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Résumé — Modélisation phénoménologique des écoulements gravitaires catastrophiques dilués —
Les sédiments déposés en eaux profondes sont à l’origine de nombreux réservoirs pétroliers. C’est
pourquoi les processus régissant leur mise en place suscitent actuellement un intérêt grandissant, en
particulier dans le domaine de la modélisation numérique.

En tenant compte de la problématique et des contraintes imposées par les données géologiques, la
méthode que nous avons adoptée pour obtenir un modèle mathématique pour les écoulements gravitaires
finis, turbulents et dilués, est la suivante : le mouvement bidimensionnel créé par la libération instantanée
d’un volume fini de fluide lourd (suspension de particules) dans un fluide plus léger (eau) est étudié
théoriquement, sur pente variable, comme modèle pour les écoulements gravitaires.

Ces écoulements développent une structure longitudinale caractéristique, comparable à une demi-lentille
déformable, pour laquelle la hauteur est petite par rapport à la longueur. Cette géométrie est imposée à
l’écoulement gravitaire.

En utilisant l’approximation de Boussinesq, la dynamique de l’écoulement est supposée régie par un
équilibre entre les forces motrices de gravité, d’inertie et de friction turbulente. L’étude du champ de
vitesse interne longitudinal de l’écoulement permet de formuler une loi de variation pour la vitesse
d’étalement. Une équation, incluant les effets d’incorporation d’eau à l’interface suspension-fluide
ambiant, quantifie la variation du volume total de l’écoulement. Enfin, une équation de transport pour la
fraction volumique des particules est proposée en supposant que :

– la turbulence crée une distribution uniforme de la densité dans l’écoulement ; 

– les particules sont advectées à la vitesse moyenne de l’écoulement ; 

– les particules chutent ou sont érodées dans la sous-couche visqueuse de l’écoulement.

Le système couplé d’équations différentielles non-linéaires obtenu est résolu numériquement. Le modèle
est ensuite validé sur les modèles réduits expérimentaux réalisés par Laval (1988). La comparaison entre
les prédictions théoriques et expérimentales montre un bon accord.

Une étude analytique du système, par des méthodes d’analyse locale sur les temps longs, montre
l’évolution des solutions lors de la prise en compte de nouveaux phénomènes et la consistance des
solutions numériques obtenues.

Le modèle présenté mène à des temps de calcul très faibles sur micro-ordinateur. Simple et complet, il
constitue un premier pas vers une compréhension quantitative de l’impact de paramètres extérieurs —

http://ogst.ifp.fr/
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INTRODUCTION

The purpose of the present paper is a general exposition of a
simple model for the equations of the motion of gravity
flows. Special emphasis is placed on seeking analytical
solutions for long times. The study shows their evolution
when taking new physical phenomena into account.

What is a Gravity Flow?

Turbidites (deposits associated with turbidity flows)
represent a significant fraction of the deep marine sedi-
mentary record, and play an important role in hydrocarbon
reservoir formation. This is why processes governing their
settings have given rise to a growing interest, especially in
the field of numerical simulation.

The development of such models would allow for:
– a better comprehension of the process dynamics that

controls deposits; 
– a reduction of hazard during the explorations by predicting

the: 
• three-dimensional deposit geometry (mode of

organization, lateral extension); 
• internal facies architecture;
• connection between reservoir bodies;

– quantification of the impact of external parameters
(eustasy and subsidence, nature and amount of sediment
supply) on the internal geometry.
In geology, the essential knowledge about natural flows is

in fact based on subsequent deposits themselves [1-3]. The
conceptual basis for such an interpretation has therefore often
been limited by the three-dimensional, unsteady and 
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tels que la nature et la quantité des apports en sédiments et la géométrie du bassin — sur la dynamique
des écoulements gravitaires et l’organisation des séquences de dépôt résultantes (turbidites).
Mots-clés : écoulement gravitaire, modèle phénoménologique, solution analytique, turbidites.

Abstract — Phenomenological Modeling of Catastrophic Dilute Gravity Flows — Numerous
hydrocarbon reservoirs originate from sediments deposited in deep water. This is why processes
governing their settings have given rise to a growing interest, especially in the field of numerical
simulation.
Taking the problematic and constraints imposed by the geological data into account, the method that we
have adopted to obtain a mathematical model for diluted and turbulent finite gravity flows is the
following: the two-dimensional movement created by the instantaneous release of a finite volume of
heavy fluid (suspension of sediment particles) into a lighter one (water), on variable slopes, is
theoretically studied as a model for gravity flows.
These flows develop a characteristic longitudinal structure, comparable to a deformable semi-lens,
where the height is small relative to the length. This geometry is imposed on the gravity flow.
Using the Boussinesq’s approximation, the flow dynamics is supposed to be governed by a balance
between gravity driving forces, inertia and turbulent friction. The study of the internal longitudinal flow
velocity field allows a law of variation for the spreading velocity to be formulated. An equation, including
effects of water incorporation at the suspension-ambient fluid interface, quantifies the variation of the
total volume of the flow. Finally, a transport equation for the particles volume concentration is proposed
assuming that: 
– turbulence creates a uniform density distribution in the flow; 
– particles are advected at the mean flow velocity; 
– particles fall out or are eroded in the viscous sublayer of the flow.
The coupled system of the non-linear differential equations obtained is solved numerically. The model is
then validated by experimental small-scale models realized by Laval (1988). The comparison between
theoretical predictions and experimental results shows good agreement.
An analytical study of the system, by local analysis methods for long times, shows the evolution of
solutions when taking new physical phenomena into account and the consistency of the obtained
numerical solutions.
The obtained model leads to very low computational time on a microcomputer. Simple and complete, it
constitutes a first step towards quantitative comprehension of the impact of external parameters—such as
the nature and the amount of sediment supply and the geometry of the basin—on gravity flow dynamics
and on the organization of subsequent depositional sequences (turbidites).
Keywords: gravity current, phenomenological model, analytical solution, turbidites.
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non-uniform nature of the flows responsible for these
deposits.

In mechanics, diluted solid and fluid mixtures are named
suspensions. Their study is of great interest for sedimen-
tologists, since they include processes, mainly the deposit of
solids in suspension, that do not occur in density flows1.
Practical examples of such flows are numerous, one can
mention: dust storms, fronts of marine breezes [4], snow
avalanches [5-8], ash clouds caused by volcanic eruptions [9,
10], water plumes loaded in mud at river mouths [11-13], and
of course turbidity currents [14-19]. Two types of turbidity
flows can be distinguished:
– continuous flows, with relatively long life (being able to

be steady and/or uniform), initiated by:
• sediments in suspension brought into the sea by rivers in

flood or by the glaciers melting (hyperpycnal flows) [13,
20];

• storms stirring unconsolidated sediment layers which
constitute a deep marine layer with concentrated mud in
suspension (bottom nepheloid layer);

– unsteady flows, with relatively short life, originating from:
• transformation due to mixing with seawater, for exam-

ple during a hydraulic jump, of slides, slumps or debris
flows; all the result of a catastrophic and instantaneous
rupture of the slope provoked by an earthquake and/or
slope instability [21-28];

• mass instability of sands brought by flows to the under-
water canyon head [12, 29].

Their movement can be divided into three phases:
– Phase I includes the initiation of the flow and its

acceleration. Even though the flow is not necessarily a
turbidity current since its concentration can be high and its
behavior can be viscous or even visco-plastic [30], this
first phase is characterized by an amount of eroded
sediment probably superior to that deposited. In some
cases a very great amount of the deposited mass comes
from the erosion along its path (nearly 80% during the
Nice airport collapse in 1979 [27]);

– Phase II can be a period of constant velocity if the slope is
constant. During this stage, the amounts of eroded and
deposited sediments can be equal. The flow dilutes and
sediments are maintained in suspension by turbulence;

– Phase III is a period of deceleration, where the sedi-
mentation dominates the erosion. When the flow reaches
the slopes of the abyssal plain, it stops, due to the loss of
excess density by incorporation of ambient water and the
settling of particles; its spreading; a dissipation of the
turbulence by friction at the interfaces or at internal
density stratifications [15, 31-33].

(1) Density flows are characterized by the movement of a heavy fluid into
a lighter one (for example: flows of heavy industrial gases and masses
of air flowing to the surface of the ground).

Existing Modeling Methods

Since Phase II can be considered, on constant slopes, as a
period of constant velocity, with neither erosion nor
sedimentation, the first theoretical and experimental
researches have focused on it [34]. For example, in [35, 36],
considering that a river is a form of density flow, in which
the density contrast between the flow and the ambient fluid
(air) is great, and in which there is very little friction
resistance at the upper interface, the author determines the
speed of a density flow by (Appendix A for notations):

(1)

This formula, analogous to that found in [37] for fluviatile
flows, is obtained simply by writing the balance between the
apparent weight, g’φhs, and the steady friction resistance

.

The conception of a mechanical theoretical model for
particle and fluid mixtures can be carried out by one of the
following three approaches [34]:
– microscopic: the resolution is accomplished directly on

the motion equations of each sediment particle (ideally
rigid or elastic spheres). This discrete method is however
limited in so far as it does not permit the simulation of
great numbers of particles. It provides nevertheless very
precious information on particular phenomena such as
sedimentation [38];

– continuous: in this case, material properties of the mixture
can be represented by continuous functions and the media
can be divided indefinitely without losing its properties.
Indeed, the height of the flow is sufficiently great relative
to the particle diameter so that the behavior of the granular
suspension is locally isotrope and continuous, contrary to
the individual particle flow. In this case, the notion of
discrete particles or granules is no longer preserved. This
method [39-44], based on Navier-Stokes equations, which
include varying degrees of simplification (steady state,
two-dimensionality, boundary layer theory, Boussinesq’s
hypothesis, neglected sediment flux to the bed), is again
limited by high computational times, and therefore does
not allow the simulation of series of flows. However,
studies that have analyzed the longitudinal flow evolution
have shown that processes such as sediment flux to the
bed, turbulent (or viscous) friction, marine bottom slope,
and turbulent entrainment of ambient seawater, control
changes in the state of the flow [44];

– empirical: the modeling carried out by this approach is
based not entirely on theory but also on analogical
experiments. Dimensional analysis allows the most
influent parameters to be determined. Obtained formulae
contain constants that are adjusted on experiments. The
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best known models for geological applications are based
on a steady balance between gravity and friction forces
acting on the head [45], or on a semi-infinite flow [35, 36,
46, 47] (Eq. (1)).

1 A PHENOMENOLOGICAL MODEL 
IN THIN LAYER THEORY FOR GRAVITY FLOWS

None of the previous approaches seems to be entirely
appropriate for our purpose. So, taking the problematic and
constraints imposed by the geological data into account, the
method that we have adopted to obtain a mathematical model
for diluted and turbulent gravity flows is the following.

To characterize the temporal evolution of four charac-
teristic quantities linked to the flow (Fig. 1): 
– U, the mean motion velocity of the flow object;
– l, the length (of evolution speed Ul);
– h, the height;
– φ, the particles volume concentration (i.e. the particles

mass),
we have considered that the gravity flow of a finished
volume of particle mix reflects the balance between:
– the driving gravity force;
– the turbulent friction;
– the spreading due to pressure forces;
– the incorporation of the ambient seawater;
– the deposit and/or the erosion of sediment particles.

To present as clearly as possible the theoretical model in
two dimensions, major hypotheses as well as physical and
geometrical quantities definitions are stated in the following
section.

1.1 Hypotheses and Definitions

Observations of atmospheric and pyroclastic density flows
[7, 10] as well as experiments on submarine density and
suspension plumes [14, 15, 17-19, 26] have shown that
turbidity flows develop a characteristic longitudinal structure,
comparable to a deformable semi-lens.

Figure 1

Geometry and variables of the flow object represented here in
two dimensions by a semi-ellipse.

1.1.1 Hypothesis 1

The flow is a deformable object with an imposed geometrical
form parameterized by two variables: h, its height and l, its
length (Fig. 1).

1.1.2 Hypothesis 2

The flow height is small relative to the flow length:

h << l (2)

Under these assumptions, the volume of the flow per unit
of width is defined by:

A = C l h

where C is a geometrical factor. For example, in the case of a
semi-ellipse, C = π/2.

The flow-substratum contact surface, per unit of width, is
given by:

∂Ai = 2l

The flow-ambient fluid interface surface, per unit of
width, is approximated by:

∂As ≈ 2l

The flow being thin, it is clear that the mean motion, U,
will be mainly parallel to the ground. Indeed, Equation (2)
between characteristic dimensions of the flow implies, via
the equation of continuity, that the characteristic velocity
scale normal to the wall, w, is smaller than the characteristic
velocity scale parallel to this wall, u (u >> w).

1.1.3 Hypothesis 3

The fluid, within the flow, is turbulent. Thus, the Reynolds
number Re is high.

It is likely that very rapidly, just after the releasing of the
flow (Phase I), friction forces, first viscous or visco-plastic,
become turbulent. Classically, turbulent friction is propor-
tional to the square of a characteristic velocity of the flow. In
a very simple manner, it is possible to write:

τt = ρkt U
2

1.1.4 Hypothesis 4

The suspension is sufficiently diluted to justify the use of
Boussinesq’s approximation:

Then it is possible to neglect φ∆ρ in inertial terms, while
conserving it in gravity terms.
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1.1.5 Hypothesis 5

The velocity of the solid phase is assumed to be equal to the
sum of the flow velocity and settling velocity:

Up = U + Vs

1.2 Obtained Model

Under the previous hypotheses, the evolution of a gravity
flow is determined by the following non-linear coupled
differential system, which will be explained in the next
section:
– object mean motion:

(3a)

– object spreading: 

(3b)

– ambient water incorporation:

(3c)

– sedimentation & erosion:

(3d)

For clarity, geometrical constants have been omitted. The
spreading velocity Ul is defined by: ; the front velocity,
Uf, by: .

2 PHYSICAL DERIVATION OF THE MODEL

We give here a short explanation of System (3) in terms of
physics.

2.1 Motion of the Object: U

The variation of momentum of the flow object, in two
dimensions, under the hypotheses in Section 1.1, is modeled
by Newton’s second law:

(rate of change of momentum = 
longitudinal component of the effective gravity 
+ turbulent friction force along the flow surface)

where A is the volume of the flow; U, the mean velocity of
the flow, φ, its volume concentration in suspended sediments;
g’, the gravitational effective acceleration; θ, the slope angle;
kt1, a turbulent friction coefficient; ∂A, the surface of the
flow.

The effect of choosing a symmetrical geometry for the
flow object eliminates the pressure gradients. One of the
implications of such a model for the variation of momentum
is that there cannot be sustained mean motion on perfectly
horizontal surfaces (θ = 0°).

The velocity, U, determines the position of the object at
each time t by: , where X is the curvilinear abscissa.

2.2 Geometrical Evolution: l and h

To characterize the geometrical evolution, we consider two
effects separately: spreading of the object and incorporation
of the ambient water at the upper interface.

2.2.1 Spreading of the Object

The study of the internal velocity field shows that the
spreading velocity Ul (Fig. 2) follows the equation of
evolution:

(rate of change of momentum = 
longitudinal component of the pressure forces 

+ turbulent friction force along the flow surface)

where kt2 is a turbulent friction coefficient. The flow
lengthens to the velocity Ul, therefore .

2.2.2 Incorporation of Ambient Seawater

During the decelerating phase (Phase III), but not
exclusively, the flow incorporates the ambient fluid along its 

Figure 2

Modeling of the spreading phenomenon of the flow object,
where Ul is the spreading velocity.

Figure 3

Modeling of the ambient fluid incorporation phenomenon.
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upper interface (Fig. 3) [16, 17]. The variation of the flow
volume is determined by:

(rate of variation of the volume = rate of incorporation 
of ambient fluid along the upper interface)

where Ef is the rate of seawater incorporation; ∂As, the upper
surface of the flow.

This equation is a simplification of the mass balance
equation (continuity equation) under assumption (4).

The dimensional analysis leads to:

Considering the mean velocity of the flow, U, as
characteristic of the phenomenon, the rate of seawater
incorporation, Ef, can be written:

Ef = UEf
*

where Ef
* is a dimensionless incorporation rate, function of

the Richardson number Ri. This dimensionless number is
defined by:

(4)

It is the ratio of gravity to inertia. It characterizes the
stability of the flow interface.

The law determining the dimensionless incorporation rate
of ambient fluid by the flow, Ef

*, is an important property. 
It distinguishes gravity flows from density and fluviatile
flows. The water incorporation increases the volume of the
flow and reduces the concentration in sediment particles in
the flow. The following empirical formula to determine this
incorporation rate is given in [43]:

(5)

where Ri is the Richardson number given by Equation (4), 
C1 = 0.00153 and C2 = 0.0204. 

According to Equation (5), when Ri approaches 0, a
constant value of 0.075 is appropriated for Ef

*. When Ri tends
to infinity, gravity efforts stabilize the interface; the water
incorporation diminishes, then Ef

* decreases as Ri-1 (Fig. 4).

2.3 Sediment Mass Evolution: φ

Here again we consider two effects: sedimentation and
erosion.

However, they will be included in a same equation.
Indeed, the variation of the mass of particles can be
quantified by a balance equation of the type:

Mp = Q · ∂A (6)

Figure 4

Dimensionless seawater incorporation rate, Ef
*, as a function

of the Richardson number Ri.

where Q is a mass flux, and ∂A, a surface. We will therefore
write:

(rate of change of particle mass = entrainment 
and sedimentation rate 

along the flow bottom interface)

where Sp is the sedimentation rate; Ep, the sediment
entrainment rate; ∂Ai, the lower interface of the flow. A
dimensional analysis of the mass flux Q, of Equation (6),
shows that:

(7)

Therefore, for each phenomenon of mass transfer, we will
have to find a characteristic volume mass and a characteristic
velocity.

2.3.1 Sedimentation

Sediments in suspension fall out of the flow by gravitational
effect within the viscous sublayer (Fig. 5). Taking Equation
(7) into account, the sedimentation rate Sp intervening in the
particle mass balance is assumed to be a function of:
– the volume concentration of suspended sediments

immediately above the bed [42, 43];
– the settling velocity Vs (function or not of the presence 

of other particles, i.e. of the other particles volume
concentration).
The flux Sp can therefore be modeled by:
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Figure 5 

Modeling of the sedimentation phenomenon.

Figure 6

Modeling of the erosion phenomenon.

where b is a distance very close to the bed such that: b << h.
The terms are indeed evaluated just slightly above the bed to
avoid singular behavior due to having neglected the
molecular diffusion at the bottom of the flow. It can be
assumed that is of the following form: C3φ with 
C3 ≈ 1.56 [43].

2.3.2 Erosion

As we have underlined, a flow, essentially in its acceleration
phase (Phase I), is able to erode, along its lower surface ∂Ai,
sediments on its path (Fig. 6). Based on dimensional
argument (7), the sediment entrainment rate, Ep, can be
decomposed in the following manner:

Ep = ρpUEp
*

where Ep
* is a dimensionless entrainment rate, function of the

particles Reynolds number Rep [42, 43]. This dimensionless
number is defined by:

2.4 Discussion

Equations (3a) and (3c), with kt1 and kt2 equal to 0, are
similar to the ones considered in [48]; Equations (3a), (3c)
and (3d) with Ep

* = 0, to those considered in [49].
By characterizing the evolution of the different quantities

linked to the flow, we have introduced new unknown
parameters, such as the settling velocity, Vs, the dimensionless

entrainment rates, Ep
* and Ef

*, the bottom volume concen-
tration of suspended sediments, , and the turbulent
friction coefficients, kt1 and kt2. Numerous empirical laws
describe their evolution. A review of the settling velocity and
suspension viscosity laws can be found in [30].

3 ANALOGICAL EXPERIMENTS

A numerical code in C++ language has been developed to
solve non-linear differential system (3) by the fourth-order
Runge-Kutta method [50, 51] with some computational
options (Appendix B).

The objective of the experiments found in [19] on
analogical small-scaled models was to study density surges2

and suspensions. They were carried out in an inclined
constant slope channel (0.2 m wide, 0.35 m deep and 4 m
long) immersed in a full water reservoir.

Front velocity data allow a validation of the theoretical
laws (System (3)). Numerical predictions on front velocity,
with default values of the models found in the literature [42-
44] (Appendix B), show a good agreement with experimental
data (Fig. 7).

4 ANALYTICAL STUDY

We present here the analytical study of the above-described
model (System (3)). Classic methods of local analysis allow
analytical solutions for long times to be found [52]. The
study is accomplished progressively and shows the evolution
of solutions when taking new phenomena into account.

Figure 7

Comparison of front velocity, Uf, as a function of the distance
X, predicted by numerical and analogical experiments.
Default computational values (Appendix B).

(2) Release of a finite volume of dense fluid into a lighter one.
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4.1 Undeformable Sliding

The system is then composed of Equation (3a), which can be
cast in the form: .

with G > 0 and K > 0. Critical points are:

The first critical point, Us1, is the same steady velocity as
in Equation (1) [35, 36]. The study of the linearized equation
shows that Us1 is a stable node, and Us2 is an unstable node.
An exact analytical solution is found on constant slopes, for
U0 > Us2:

(8)

The numerical model exhibits the same behavior (Fig. 8).
As slopes (sin θ) vary as Xγ, seeking solutions of the form
(analogous to Frobenius series [52]):

(9)

by local analysis methods for long times (i.e. as t → ∞),
shows that the first-order term (dominant term) of the
velocity is:

whatever the initial conditions are. On decreasing slopes 
(γ < 0), the mean flow velocity, U, decreases. On constant
slopes (γ = 0), the leading behavior of the solution is
independent of time, it is a constant. This constant is Us1 as
show Equation (8) and Figure 8.

4.2 Taking the Spreading into Account 

This case corresponds physically to a non-miscible density
flow. The system is then composed of Equations (3a) and
(3b) that can be cast in the respective forms:

completed with the volume conservation:

The critical point is: (U, l, h) = (0, l∞, 0). Again, seeking
solutions of form (9) on slopes varying as Xγ by local
analysis methods shows that, whatever the initial conditions
are, the first-order terms are:

On decreasing and constant slopes (γ ≤ 0), the flow slows
down while thinning down and spreading regardless of γ. The
numerical model predicts the same behavior (Fig. 9).

4.3 Taking the Water Incorporation into Account

This case corresponds physically to a suspension without
sedimentation (for example, on slopes that are too steep for
sediments to remain in place) or a density surge. The system
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Numerical solutions and leading behaviors as a function 
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is then composed of the three equations (3a), (3b) and (3c)
that can be simplified to:

The mass of sediment particles remains constant in the
flow as expressed by:

The critical point of the system is: (U, l, h, φ) = (0, l∞, h∞,
0). Seeking solutions of form (9) for long times shows that,
on slopes varying as Xγ, whatever the initial conditions are:

On decreasing and constant slopes, the flow slows down
while expanding and diluting, and this regardless of γ. On
constant slopes (γ = 0), it expands with a constant aspect
ratio. The numerical simulation reproduces these solutions
well (Fig. 10).

4.4 Taking the Sedimentation into Account 

This case corresponds physically to a suspension in
sedimentation. The system is then composed of the four

equations (3a), (3b), (3c) and (3d) that can be cast in the
respective forms:

The critical point is: (U, l, h, φ) = (0, l∞, h∞, 0). Due to
Equation (3d), all solutions are no longer of form (9) for long
times. It is however possible to show that, defining m as:

first-order terms are:

the Richardson number, Ri, defined by Equation (4), being
very small.

The leading behaviors of the solutions are also found
numerically (Fig. 11). As for the case of Section 4.3, the flow
slows down while expanding and diluting, but here, because
of the exponential decrease of the volume concentration, the
leading behaviors are independent of the slope.
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Figure 10

Numerical solutions and leading behaviors as a function of
time for a suspension without sedimentation on constant
slopes (γ = 0). Plain lines are leading behaviors, dotted lines
are numerical solutions.

Figure 11

Numerical solutions and leading behaviors as a function of
time for a suspension in sedimentation as kt1C2/C1 → 0, i.e.
as m → 1/3. Plain lines are leading behaviors, dotted lines are
numerical solutions.



Oil & Gas Science and Technology – Rev. IFP, Vol. 55 (2000), No. 5

We remark that the numerical model predicts a transi-
tional phase (~ 10s), where the flow first thins down and
accelerates with a non-constant aspect ratio. After this, it
slows down while expanding. This transitional time is of
great interest for geoscientists since most of the deposition
takes place during this period. The leading behaviors of U, h
and l are only reached after the volume concentration has
become very small and all the particles have settled out of the
flow.

CONCLUSIONS

The model we have developed for gravity flows is a hybrid
model, in the sense that:
– the flow, assimilated to a geometrical object, can be

considered as a discrete deformable particle;
– internal variables of the object are continuous functions.

Laws governing the evolution of these functions are
deduced directly by the integration of mechanics of
continuous media balance laws;

– closures are obtained by dimensional analysis and
empirical laws.
Despite some limitations, due to the geometrical

simplification of the flow and the use of empirical laws from
fluviatile flow studies, which restrict its validity, the model
has the main following advantages:
– it conserves a physical description for dynamics and mass

transfers;
– the flow evolution is governed by a system of ordinary

differential equations and not by a set of partial
differential equations, more complex to implement
numerically;

– the flow is treated as an object.
Therefore, this complete and original model has a

fundamental advantage: it is a simple case. It presents
however the disadvantage, at present time, to be limited to the
particular cases of turbulent diluted flows. Nevertheless, it can
be a good approximation of gravity phenomena. With such a
model, computational times are very short, therefore it is
foreseeable to simulate series of events—even several events
in parallel—and to form multi-event depositional sequences.
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a empirical coefficient, ~ 0.43 as Ri ~ 1 [35,
36]

ah first non-zero coefficient of the Frobenius 
series for h

an expansion coefficients of the Frobenius
series (n = 0, ..., ∞)

b distance close to the bed  (b << h) L

d particle diameter L

f Darcy-Weisbach friction coefficient, 
~ 0.04 [35, 36]

g gravitational acceleration, ~ 9.81 m·s-2 MT-2

g’ gravitational effective acceleration MT-2

h flow characteristic height L

kt turbulent friction coefficient

kt1 turbulent friction coefficient of the mean 
motion

kt2 turbulent friction coefficient of the
spreading motion

l flow characteristic length L

s slope

t time T

u characteristic velocity scale parallel to the LT-1

wall

w characteristic velocity scale normal to the LT-1

wall

z normal distance to the wall L

A volume of the flow object per unit of width L2

∂A flow object surface per unit of width L

∂Ai flow-substratum contact surface per unit L
of width

∂As flow-ambient fluid interface surface L
per unit of width

C geometrical factor

C1 empirical constant, ~ 0.00153 (in Ef * [43])

C2 empirical constant, ~ 0.0204 (in Ef * [43])

C3 empirical constant, ~ 1.6 (in [43])

Ef seawater incorporation rate LT-1

Ef * dimensionless seawater incorporation rate

Ep sediment entrainment rate ML-2T-1

Ep* dimensionless sediment entrainment rate

Mp particles mass M

Re Reynolds number 

Rep Particles Reynolds number  

Ri Richardson number  

Sp sedimentation rate ML-2T-1

U mean flow object velocity LT-1

U0 initial flow object velocity LT-1

Uf front velocity LT-1

Ul spreading velocity LT-1

Up velocity of the solid phase LT-1

Vs particle settling velocity LT-1

X position (curvilinear abscissa) L

α initial exponent of the Frobenius series

∆ρ density contrast (ρp – ρf) ML-3

φ sediment particle volume concentration

bottom sediment particle volume 
concentration

µ dynamic viscosity of the suspension ML-1T-1

θ slope angle

ρ mean volume mass ML-3

ρf fluid volume mass ML-3

ρp sediment particle volume mass ML-3

φ
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B  Input Variables and Computational Options

Initial and input variables Unit Default value

Ambient fluid
Volume mass kg·m-3 1000.
Dynamic viscosity kg·m-1·s-1 1.E – 3
Flow geometry
Length m 10.
Height m 1.
Width m 1.

Suspended particles
Volume mass kg·m-3 2650.
Diameter m 9.E – 5
Volume concentration dimensionless 0.05
Critical angle of repose degree 30.

Flow variables
Time s 0.
Position m 0.
Mean velocity m·s-1 0.
Spreading velocity m·s-1 0.
Mean motion friction coefficient dimensionless 0.01
Spreading motion friction coefficient dimensionless 0.01
Upper to lower interface friction coefficient ratio dimensionless 0.2

Deposit
Porosity dimensionless 0.44

Numerical
Initial time step s 0.1
Precision dimensionless 1.E – 6
Convergence on φ dimensionless 1.E – 6

Computational options Default value Available

Height variation Yes Yes-No
Length variation Yes Yes-No
Ambient fluid incorporation Yes Yes-No
Sedimentation Yes Yes-No
Auto-suspension (if sedimentation) Yes Yes-No
Erosion Yes Yes-No
Free fall velocity calculation method [53] Stokes
Free fall velocity correction method Richardson
Viscosity calculation method [54]
Experimental reference Yes Yes-No
Automatic gnuplot command file generation Yes Yes-No
Automatic graph generation (ai, ps, gif, LaTeX) Yes Yes-No
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