiment 7
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Figure 6

Simulation of experiment 9. Stress-strain relation (checking
of the semilinear behavior of the rock using the first
constitutive equation).

Figure 7

Simulation of experiment 9. Fluid mass variation as a
function of strain (checking of the semilinear behavior of the
rock using the second constitutive equation).
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3.6.3 Effect of Cycling

In laboratory experiments, an evolution of the measured rock
properties is often observed when the sample undergoes
cyclic solicitations. Cycling finally ends up in a non variable
rock sample, from which accurate and reproducible measure-
ments can be obtained.

Figure 8 shows the data of experiments 1, 6 and 9, plotted
together with the semilinear model identified from experi-
ment 9. The experimental curves appear to gradually move
towards the theoretical trend derived from experiment 9. We
believe that the behavior exhibited in experiment 9 is the
intrinsic behavior of the rock and that this intrinsic behavior
was obtained resorting to cycling (Boutéca et al., 1998).

Figure 8

Stress-strain relations for experiments 1, 6 and 9 (effect of
cycling).

Figure 10

Variation law of the tangent drained bulk modulus.

3.6.4 Tangent Bulk Modulus

Experimental data confirm that the tangent bulk modulus
varies according to the pressure difference pc–pp as indicated
by Equation (40) (Boutéca et al., 1994). This is illustrated in
Figure 9, where estimations of Kt

o computed from experi-
ment 6 are plotted as a function of the confining pressure for
different pore pressure values and as a function of pc–pp.

Figure 10 shows the variation law of the tangent drained
bulk modulus derived from Equation (40) and which
represents the rock intrinsic behavior (see Paragraph 3.6.3).
The estimations of Kt

o computed from experiment 9 have
been plotted for comparison.
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4 POROVISCOELASTICITY

Further details on poroviscoelastic modeling can be found in
Coussy (1994).

4.1 Constitutive Law

Actual strain and variation in fluid mass content are defined
with respect to a reference relaxed state (i.e. a state of
thermodynamic equilibrium where no evolution of the state
variables occur). They can be decomposed in elastic parts
(superscript e), immediately recovered through unloading,
and viscous parts (superscript v), not instantaneously
recovered through unloading:

(48)

where φv = mv /ρfl
o appears as the viscous porosity. Note that

φv is a lagrangian porosity (i.e. defined with respect to the
initial volume).

Adopting a second-order expression for the free energy
leads to Equation (49) and constitutive law (50), where K0,
K0

o, G0, b0 and M0, are the material instantaneous
characteristics (with respect to viscous phenomena and not
hydraulic diffusion).

(49)

(50a)

(50b)

(50c)

When adopting a second-order expression for the viscous
dissipative potential as well, we get the following comple-
mentary evolution law:

(51)

where η is the shear viscosity and ζ the bulk viscosity.
Equations (50) and (51) define a Zener material.

4.2 Instantaneous and Relaxed Characteristics

Consider an experiment in which the following stress and
fluid pressure history is imposed:

where Y(t) is the Heaviside step function that reads Y(t) = 0 if
t < 0 and Y(t) = 1 if t ≥ 0.

Let and m0 be the instantaneous response. When
considering finite steps and ∆p, Equation (51) shows that
the viscous strain rate can not be infinite and thus that the
viscous strain is continuous. Hence the instantaneous viscous
strain is zero and the instantaneous response is purely elastic.
Equations (50) yield then:

(52)

Characteristics K0, K0
o, G0, b0 and M0, can therefore

actually be interpreted as instantaneous material properties.
Let and m∞ be the asymptotic response (i.e. obtained

after an infinite time). This response corresponds to a new
relaxed thermodynamic state, for which strain rates are zero.
Equations (50) and (51) lead then to:

(53)

with K∞ = K∞
o + M∞ (b∞)2

(54)

Characteristics K∞, K∞
o , G∞, b∞ and M∞ are the material

relaxed properties. Equations (54) show that parameters β, κ
and γ , connect instantaneous and relaxed characteristics.
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4.3 Application to Experimental Results

Uniaxial strain tests including drained and undrained loading
cycles were performed on a shale. Undrained unloading
allows a simple application of Zener model.

Consider an initial equilibrium state defined by:

Undrained mechanical unloading corresponds to an
instantaneous decrease of the axial load, with no fluid flow
through the sample upstream and downstream sides. The
associated boundary conditions are then given by:

∀ t ≥ 0 (55a)

(upstream side) ∀ t ≥ 0 (55b)

(downstream side) ∀ t ≥ 0 (55c)

The undrained condition gives the additional relation:

m = 0   ∀ t ≥ 0 (55d)

Since we consider uniaxial strain tests, all the quantities
depend only on variables z and t.

The momentum equation ( ) and boundary
condition (55a) show that the axial stress is constant:

∀ t ≥ 0 (56)

The conservation of fluid mass and Darcy’s law,

lead to the equation of fluid diffusion:

(57)

Taking Equation (55d) into account, Equations (57) and
(55b) show that the variation in pore pressure inside the
sample is uniform.

Equations (50) and (51) yield:

(58a)

(58b)

(58c)

(59)

From which we get the following differential system:

(60)

with

Taking Equations (55d) and (56) into account, Equation
(60) leads to the differential equations that govern the
evolution of pore pressure as a function of time:
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which gives:

(62)

where 

p0 – po = p (t = 0) – po

is the instantaneous pressure variation,

is the asymptotic pressure variation.
The differential equations that govern the evolution of

pore pressure as a function of time is then:

(63)

Experimental data show that the pore pressure equilibrium
time is small when compared to the strain equilibrium time
(see Fig. 11). Thus, the variation in pore pressure can be
considered instantaneous with respect to the strain evolution,
which amounts to disregard the expressions including the
exponential term in Equations (62) and (63). We finally get:

(64)

where
is the instantaneous axial strain,

is the asymptotic axial strain.

Figure 12

Simulation of the axial strain evolution during an undrained
unloading (checking of Zener proviscoelastic model).

Experimental data showing the axial strain evolution
during an undrained unloading are plotted in Figure 12
together with the theoretical results computed from Equation
(64). Zener poroviscoelastic model appears to represent
satisfactorily shale time-dependent behavior.

CONCLUSION

Reliable modeling of rock behavior is essential in reservoir
engineering due to the impact on productivity and oil in place
estimates. This paper has attempted to review the main
poroelastic models.

Constitutive laws for linear and nonlinear poroelasticity,
and poroviscoelasticity, have been presented and illustrated
by experimental applications. The concepts of effective stress
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Illustration of the almost instantaneous nature of the pore pressure variation in undrained condition.
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and compressibility, and their various meanings, have been
considered. Explicit expressions of tangent properties as
functions of stresses and pore pressure have been derived for
rocks presenting a nonlinear behavior.

We hope that this document provides the fundamental
theoretical laws needed to represent the poroelastic behavior
of most reservoir and cap rocks.
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