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Abstract Large-scale numerical simulation using the Discrete Element Method (DEM) con-
tributes to improve our understanding of granular flow dynamics involved in many industrial
processes and geophysical flows. In industry, it leads to an enhanced design and an overall opti-
misation of the corresponding equipment and process. Most of DEM simulations in the literature
have been performed using spherical particles. A limited number of studies dealt with non-spherical
particles, even less with non-convex particles. Even convex bodies do not always represent the real
shape of certain particles. In fact, more complex shaped particles are found in many industrial
applications as, e.g., catalytic pellets in chemical reactors or crushed glass debris in recycling pro-
cesses. In Grains3D-Part I [39], we addressed the problem of convex shape in granular simulations
while in Grains3D-Part II [33], we suggested a simple through efficient parallel strategy to compute
systems with up to a few hundreds of millions of particles. The aim of the present study is to extend
even further the modeling capabilities of Grains3D towards non-convex shapes, as a tool to examine
the flow dynamics of granular media made of non-convex particles. Our strategy is based on de-
composing a non-convex shaped particle into a set of convex bodies, called elementary components.
We call our method glued or clumped convex method, as an extension of the popular glued spheres
method. Essentially, a non-convex particle is constructed as a cluster of convex particles, called
elementary components. At the level of these elementary components of a glued convex particle, we
employ the same contact detection strategy based on a Gilbert-Johnson-Keerthi algorithm and a
linked-cell spatial sorting that accelerates the resolution of the contact, that we introduced in [39].
Our glued convex model is implemented as a new module of our code Grains3D and is therefore
automatically fully parallel. We illustrate the new modeling capabilities of Grains3D in two test
cases: (i) the filling of a container and (ii) the flow dynamics in a rotating drum.
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1 Introduction

Discrete Element Method was originally designed to handle spherical particles [6]. The method is
now able to deal with more complex particle shapes [7,14,39]. Thanks to its conceptual simplicity
this method is widely used in granular media modelling. Its computational implementation is very
straightforward for spheres but is quite difficult for complex particle shapes. Many approaches have
been investigated since the late 80’s, among them the works of Cundall [7] and Hart [14]. They
studied a system composed of polyhedral blocks and used a robust and rapid technique (Common
Plane technique) to detect and to categorise contacts between two polyhedral blocks. Later on,
various authors worked on the extension of DEM to non-spherical particles. Li et al. [24] modelled
sphero-disc particles to study the flow behaviour, the arching and the discharging in a hopper.
Another extension of Discrete Element Method to polygonal shaped particles was suggested by
Feng and Owe [10] and to polyhedral shaped particles by Fraige et al. and Lee et al. [11,23]. These
new features enabled research groups to address several problems in the field of geophysics [4,18,
15]. Munjiza et al. [28] constructed a poly-ellipsoid particle by “gluing” ellipsoids together. One
of the most famous extensions of DEM is the “glued spheres” model in which a complex shape
is approximated by “gluing” spherical particles. For instance, Nolan and Kavanagh [29] used a
glued spheres model to study the random close packings of cylindrical-, bean- and nail-shaped
particles. They found good agreement between their simulation results and available experimental
data. Song et al. [35] also used a glued spheres model to study tablet-flat wall and tablet-tablet
contacts. At first sight, this method seems to be well adapted to any shape. Nonetheless, the
higher the number of spheres is, the less efficient the computation becomes, as Song et al. [35]
demonstrated. In addition, the glued spheres approximation introduces an articifial roughness at
the particle boundary [16] that varies with the size and the number of spheres. Although the "glued
spheres" model is a coarse geometric representation of a complex shape, it is still widely employed
nowadays, even for rather simple non-spherical convex shapes for which a more advanced (in the
sense angularity or shape preserving) modeling approach could have easily been used as, e.g., [42]
for cubes, [36] for cylinders and [45] for tetrahedra.

Available strategies in the literature to handle complex shapes were already reviewed in detail
in Grains3D-Part I [39] and comprehensively summarized by Lu et al. in [25]. We simply give
here again a short (and incomplete) overview. Williams and O’Connor [40] introduced the Discrete
Function Representation (DFR) of a particle shape to address contact resolution. DFR is applicable
to convex shapes and to a restricted set of concave shapes. Williams and Pentland [41] explored
the critical influence of particle shape on granular dynamics and suggested super-quadric particles
for geophysical applications. This method allows the design of particles with rounded edges such
as ellipsoid, rounded blocks, or rounded tablets by introducing a continuous function f(x, y, z) =
(x/a)m + (y/b)n + (z/c)p − 1 = 0 that defines the body shape. The weakness of this method relies
on the handling of contact detection. In fact, as edge angularity increases, more discretisation
points are required to represent f(x, y, z) locally at the contact point. Therefore, the computing
cost associated to contact detection increases with edge (or shape) angularity. A probability-based
contact algorithm is presented in the work of Jin et al. [17]: contacts between non-spherical particles
are recast into those between spherical particles with probability. Alonso-Marroquín and Wang [2]
presented a method to simulate two-dimensional granular materials with sphero-polygon shaped
particles. The particle shape is represented by the classical concept of a Minkowski sum [3], which
permits the representation of complex shapes without the need to define the object as a composite
of spherical or convex particles. Hence, this approach has proven to be much better than the glued
spheres method. The modelling of non-spherical particles using the so-called generalized “sphero-
simplices” has received a particular interest over the last decade [2,32]. A spherosimplex -shaped
particle is combination of a skeleton (e.g. a point, a linear segment, a polygon or a polyhedron)
and a disk or a sphere. The use of Minkowski sums is also a primary feature of our own contact
detection method [39].

The literature on numerical models for particles of non-convex shape is rather scarce. In theory,
the "glued spheres" model can represent any shape, including non-convex shapes, but the model has
shown limited accuracy even for simple shapes as a cylinder [19]. The spherosimplex representation
is able to handle non-convex shapes with rounded corners/edges (as the skeleton is spanned by a
disk or a sphere). The ultimate solution, that might be inefficient from a computational viewpoint
as the collision detection step is certainly very time consuming, involves meshing the surface of the
non-convex bodies, as attempted by Remond et al. [34]. The method in [34] produced spectacular
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results on the packing of crushed hollow cylinders, but (serial) computations were limited to 10, 000
particles maximum.

Contact resolution is a core component of DEM simulations. A proper contact resolution en-
sures accurate DEM computed solutions. When combined with pre and post homotheties applied
to two presumably colliding bodies, the Gilbert-Johnson-Keerthi (GJK) algorithm [37,13] is a
good candidate for this particular problem and well suited for arbitrary convex shaped particles.
The GJK-based strategy was first introduced by Petit et al. in 2001 [31] and later generalized in
Grains3D-Part I by Wachs et al. [39] to study the effect of non-spherical particle shape in granular
flows. The GJK algorithm is an iterative approach to compute the minimal Euclidean distance be-
tween two convex bodies. The GJK reduces the problem of finding the minimal distance between
two convex bodies to finding the minimal distance between their Minkowski difference and the
origin [13].

Beyond the problem of contact detection, modelling difficulties related to multiple contact
handling for complex shaped particles also require to be addressed. In the existing literature on this
problem, Abbaspour-Fard [1] employed a multi-sphere model to examine various phenomena such as
sliding, dropping and conveying, while Kruggel-Emden et al. [20] studied the macroscopic collision
properties of the glued sphere model and compared them to experimental data. In their study,
the total contact force of a multi-sphere particle impacting a flat wall is treated by computing the
mean of the forces at each contact point. Later on Höhner et al. [16] pointed out that this method
may not be accurate enough. They showed that there is a non-negligible effect of the particle shape
approximation (artificial roughness created by glueing spheres) on the force temporal evolution in
normal and tangential directions.

Our main objective is to elaborate on the construction of a simple glued/clumped convex
method to model non-convex shapes. Our method is based on existing and validated tools already
introduced in the two first chapters of this trilogy of papers on Grains3D [39,33]. Our method
shares some features with the method used in the Bullet Physics library [5], developed for video
games, virtual reality and movies, to handle contacts between convex and non-convex bodies. The
rest of the paper is organized as follows. In Section 2, we shortly explain how the method works
conceptually and how we address the problem of multiple contact points. We present in Section 3
two validation cases, the former involving the impact of a convex body decomposed into a set of
smaller convex bodies on a flat wall and the latter involving a comparison against experimental
data in a far more complex flow configuration. Section 4 illustrates further the modeling capabilities
of the new non-convex module of Grains3D. Unprecedented simulation results on the packing and
the flow of 2D/3D cross-like particles are shown. Concluding remarks and perspectives are given
in Section 5.

2 The glued convex method

The glued convex method is a simple though powerful idea. It is based on decomposing a non-
convex particle, called the composite, into a set of convex bodies, called elementary components,
as illustrated in 2D in Fig. 1. It can hence be seen as an extension or a generalization of the glued
spheres method introduced by [29]. However, contrary to the glued spheres method, our glued
convex method keeps:

(i) the original angularity of the non-convex shape,
(ii) the particle surface smooth and does not introduce any artificial roughness.

These two features are deemed to be major improvements with respect to the glued spheres method.
Our glued convex method is implemented in our in-house granular solver Grains3D [39]. This enable
us to use existing methods, models and algorithms already implemented in Grains3D such as
time integration of equations of motion, quaternions/matrices for body rotation, linked-cell spatial
sorting and the Gilbert-Johnson-Keerthi algorithm for collision detection [13,12]. In particular,
the GJK algorithm is applied to the elementary components. A contact between a glued convex
particle, i.e., a composite, and another glued convex particle, i.e., another composite, is detected if
at least one elementary component of the former contacts with one elementary component of the
latter.
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2.1 Equations of motion

The dynamics of a granular material made of (non-convex) particles is entirely governed by New-
ton’s law. Assuming that the granular system is made of N particles, each particle i ∈< 0, N − 1 >
satisfies the following set of governing equations:

Mi
dUi

dt
= Fi , Ji

dωi
dt

+ ωi ∧ Jiωi = Mi (1)

dxi

dt
= Ui ,

dθi
dt

= ωi (2)

where Mi, Ji, xi and θi denote the mass, moment of inertia tensor, position of the centre of mass
and angular position of particle i, i ∈ [0, N − 1]. The translational velocity vector Ui and the
angular velocity vector ωi of the centre of mass are involved in the decomposition of the velocity
vector as vi = Ui+ωi∧Ri, where Ri denotes the position vector with respect to the centre of mass
of a particle i. As in [39], the angular position is actually tracked by a quaternion or equivalently
by a rotation matrix with respect to the initial (reference) angular position. For the easiness of
presentation, we use a rotation matrix later on and denote itMi. Fi and Mi stand for the sum of
all forces and torques applied to particle i. They are defined as follows:

Fi =Mig +
N−1∑

j=0,j 6=i

Fij (3)

Mi =

N−1∑
j=0,j 6=i

Rj ∧ Fij (4)

Rj denotes a vector which points from the centre of mass of the particle i to the contact point
with particle j. It is assumed in this work that all particles are subjected to gravity and contact
forces only, although additional forces and torques can be easily added, provided appropriate
corresponding physical models are available, as cohesive, electrostatic, hydrodynamic, etc.

2.2 Solution strategy for composite particles

At each discrete time and for each composite particle i made of K elementary convex components
k ∈< 0,K − 1 >, we perform the following steps :

1. detect contact points with surrounding composite particles by detecting contact points be-
tween elementary convex components k ∈< 0,K − 1 > of composite i and elementary convex
components of surrounding composites,

2. compute contact forces and contact torques. Torques must be computed with the right leverage,
i.e. the vector from the center of mass of composite i and the point of contact, and not from
the center of mass of the elementary component k,

3. solve the time-discretized form of Eq. (1)-Eq. (2) to supply the new velocity (Ui,ωi) and
position (xi,Mi) of composite particle i,

4. update the velocity (Uk,i,ωk,i) and position (xk,i,Mk,i) of its elementary components using
standard kinematic relations.

These standard kinematic relations read as follows. Assuming x0
i denotes the initial position of

composite i, x0
k,i the initial position of elementary component k of composite i and r0k,i = x0

k,i−x0
i

the initial leverage of elementary component k, we have for each elementary component k of
composite i:

ωk,i = ωi , Mk,i =Mi (5)

Uk,i = Ui + ωk,i ∧ (Mk,i · r0k,i) , xk,i = xi + (Mk,i · r0k,i)− r0k,i (6)
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2.3 Mass properties

One of the challenges encountered with a non-convex particle shape is the computation of its
mass properties (volume, centre of mass and components of moment of inertia tensor). In fact, the
numerical integration of the different volume sums theoretically involves the use of sophisticated
geometric intersection operations often referred to as Boolean Algebra on rigid bodies since our non-
convex particles are made of arbitrary convex elementary components that can overlap (and most of
the time do overlap). This can be achieved by resorting to using an appropriate library such as the
Computational Geometry Algorithms Library [8]. We opt for an alternative computing method
that is simple to implement but nonetheless provides an accurate approximation of the various
volume sums corresponding to the particle mass properties. Our in-house method basically involves
pixelating the particle and shares similarities with the method suggested by Alonso-Marroquín
and Wang [2] except that the set of points we use to compute the volume sums are located on
a structured lattice while Alonso-Marroquin and Wang use an actual Monte-Carlo method with
quasi-random distribution of points inside the non-convex body. We compared our structured
lattice method to Monte-Carlo random distribution of points and did not find that the Monte-
Carlo method is significantly faster and/or actually even just faster for the same level of accuracy,
depending on the body shape. Our structured lattice method unfolds as follows:
– define a box that embeds the body (Fig. 2),
– uniformly discretise the box in the three directions to create a three-dimensional mesh of con-

stant grid size,
– find which cell centers X are inside the body,
– sum up contributions of cells tagged inside to approximate the volume sum.
Volume sums are hence approximated in the following way:∫

V

f(x)dx '
Nx−1∑
l=0

Ny−1∑
m=0

Nz−1∑
n=0

f(Xlmn)φ(Xlmn)vlmn (7)

where Nx, Ny and Nz denote the numbers of cells in each direction, φ(X) is a binary indicator
function that equals 1 when X is inside the particle and 0 otherwise, vlmn denotes the volume of
cell lmn (actually vlmn = vcell = constant as the mesh has a constant grid size) and f is a scalar
or vector-valued function that takes the following forms:
– f = 1 to compute the particle volume,
– f = X to compute the position Xg of the centre of mass as:

Xg '
1

V

Nx−1∑
l=0

Ny−1∑
m=0

Nz−1∑
n=0

Xlmnφ(Xlmn)vcell (8)

– f = X2
y + X2

z , f = X2
x + X2

z , f = X2
x + X2

y , f = −XxXy, f = −XyXz and f = −XxXz to
compute Jxx, Jyy, Jzz, Jxy = Jyx, Jyz = Jzy and Jxz = Jzx, respectively.
We illustrate in Fig. 3 the spatial convergence properties of our algorithm applied to the calcu-

lation of the volume (Fig. 3(a)) and the components of the moment of inertia tensor (Fig. 3(b))
of a sphere, a cylinder and two overlapping cylinders. The relative error between the approximated
volume and the true volume is plotted as a function of the number of discretisation points per
direction. The error decreases in a slightly non-monotone but overall linear way as the number of
discretisation points per direction increases. From 500 points, the error on both the volume and
the components of the moment of inertia tensor is less than 0.2% for the three shapes considered.
In this study, all computations of mass properties of glued convex particles are performed with
at least 1, 000 discretisation points per direction to ensure a satisfactory level of accuracy (Nota:
Nx, Ny and Nz are not necessarily equal is the particle aspect ratio is larger than 1). For the sake
of completeness, we point out that 1, 000 points per direction translates into 1, 000, 000, 000 cells
and hence K × 1, 000, 000, 000 in/out tests, which might correspond to a lot of such geometric
tests, performed with the GJK algorithm, and hence a significant computing time. This impression
is however biased for two reasons: (i) our algorithm is parallelized by standard domain decom-
position and distributed computing hence markedly speeds up computations (with literally zero
communication overhead as a simple MPI_Gather on the master process is sufficient to sum all
contributions coming from the different processes), and (ii) these properties are computed once
and for all for a certain shape and are then stored in a shape database to be later uploaded for
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actual granular simulations. To get an order of magnitude, the computation of the mass properties
of a composite particle made of 5 elementary convex components on a 1, 0003 mesh takes less than
5 minutes on 64 cores.

2.4 Time integration

As suggested in Grains3D-Part I [39], Eq. (1)-Eq. (2) are integrated in time with a second-order
leap-frog Verlet scheme. For the sake of completeness, we shortly recall below how the leap-frog
Verlet scheme ([21,22]) is constructed for the translational motion (the same applies to the angular
motion):

U

(
t+

∆t

2

)
= U

(
t− ∆t

2

)
+

F(t)

M
∆t

x(t+∆t) = x(t) +U

(
t+

∆t

2

)
∆t

(9)

As pointed out in [9] and elsewhere, at least a second-order accurate in time scheme is required to
properly predict the time evolution of a granular system.

2.5 GJK-based contact detection for non-convex particles

In Grains3D-Part I [39], we elaborated on a contact detection method for arbitrary convex bodies
based on a GJK algorithm. Introduced by [13], the GJK algorithm originally computes the minimal
distance between two convex polyhedra. In 1990, the algorithm was improved by Gilbert and Foo
[12] to deal with general convex bodies. Since in our method each elementary component of a
non-convex particle is a convex body, we can readily apply the GJK algorithm to each elementary
component to detect a potential collision with other elementary components of a neighbouring
non-convex particle.

As pointed out in Grains3D-Part I [39], the GJK algorithm applied right away to convex
bodies is helpful to determine whether two convex bodies touch or not (if they do touch, the
minimal distance between them is 0) but does not supply information on the contact features
as contact point, overlap distance and unit normal vector at the point of contact. To access this
information, we suggested in Grains3D-Part I [39] a 3-step procedure that consists of a sequence
of (1) slightly shrinking the bodies such that they do not overlap anymore, (2) using the GJK
algorithm to compute the minimal distance, and (3) swelling back the bodies to their original
size and reconstructing contact features. For further details on our contact detection method for
arbitrary convex shaped particles, the interested reader is referred to [39].

Proximity queries are performed with spheres circumscribed to non-convex particles and a
linked-cells spatial sorting. Our linked-cells spatial sorting is based on non-convex composite parti-
cles and hence the size of cells is greater or equal to the diameter of the largest sphere circumscribed
to the non-convex particles. Potential contacts of a particle with its neighboring particles are com-
puted by looping over particles that belong to cells that are neighbors to the cell the particle
belongs to. Once this list of neighboring particles is established, it is further narrowed down by
testing the potential overlap of corresponding circumscribed spheres. For standard convex particles,
we would apply our 3-step GJK-based contact detection method to these pairs of particles and de-
termine which pairs actually contact. For non-convex particles, we need to loop over the elementary
components and apply the sequence (i) proximity queries based on spheres circumscribed to the
elementary components of each non-convex particle and (ii) if positive, contact detection method
for these pairs of elementary components. The whole contact detection strategy for non-convex
particles has hence a 2-level nested loop structure. For proximity queries, we use spheres circum-
scribed to non-convex particles in the outer loop and spheres circumscribed to their elementary
convex components in the inner loop. The method reads as follows:

1. Use linked-cells to find pairs of particles (Pi, Pj) that potentially touch,
2. Narrow down this list by determining pairs of particles (Pi, Pj) whose circumscribed spheres

overlap,
3. For each of this pair, loop over elementary components Ek of composite particle Pi. For each
Ek, loop over elementary components El of composite particle Pj to determine which pairs
(Ek, El) have overlapping circumscribed spheres and hence potentially touch,
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4. For each of these pairs (Ek, El), apply the 3-step GJK-based contact detection method to
determine which pairs actually touch and compute contact point features.

The contact detection method for two non-convex particles theoretically scales as Ni×Nj where
Ni and Nj are the number of elementary components of particle Pi and the number of elementary
components of particle Pj , respectively. This could be seen as the main drawback of our method,
which results into a significant increase of the computing time for a granular system made of non-
convex particles with respect to a granular system made of convex particles. In practice, the ratio
between non-convex and convex is more of the order of αNiNj , with α ∈ []0 : 1]. The inner loop of
proximity queries normally limits the number of calls to the 3-step GJK-based contact detection
method for elementary components, but this strongly depends on the shape itself, and any general
estimate is very hard to supply. Actually, we can establish a hierarchy of computing time between
spheres, convex bodies and non-convex bodies. Spheres contact detection is analytical, convex
bodies contact detection requires one call to our 3-step GJK-based contact detection method
and non-convex bodies contact detection requires several calls to our 3-step GJK-based contact
detection method. For the sake of illustration, although the following numbers should be considered
with great care are they are strongly shape dependent, we can roughly state that for the same flow
configuration, a computation with convex bodies (let’s say cubes, for instance) is ∼ 5-fold more
time-consuming than with spheres, and the same computation with non-convex bodies is itself ∼ 5-
to 10-fold more time-consuming than with convex bodies, so about 50-fold more time-consuming
than with spheres. The computing cost is high, but we claim that this is the price to pay to
accurately represent a non-convex shape. Interestingly, and as pointed in Grains-Part II [33], since
contact detection is a serial operation and its cost for non-convex bodies is markedly larger than
spheres or convex bodies, parallel computations of granular systems made of non-convex particles
scales extremely well (with a weak scaling factor close to 1). In fact, the MPI communication
overhead is literally negligible compared to the contact detection phase per sub-domain, i.e., per
process.

2.6 Contact force and torque model

For all simulations performed in this work, we use the same contact force model as in Grains3D-Part
I [39]. It is a simple Hookean spring-dashpot-Coulomb frictional slider model. The total contact
force Fij,l between two particles i and j at contact point l reads as follows:

Fij,l = Fij,l,el + Fij,l,dn + Fij,l,t (10)

where Fij,l,el = knδij,lnc is the Hookean normal elastic force, Fij,l,dn = −2γnmijUrn is the normal
dissipative force and Fij,l,t = −min{µc|Fij,l,el + Fij,l,dn|, | − 2γtmijUrt − ks

∫ t
ts
Urtdt|}tc is the

tangential Coulomb force. kn denotes the normal contact stiffness, δij,l the overlap distance, nc the
unit normal vector at contact point, γn the normal dissipative coefficient, mij the reduced mass,
Urn the normal relative velocity at contact point, µc the Coulomb tangential friction coefficient, γt
the dissipative tangential friction coefficient, Utn the tangential relative velocity at contact point,
ks the static tangential friction coefficient and ts the time at which contact started. For more detail
and meaning of parameters, the interested reader is referred to [38,39]. As in [38,39], the influence of
the term−ks

∫ t
ts
Urtdt has been found to be very limited in the granular configurations investigated,

even in quasi-static configurations as a packing. If γt is chosen sufficiently large, results with ks = 0
and ks 6= 0 are almost indistinguishable. In fact, a small residual velocity Urt (inevitable in DEM
computations as a result of the explicit integration in time of the momentum equation of particles
involved in multiple simultaneous contacts) is enough for the tangential force Fij,l,t to saturate
to µc|Fij,l,el + Fij,l,dn|tc ' µc|Fij,l,el|tc (as |Fij,l,dn| � |Fij,l,el| when Urn is small). The most
critical configuration is a packing in which the set of particles theoretically relaxes to full rest.
With ks = 0, the dynamics of the system is characterized by two time scales/stages: (i) stage 1
relevant of a short time scale over which particles are poured/inserted, settle by gravity, collide and
reach a pseudo-stationary state of rest, followed by (ii) stage 2 relevant of an extremely long time
scale over which the system is characterized by very slow (and non physical) creeping deformations.
At the end of stage 1, simulation results with ks = 0 and ks 6= 0 are similar and the packing is
indeed representative of a frictional system controlled by the magnitude of µc. Hence, we take
ks = 0 thereafter and analyze results for packings at the end of stage 1. Please note that this is
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not a general comment on the choice of ks. In fact, in other configurations, the above comment
may not apply. Finally, we set the rolling resistance coefficient kms [39] to 0 (i.e. no rolling torque
resistance) in all simulations as particles are all non-spherical in this work.

In the case of a contact between two convex particles, the number of contact points is assumed
to be Nc = 1 and we always have l ∈< 0, Nc − 1 >⇒ l = 0. In the case of multiple contact points,
i.e., Nc > 1, there are essentially two simple ways to compute the total contact force between two
particles:
– Model A: by summing contributions from all contact points,
– Model B: by averaging contributions from all contact points over the total number of contact

points Nc.
Model B is the most intuitive and actually the solution adopted by Kruggel-Emden et al. [20] and
Höhner et al. [16]. In the latter work, the authors compute forces incrementally to account for
the fact that the number of contact points can vary over the full duration of contact between two
particles. In this work, we adopt the simple approach of Kruggel-Emden et al. [20]. The total contact
force between two non-convex composite particles is calculating as a mean contact force over all
their contact points. In other words, the total contact force is the sum of all forces resulting from
contacts between two elementary components of the two non-convex composite particles divided
by the total number of contact points. Same applies to the total torque where contributions of
each contact point is calculated with respect to the centre of mass of the non-convex composite
particle, not the center of mass of the elementary component.

Both Model A and Model B are acceptable and lead to the right restitution in a simplified
normal contact. However, Model A has two drawbacks: both contact duration Tc and normal
dissipative coefficient γn depend on Nc, while they do not for Model B. Let us shortly show this
property by considering a simple normal, gravityless, frictionless normal contact between a sphere
and a flat surface at a pre-collisional velocity v0. This is a nice toy problem as we can solve it
analytically. The penetration depth δ over contact duration solves a similar equation as the one
introduced in Grains3D-Part I [39]:

d2δ

dt2
+ 2γn

dδ

dt
+ ω2

0δ = 0 , δ(t = 0) = 0 ,
dδ

dt
(t = 0) = v0 (11)

except that ω2
0 =

kn
M

for a sphere-flat wall contact (assuming the motionless flat wall, being a

fixed obstacle, has an infinite mass) instead of ω2
0 =

2kn
M

for a sphere-sphere contact. As shown in

[39], the solution writes δ(t) = v0√
ω2

0−γ2
n

e−γnt sin
(√

ω2
0 − γ2nt

)
and can be characterized by contact

duration Tc, time of maximum overlap Tmax and maximum penetration depth δmax as follows:

Tc =
π√

ω2
0 − γ2n

, (12)

Tmax =
1√

ω2
0 − γ2n

arctan

(√
ω2
0 − γ2n
γn

)
, (13)

δmax = δ(t = Tmax). (14)

In particular, the coefficient of restitution en, defined as the ratio of post-collisional velocity to
pre-collisional velocity, can be expressed as:

en =

∣∣∣∣∣ dδdt (t = Tc)

v0

∣∣∣∣∣ = e−γnTc = e
−γn π√

ω2
0−γ2n (15)

Given en and kn, the normal dissipative coefficient γn can be deduced from Eq. (15):

γn = − ω0 ln en√
π2 + (ln en)2

(16)

In Model A, in which forces at each contact point are summed, it is easy to see that our toy
model equation Eq. (11) becomes:

d2δ

dt2
+ 2Ncγn

dδ

dt
+ ω̃0

2
δ = 0 , δ(t = 0) = 0 ,

dδ

dt
(t = 0) = v0 (17)
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where ω̃0
2
= Nc

kn
M

. Setting γ̃n = Ncγn, Eq. (17) has exactly the same form as Eq. (11). After
some simple algebra, we obtain:

γn = −
√

2kn
NcM

ln en√
π2 + (ln en)2

, (18)

Tc =
π√

ω̃0
2 − γ̃n2

→ πM

Nckn
as en → 1 (19)

So basically, model A has a contact duration Tc and a normal dissipative coefficient γn that decrease
with the number of contact points, as 1/

√
Nc and 1/Nc, respectively. As an illustration, we show in

Fig. 5 how γn varies with en and Nc. Because forces from all contact points are summed, Eq. (18)
corrects the excessive dissipation (damping) of the system with the factor 1/

√
Nc. But the major

drawback of Model A is the decrease of Tc with Nc. The higher the number of contact points
between elementary components is, the shorter the contact time is. This is a very undesirable
property. In fact, in a complex granular flow, it is hard to estimate a priori Nc (or maxNc over all
possible contacts between non-convex composite particles in the granular flow, that would supply
minTc). The time-step magnitude ∆t in a DEM simulation is generally set to a fraction of the
contact duration Tc, typically ∆t = Tc/20 or smaller. For model A, because Tc is hard to estimate
a priori, estimating ∆t to guarantee a satisfactory time evolution of the computed solution is even
harder than in a DEM simulation of spherical or convex paricles in which Nc = 1.

In model B, the total normal force is expressed as:

Fnij = Fij,el + Fij,dn =
kn
N

Nc∑
l=1

δij,l +
2γnM

N

N∑
l=1

δ̇ij,l (20)

where δij,l is the overlap at each contact point l ∈< 0, Nc−1 >. Assuming δij,0 = ... = δij,Nc−1 = δ,
we recover Eq. (11) and hence expressions Eq. (12), Eq. (13), Eq. (15) and Eq. (16) are still valid
in the case of a multi-contact point problem. In other words, the effect of compressing/elongating
multiple springs and moving multiple dampers is modified in a way that it corresponds to a single
contact dynamics. The primary advantage is that, contrary to Model B, Tc and γn do not depend
on Nc in Model A, and ∆t can be estimated as in a granular flow with spherical and convex
particles.

Finally, in a general contact, the tangential frictional force Fij,t is calculated in a similar fashion,
i.e., summing contributions from all contact points and dividing by Nc, such that the complete
force model for a contact between two non-convex particles involving Nc contact points between
their elementary components has the simple following form:

Fij =
1

Nc

Nc∑
l=1

Fij,l,el +
1

Nc

Nc∑
l=1

Fij,l,dn +
1

Nc

Nc∑
l=1

Fij,l,t (21)

3 Validation tests

3.1 Methodology

The methodology to validate our glued convex method is two-fold. First, we run simulations with
a convex shape treated as a single standard body in Grains3D and then run additional simulations
of exactly the same flow configuration with the convex shape artificially decomposed into a set of
smaller convex shapes. There is almost an infinity of choices. The most intuitive choices include
decomposing a cylinder into a number of thinner cylinders or a cube into 8 smaller cubes. For
the sake of conciseness, we select two basic particle-wall normal impact test cases: (i) with a
cylinder that admits an analytical solution and (ii) with a cube. Second, we compare our numerical
simulations to our own experimental data on the flow dynamics in a drum filled with 1000 non
convex 2D cross-like particles rotating at Ω = 6 rpm.
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3.2 Normal cylinder-wall impact

This test case is inspired by the works of Kodam et al. [19] and Park [30]. It involves a cylinder
impacting a flat wall in the normal direction to the wall and in a gravityless space (Fig. 6). The
contact is also assumed frictionless. It is conceptually simple and very convenient for an accuracy
assessment of the computed solution as it admits an analytical solution. Our goal is to compare
the solutions computed with Grains3D for three representations of a cylinder to the analytical
solution. These three representations are:

1. a true cylinder,
2. a composite cylinder obtained by artificially slicing the true cylinder in thinner cylinders of

equal thickness and gluing them together without any overlap,
3. a glued-sphere representation of the cylinder.

The initial conditions of the test case are characterized by:
– the initial angular position θ of the cylinder with respect to the horizontal plane,
– the initial translational velocity U = (0, 0, V −z,g),
– and the initial angular velocity ω = (0, 0, 0).

In other words, the pre-impact translational and angular velocity magnitude is set to V −z,g and
0, respectively. From [30], the post-impact angular velocity can be written as follows:

ω+
y =

MV −z,g(1 + ε)r cos(α+ θ)

Iyy +Mr2 cos2(α+ θ)
(22)

where M is the mass of the particle, ε = −V
−
z,g

V +
z,g

is the signed coefficient of restitution (|ε| = en),

V −z,g denotes the pre-impact velocity, α denotes the angle between the face of the cylinder and
the line joining the contact point and the centre of mass, θ is the pre-impact angular position of
the cylinder, Iyy is the moment of inertia about the y axis and r =

√
R2 + 1

4L
2 is a parameter

which denotes the distance between the impact point and the centre of mass, R is the radius of the
cylinder and L is the length of the cylinder (see Fig. 6). Similarly, the post-impact translational
velocity reads as follows ([19,30]):

V +
z,g = ω+

y r cos(α+ θ)− εV −z,g (23)

Values of physical parameters are listed in Tab. 1. As in [19], we set V −z,g = 1m/s and vary θ,
the pre-impact angular position of the cylinder.

We plot in Fig. 7 the computed post-impact translational and angular velocities as a function
of the pre-impact angular position θ, for the true cylinder and the glued cylinder (regardless of
model A or model B). The agreement between these two simulations is extremely satisfactory. It
reveals that the glued convex method is well implemented in our code. We also compare these
two quasi-similar computed solutions to the analytical solution Eq. (22)-Eq. (23). The agreement
of the two computed solutions with the analytical solution is also deemed to be very good, with
the largest discrepancy observed on the post-impact angular velocity at low pre-impact angular
positions (Fig. 7(b)).

We now investigate more deeply the differences between the two formulations to compute the
total force acting on a composite particle, the so-called model A and model B. We select a particular
pre-impact angular position θ = 90◦ and plot in Fig. 8 the time evolution of the normal contact
force exerted on the cylinder over duration contact. As expected from the formulation of model A
in which the total force is the sum of the forces exerted at each contact point, model A predicts an
increasing total normal force as the number of elementary cylinders N increases (note that N is
also the number of contact points for θ = 90◦) although the magnitude of the force per elementary
cylinder, i.e., per contact point, decreases. Overall, the adjustment of γn through Eq. (18) to get
the expected restitution Coefficient en guarantees that the solution is correct, as shown in Fig. 7,
but the main drawback of model A as predicted by Eq. (19) and supported by results of Fig. 8(a)
is the decrease of the contact duration Tc with N . Consequently, the time step magnitude would
have to be adjusted to the number of contact points in order to properly integrate a contact. This
is a very undesirable property. Conversely, model B, that assumes that the total force exerted on
the particle is the mean force over all contact points, provides a normal force magnitude, a contact
duration as well as a maximum penetration depth independent of N , as shown in Fig. 8(b).
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Finally, we examine in the case θ = 90◦ the effect of N on the accuracy of the computed
solution. For both model A and model B and N ≤ 30, Fig. 9(a) reveals that the error on the
computed post-impact translational velocity is less than 0.5 %. Model B performs remarkably
better than model A with an error quasi independent of N and of the order of 0.05 %. The error
on the computed post-impact angular velocity plotted as a function of N in Fig. 9(b) is even
more interesting. The analytical solution Eq. (22) predicts that the post-impact angular velocity
is ω+

y = 0. The true cylinder simulation predicts an articificial non-zero post-impact angular
velocity. This is due to the assumption, violated here, that the contact is always a point while
geometrically in this case it is a line. However, the GJK algorithm supplies a point, that randomly
lies somewhere along that contact line and whose position is primarily determined by rounding
numerical errors. This somehow flawed contact point creates an erroneous torque that makes the
particle spin after contact. Interestingly, the composite cylinder simulation predicts a post-impact
angular velocity ω+

y that tends to 0, the correct value, as N increases. This is simply a beneficial
side effect of the distribution of the N contact points along the contact line. Torques from each
contact point almost cancel out with each other and the total torque exerted on the particle tends
to 0 as N increases. Admittedly, the cancelling out of torques from each contact point is enhanced
by using non-overlapping elementary cylinders of same thickness as it guarantees an homogeneous
distribution of the N contact points along the contact line. Slicing the cylinder in potentially
overlapping elementary cylinders of variable thickness undoubtedly affects the distribution of the
N contact points along the contact line. It would however lead to a presumably higher erroneous
total torque only if elementary cylinders are glued together in a way that purposely breaks the
natural symmetry of the cylinder with respect to its half-length plane, but there is little rationale
in doing so. Once again, model B performs better than model A, although it is not entirely clear
why. It might simply be due to rounding errors divided by N in model B.

Overall, the glued convex approach has been very satisfactorily validated in this cylinder-wall
impact test case. Model B seems to perform better and is also conceptually more sensible as
contact feature estimates (and in particular the duration of contact) from a single contact point
configuration are still valid. To complete the validation of the model and as a side question, we
run simulations with a glued sphere representation of the cylinder and evaluate how well the glued
sphere approach performs in a simple impact test case.

We consider two composite particles made of 9 and 54 spheres, respectively, as also considered
by [19] and illutrated in Fig. 10. Values of physical parameters are listed in Tab. 2. For the mass
properties, one can select those of a true cylinder or those of the glued-sphere representation. [19]
employed a mix of true cylinder (mass) and glued sphere (moment of inertia tensor) properties,
although it is rather unclear what is the motivation for such a choice.

Fig. 11(a), Fig. 11(b), Fig. 11(c) and Fig. 11(d) show the computed solutions with 9 and 54
glued spheres. Regardless of the set of mass property parameters (true cylinder, glued spheres
or a mix as in [19]), the computed solution is qualitatively the same and does not match at all
the analytical solution. For 54 glued spheres, the computed solution starts to pick up the right
qualitative form but is still quantitatively markedly off. As the number of glued spheres used to
represent the cylinder increases, it is however predictable that the computed solution will tend
to the analytical solution. It is interesting to observe that for two particular pre-impact angular
position values 0◦ and 90◦, the glued sphere representation captures the right post-impact velocities.
These two angles correspond to two particular contact configurations in which the shape of the
cylinder and specifically the artificial roundedness of the edges created by gluing spheres does not
play any role. It fact, at 0◦ and 90◦, the actual contact zone geometry is a surface and a line
respectively. The homogeneous distribution of the glued spheres over the cylinder volume assures
the proper computation of the normal contact force and the associated torque (that is 0). For all
other pre-impact angular positions that lead to a single contact point, the error on the post-impact
velocities is very significant, unless the number of glued spheres is large (probably of the order of
O(102 − 103), as a result of the artificial rounded edges of the glued-sphere representation of the
cylinder. In general, this simple test case reveals that the glued sphere representation of a complex
shape, also intuitively attractive, might provide computed solutions of very weak accuracy and
should hence be used with great care, if not prohibited.
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3.3 Normal cube-wall impact

Our second particle-wall impact validation test pertains to a cube of edge length 2×10−3m = 2mm
impacting a flat wall under gravity. The particle is released from an initial height of 0.08m, i.e., 40
times the cube edge length, with various initial angular positions. The cubic particle accelerates
while free falling under gravity until it impacts and bounces on the flat wall. We set the coefficient
of restitution to en = 0.9 such that energy is dissipated over each collision. Thus the particle
progressively reaches a lower height following multiple collisions with the bottom wall until it
rests motionless on the bottom wall. We also consider the collision to be frictionless. Contrary to
the cylinder-wall investigated in Section 3.2, the problem of the normal cube-wall impact under
gravity does not possess any analytical solution, hence we consider the predictions with a standard
cubic particle as a reference. We perform two sets of simulation with the following corresponding
representation of the cube:

1. a true cube,
2. a glued convex cube obtained by artificially slicing the cube into 8 smaller cubes of equal size

and gluing them together without any overlap.

Gravity is prescribed downwards along the z (vertical) direction and we consider the following
initial angular positions (θx, θy) = (0o, 0o), (10o, 10o), (25o, 25o), (75o, 75o) and (30o, 0o), where θx
and θy denote the initial angular position of the cube with respect to the x axis and the y axis,
respectively. Numerical parameters are listed in Tab. 3. We use Model B for the glued convex cube
and the exact mass properties for both representations of the cube.

We plot in Fig. 12 the time evolution over the 2 first impacts of the particle vertical position and
the x-component of the particle angular velocity for both the true cube and the glued convex cube.
When the impact does not correspond to a perfect face-wall geometric configuration (θx, θy) =
(0o, 0o) or a perfect edge-wall geometric configuration (θx, θy) = (30o, 0o), Fig. 12 shows that
numerical predictions for the glued convex cube are in quasi-perfect agreement with numerical
predictions for the true cube. As for the normal cylinder-wall impact with θ = 90o examined in
Section 3.2, the perfect edge-wall geometric configuration involves a contact line and the single
contact point assumption used by the true cube model is not satisfactory as it creates an erroneous
torque leading to artificial particle rotation after contact. The glued convex cube generally performs
better as, being made of 8 twice smaller cubes, the contact line is now modelled with 2 contact
points that cancel out the erroneous artificial torque. The same comment applies to a perfect face-
wall geometric configuration (θx, θy) = (0o, 0o) where the contact surface is modelled with 4 contact
points for the glued convex cube compared to a single contact point that randomly lies somewhere
along that contact surface and whose position is primarily determined by rounding numerical errors.
As for the cylinder in Section 3.2, what matters is to preserve the natural summetry of the cube
when decomposing it into a set of potentially overlapping smaller cubes. In fact, in Fig. 12(b),
ωx is still uniformely 0 after 2 collisions for the glued convex cube while it has artificially (and
primarily physically wrong) non-zero values for the true cube. This is a general weakness of the
single contact point assumption that the glued convex approach coincidentally contributes to solve.
However, it is computationally not desirable to slice a simple convex shape into a set of smaller
elementary convex shapes as the computational overhead is rather prohibitive.

Based on the comments above about the modelling of contact lines or surfaces, it is more
rationale from a physical viewpoint to assume that the reference solution is the solution obtained
with the glued convex cube. Interestingly the first impact is always well predicted even by the
true cube with a single contact point, but then the small amplitude erroneous rotation propagates
and the next impact is more significantly affected. As a final comment, we would like to point out
that after multiple impacts, the true cube and the glued convex cube solutions eventually always
differ due to the propagation of rounding errors by the explicit time integration algorithm and
approximations in geometric operations performed by the GJK algorithm. These small amplitude
numerical uncertainties have however no visible impact on the dynamics of a system containing
many particles.
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3.4 Validation against experimental data: 1000 2D cross-like particles in a drum rotating at
Ω = 6 rpm

Here we compare simulation results to experimental data in a rotating drum configuration. Our
non-convex particles are tile spacers (Fig. 13) that can be found in the construction industry.
Tile spacers have a 2D-cross like shape and exhibit a high concavity and angularity. They hence
represent a good candidate for a challenging test case for our code Grains3D. In addition, they are
cheap (they can be bought for around 10$ a box of a thousand by any local renovation warehouse)
such that any other research group can easily reproduce this experiment. Please note that our
tile spacers are made of plastic and are slightly deformable. However, with the level of stress load
applied to particles in such a small system, particle deformations are so small that particles can
safely be considered as fully rigid (in a larger system this assumption might be violated as the
granular pressure at the bottom might be large enough to locally deform particles).

The experimental set-up is a rotating drum with transparent plexiglas walls. The back circular
wall is made of rough plastic and can be adjusted to have the desired drum width. In our study, the
drum has a diameter D = 30cm and a widthW = 7cm. It is filled with 1000 plastic tile spacers (see
Fig. 14). Simulation parameters are listed in Tab. 4. Please note that contact parameters (en, µc)
have not been tuned to improve the agreement between experimental data and simulation results.
We simply select parameters roughly representative of plastic-plexiglas contacts. We anyway believe
that in such a system the dynamics is primarily governed by the intricate microstructure of the
particles pack and not by the magnitude of the contact parameters (in other words changing µc
from, e.g., 0.4 to 0.6 will only mildly change the overall system behavior). We set the rotation rate
to Ω = 6 rpm.

The resulting dynamics is largely dominated by episodic avalanching at this rotation rate (see
Section 4.2 for more detail about flow regimes) and the free surface is hard to define. In any case,
it does not look like a flat surface and makes the definition of the dynamic angle of repose quite
complicated. Another marker of the flow that would be of high interest is the episodic avalanching
frequency but once again it is not easy to determine. At that stage, we only show a comparison of
the time evolution of the free surface obtained by image processing. Our image processing works
as follows. We first convert all images resulting from numerical simulation and experiments into
binary images of white and black pixels. To this end, we change the coloured images into grey
scale images, then we apply a threshold equal to 255 to convert them into binary images. The free
surface can be determined in two ways: (i) by plotting the real free surface or (ii) by plotting a
polynomial fitting function of high order. For the sake of simplicity, we choose the former option.
The experimental camera captures 40 frames per second and our simulation is set to create outputs
at the corresponding time frequency, i.e. every ∆t = 0.025 s. Please note that due to the shadow
created by the light shed from the front in the experimental set-up, the threshold of 255 on all
images can hide some particles in the back of the drum, yielding a visually less dense bed compared
to the bed in simulation results. This is a biased impression and the pack of particles has indeed
the same density in numerical simulation and experiments.

Both the movie (uploaded as supplementary material) and Fig. 16 show a strikingly satisfactory
agreement of numerical results with experimental data. This indicates that Grains3D is capable
of faithfully reproducing the overall complex dynamics of a system of particles with a rather
complicated non-convex shape. An on-going work in our group is to define and compute other
quantitative markers of the flow as, e.g., the frequency spectrum of the avalanching process or the
time evolution of the gravity center of the pack of particles, to validate even further this test case.
But this preliminary comparison is already very promising.

4 Results

4.1 Packing porosity

Void fraction or porosity of a (static) packing of granular material is simply the measure of the
ratio of the volume of empty space to the total volume of the system. Compacity corresponds to
the opposite of porosity and represents the ratio of total volume of particles to total volume of
the system. Compacity of convex particles packings can be estimated by computing the Voronoï
diagram of the system [26] whereas for non-convex particles the use of this method is impeded by
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their concavity. Consequently, another method has to be used for the characterization of compac-
ity of random packings of non-convex particles. Here we use the same method as the one used to
calculate the mass properties of a non-convex particle, i.e., we define a box embedding the pack-
ing of particles, pixelate that space with a fine cartesian constant grid size structured mesh and
approximate the volume integral of the space actually occupied by particles by summing all the
cells of the fine cartesian mesh whose center lies inside a particle. The method is fully parallelised
as the total number of cells in this fine cartesian mesh is very often of the order of O(108 − 109)
to guarantee a sufficient level of accuracy.

Packings are created by inserting particles at the top of the domain. Particles settle downwards
by gravity and collide with neighbouring particles and/or the bottom wall. The filling process
is deemed to be complete when all particles reach a pseudo stationary state characterized by a
negligible total kinetic energy of the system. We consider the two following configurations:

1. a system without lateral solid wall effects designed as a box with bi-periodic boundary conditions
on the lateral (vertical) boundaries, i.e., in the horizontal directions. 1000 particles are inserted
in the simulation in the following way: (i) a particle position is randomly selected in a thin
parallelepiped at the top of the domain at each time tn, (ii) a random angular position is assigned
to the particle, (iii) insertion is attempted. If successful, the particle is inserted, otherwise a
new random position together with a new random angular position is selected and insertion is
attempted again at the next time tn+1. This insertion procedure results in a moderately dense
shower of particles stemming from the parallelepipedic insertion window.

2. a system with strong lateral wall effecs designed as a cylindrical reactor with a circular cross-
section. We select the same configuration as in our previous work [39]. In [39], we examined
the effect of convexity on packing porosity. Now we extend this case study to non-convexity.
250 particles are randomly inserted at the top of the domain at a flow rate of 1 particle per
second until the simulation is stopped at 260 s. Lateral wall effects are deemed to be strong
as the reactor diameter to particle equivalent diameter ratio is ≈ 50/8 = 6.25, an admittedly
small value.

In both configurations, we consider the 4 convex shapes already examined in [39] in addition to
two new non-convex cross-like shapes illustrated in Fig. 17. All shapes have the same volume. The
two meaningful physical parameters of the contact force model are set to en = 0.73 and µc = 0.55.

Packings of the different shapes in the wall-free bi-periodic domain are presented in Fig. 18. The
corresponding porosities computed by our approximate numerical integration based on pixelating
the space occupied by the packing of particles are shown in Tab. 5. Although tetrahedra already
exhibit a slightly higher porosity, there is a remarkable jump of porosity between the 4 convex
shapes and the 2 non-convex cross-like shapes. In fact, ε for 3D crosses is twice larger than that
for spheres of same volume.

With strong wall effects, the effect of shape on porosity ε is even more emphasised, as illustrated
by Fig. 19. Porosity varies linearly with the height of the bed, and visually the variation of bed
height as a function of shape speaks for itself. Bed height for 3D crosses (blue particles in Fig. 19(f))
is literally 5 times larger than that for spheres, cylinders and cubes, translating into a 5 times larger
porosity. It is also 4 times larger than that for tetrahedra as well as 2 times larger than that for
2D crosses. For 3D crosses, it is quite remarkable in Fig. 19(f) that ε is close to 1 close to the
reactor wall in a crown of width approximately half the length of the cross beams, whereas all
other shapes, even 2D crosses, are able to fill that region much better. Obviously, we have selected
these 2 non-convex shapes on purpose, as they exhibit a low sphericity and promote some sort of
entanglement in the packing. They are hence good candidates for high porosity packings and other
unusual intricate effects in granular dynamics as we shall see in the next section. The analysis of the
packing micro-structure can be easily extended e.g. by looking at the porosity radial profile, by this
goes beyond the scope of the present paper. Our goal here is primarily to evaluate quantitatively
packing porosity for such shapes and to shed some light on how strong the effect of shape can be,
even in a very simple configuration.

4.2 Rotating drum

Following [44,43,39] we investigate the flow dynamics of a granular media in a rotating drum. We
select the same flow configuration as in our previous work [39] and our goal is to extend results

14



previously obtained for convex particles to non-convex particles. As in [39], the drum has a radius
of Rdrum = 50 mm and a depth of 24 mm. A periodic boundary condition is applied along the
drum axis to avoid end wall effects. The drum is loaded with mono-dispersed non-convex particles
such that the region occupied by particles in the drum (regardless of porosity) corresponds to 35%
of the drum volume, i.e. the pack has initially a height equal to ≈ 0.76Rdrum. For the non-convex
shapes, we use the same 2D and 3D crosses as in Section 4.1. The new simulation results for the
2D and 3D crosses complement the existing set of results we obtained for convex particles (i.e.,
spheres, cylinders, cubes and regular tetrahedron) in [39]. Once again, all shapes have the same
volume, that corresponds here to a sphere with a radius of Re = 1.5mm. Values of all simulation
parameters are listed in Tab. 6.

As shown in Section 4.1 for the non-convex cross-like shapes and in [39] for tetrahedra, the total
number of particles for each shape need to be adjusted such that the initial bed height is always
≈ 0.76Rdrum (35% of the drum volume) due to the high variations in porosity between shapes.
While the drum was loaded with 3000 spheres, cylinders and cubes, only 2600 regular tetrahedra
were used in [39]. Here, we fill the drum with 1500 2D crosses and 1250 3D crosses.

4.2.1 3D cross shape

Fig. 20 shows the internal flow structure of a system filled with 3D crosses for Ω ∈ [5; 250] rpm.
A first sight already indicates the strong influence of the particle shape on the flow dynamics,
compared to spheres and even to convex particles. Similarly to the filling process in Section 4.1,
the significant differences observed all result from the ability of 3D crosses to entangle. As for other
convex shapes, we observe a transition from an avalanching regime to a cataracting regime, then to
a pseudo-cataracting and eventually to a centrifuging regimes as the rotation rate increases. Note
that for low rotation rates, the rolling regime observed for spheres is replaced by an avalanching
regime (the same was observed for convex shapes in [39]). Let us now describe qualitatively the
features of each flow regime.

At Ω = 5 rpm, the flow regime is representative of episodic avalanches governed by the pseudo-
chaotic evolution of the highly entangled micro-structure of the pack of particles. Particle rotation is
strongly impeded both close to the drum wall and at the free surface. As for other shapes, particles
close to the drum wall experience a rigid body motion while the major difference occurs at the free
surface. Particles entanglements delay the onset of avalanching up to very high free surface angles,
sometimes close to 90◦. Then the pack eventually breaks and big clusters of particles detach and
fall down from the top right to the bottom left of the free surface. Big cluster detachment from
the rest of the pack of particles at the top right resembles to some extent the fracturing of an
inhomogeneous solid material or a cohesive granular media. Fracturing starts at the location in the
pack that shows a weakness characterized by a lower level of entanglement, i.e., a lower level of
cohesion. We call this regime episodic avalanching as the frequency of occurrence of avalanches is
less regular and hence tougher to define than for convex shapes, as supported by Fig. 26. As the
rotation rate increases to Ω = 20 rpm, big clusters of particles at the free surface disappear to give
way to a thick layer of particles flowing down the free surface from the top right to the bottom left.
At Ω = 80 rpm, particles gain enough kinetic energy to start freeing themselves from the pack.
Flow dynamics is still strongly governed by particles entanglements but the pack of particles is
not as dense anymore and consequently the strength or cohesion of the pack of entangled particles
is weaker. This corresponds to a transition from avalanching to cataracting, although particles at
the free surface do not yet have a free-fly ballistic motion. At Ω = 125 rpm, the kinetic energy of
particles at the top right of the free surface is large enough for them to almost free themselves from
the pack and free fly. This flow dynamics is a typical sign of a cataracting regime [27]. We would like
to make a short digression of the determination of the onset of cataracting regime. As a comparison,
we observe this ballistic trajectory of spherical particles in the range 150rpm ≤ Ω ≤ 200rpm, which
suggests that cataracting regime starts at about 150rpm for spheres. From Fig. 20, we might define
the onset of cataracting regime at Ω = 125rpm, which would hence indicate that 3D crosses exhibit
a cataracting regime at lower rotation rates than spheres. At Ω = 125 rpm the Froude number
defined as Ω2Rdrum/g is Fr ' 0.87. Looking more closely at Fig. 20(d), the notion of free-flight
is tougher to define. Although the overall flow pattern does look like a cataracting regime, particle
that detach from the top right still seem to be linked together with neighbouring particles in their
pseudo free-flight in a very weak way. For spheres (see [39]-Fig5(e)), it is very visible that particles
flying from the top right to the bottom left of the free surface do not touch any other neighbouring
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particles. In other words, the transition from avalanching to cataracting is not necessarily easy
to determine for 3D crosses. From Ω = 150 rpm, the cataracting regime starts to disappear and
is progressively replaced by a pseudo-cataracting (or pseudo-centrifuging) regime. Ω is not high
enough to already observe a fully centrifuging regime but not low enough for the cataracting regime
to persist. The thin layer empty of particles at the top of the drum is a signature that the full
centrifuging regime has not yet been attained. At Ω = 150 rpm, the Froude number is Fr ' 1.25.
Finally, from Ω = 200 rpm, the fully centrifuging regime manifests, corresponding to Fr ' 2.25.
For spheres, we determined in [39] that the transition to centrifuging regime occurs at Ω ' 220rpm,
i.e., for Fr ' 2.7. This would suggest that the transition from cataracting to centrifuging occurs
at lower rotation rates for 3D crosses than for spheres. As already noticed for spheres or any other
shapes, the centrifuging regime is characterized by a continuous layer of particles attached to the
drum wall and rotating with the drum as a rigid body. A particular and rather fascinating feature
of 3D crosses is the form of the free surface of the pack of particles undergoing a rigid body motion.
While for spheres this layer has a constant thickness, it is rather irregular for 3D crosses. Actually,
the entangled 3D crosses create an imprint over the early transients of the drum rotation. In other
words, the free surface is determined by a competition between the strength or cohesion of the
entangled pack of particles and the centrifugal force that pushes particles towards the drum wall.
The free surface very rapidly adopts its final form (after a few drum rotations only) and then
remains forever frozen in a rigid body rotation as shown in Fig. 20(f).

To illustate how much the 3D cross-like shape hinders the rotation of a particle compared to
a sphere, even without entanglements with neighbouring particles, we perform a simulation of a
single particle in the drum rotating at Ω = 150 rpm (Fig. 21). The resistance to rolling motion of
the sphere is very low and accordingly the critical angle at which the sphere starts to roll down the
drum wall is very low too. 3D cross reaches much higher on the top right and their overall motion
is far more chaotic. The ratio of translational to angular kinetic energy is much higher for a 3D
cross than for a sphere. It would be interesting to extract this ratio in the multi-particle rotating
drum simulations to shed some more light on differences in energy conversion mechanism between
sphere, convex and non-convex shapes. This is an on-going work in our group and will be the topic
on a future paper.

We illustrate in Fig. 22 the avalanching nature of the flow dynamics at low rotation rates
Ω = 5 rpm and Ω = 20 rpm. In particular at Ω = 5 rpm, we can neatly see in Fig. 20(a)(c)
that the shallow layer of slumping particles at the free surface fractures in the middle into two big
clusters. Another important comment concerns the determination of the dynamic angle of repose
of the free surface in this avalanching regime. In fact, not only the free surface is anything but a
flat surface but the flow is highly intermittent (episodic) and the dynamic angle of repose varies
over time with a large amplitude. In Fig. 20(a)(c), it is noticeable that the free surface is close to
vertical.

4.2.2 2D cross shape

The overall picture of 2D crosses is qualitatively similar to the picture of 3D crosses. Since 2D
crosses have a higher sphericity than 3D crosses and a lower tendency to entangle, the original
features observed for 3D crosses are also observed but less marked for 2D crosses. We notice the
same transitions from avalanching to cataracting, then to pseudo-cataracting and eventually to
centrifuging as the drum rotation rate increases, but these transitions occur for slightly different
critical rotation rates. The different flow regimes for 2D crosses are shown in Fig. 23.

In general, the pack of 2D crosses is less cohesive than the pack of 3D crosses, in the sense
that the strength of the entangled network of particles is weaker. This difference manifests very
visibly in Fig. 24 where we illustrate the transient flow dynamics in the drum. The dynamic angle
of repose of 2D crosses, although pretty high compared to convex shapes, is lower than that of 3D
crosses. It also seems that the free surface, although not very flat, is significantly flatter than that
of 3D crosses. Finally, Fig. 26 suggests that avalanches are more regular and that the avalanching
regime can be classified as periodic avalanching, in contrast to episodic avalanching for 3D crosses.
At Ω = 5 rpm a single avalanching frequency for 2D crosses can be more clearly defined than
for 3D crosses, although this is not totally obvious. Finally, cataracting, pseudo-cataracting and
centrifuging regimes of 2D crosses are very similar to those of 3D crosses.
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4.2.3 Further comments

We plot in Fig. 25 the averaged in time coordination number as a function of rotation rate for
all shapes. In general, 2D and 3D crosses exhibit a higher coordination number than other shapes
regardless of the rotation rate, as a result of the highly entangled micro-structure. However, up
to Ω = 150 rpm, the trend is very similar to convex particles and there is no major signature
of non-convexity in the variation of the coordination number with Ω. The plots for the 2 non-
convex shapes are simply shifted to higher values of coordination number. The only signature
of non-convexity pertains to the transition to cataracting/pseudo-cataracting regime and then to
centrifuging regime. However, we run additional simulations for tetrahedra and notice the same
trend than that for 2D/3D crosses. Hence, this suggests that this signature is actually not relevant
of non-convexity only, but more generally of non-sphericity. This emphasizes again that the tran-
sitions to cataracting/pseudo-cataracting and to centrifuging are not easy to define. The increase
of the coordination number above Ω = 150 rpm might however indicate the onset of transition to
centrifuging. At high Ω ≥ 200 rpm, the absence of a neat plateau (as visible as for spheres) does
not allow us to determine from this plot only when the fully centrifuging regime really starts.

We plot in Fig. 26 the mean dimensionless translational particle velocity as a function of time
for different rotation rates. The interesting and already described in the above features of 2D and
3D crosses flow dynamics occur at low rotation rates Ω = 5rpm and Ω = 20rpm. From Ω = 42rpm,
the mean translational particle velocity of the 2 non-convex shapes is very similar to that of any of
the 3 non-spherical convex shapes. Ω = 5rpm reveals that 3D crosses undergo more chaotic, in the
sense of larger amplitude and more episodic, avalanches than 2D crosses and convex shapes. The
peaks of mean translational particle velocity represent rapid avalanches of particles triggered by a
very high dynamic angle of repose (up to ∼ 90◦). The most remarkable manifestation of resistance
to slump or to flow from the top right to the bottom left of the drum of the highly entangled pack of
3D crosses occurs at Ω = 20rpm. While 2D crosses and cubes both exhibit a moderate avalanching
dynamics, 3D crosses still undergo large amplitude and well defined avalanches characterized by
large amplitude fluctuations of the mean translational particle velocity with time. At high rotation
rates, the mean translational particle velocity progressively tends to a constant value over time.
For instance, at Ω = 200 rpm, the mean translational particle velocity does not vary with time
anymore. This represents a much more reliable signature of the onset of fully centrifuging regime
than what we could extract from the coordination number analysis.

Finally, we compute the Probability Density Function (PDF) of the time averaged dimensionless
translational particle velocity in an attempt to capture some additional signatures of regime transi-
tion, and in particular of the transitions to pseudo-cataracting/cataracting and to centrifuging. This
analysis created incentives to run additional simulations in the range Ω ∈ [100; 200]rpm. We select
Ω = 100 rpm, Ω = 120 rpm, Ω = 165 rpm and Ω = 180 rpm for the 2D/3D crosses to complement
our set of results. For Ω < 100 rpm, the PDFs for both shapes presented in Figs. 27(a) and 27(c)
look very similar and it is not easy to observe any visible trend that would delineate avalanching
from cascading and cascading from cataracting. In fact most particles move with a translational
velocity lower than ΩRdrum and the long tail of low PDF values for Ω > Rdrum correspond to the
avalanching/cascading particles close to the free surface. Note however that as Ω ∈ [5; 100] rpm
increases PDF values in this tail increase too, indicating a progressive shift from avalanching to
cascading. The transitions to pseudo-cataracting and centrifuging are conversely very visible in
Figs. 27(b) and 27(d) as the PDFs significantly narrow. The fact that 2D cross PDFs are gener-
ally narrower for Ω > 150 rpm is due to the free surface of the pack of particles and the particles
volume fraction in the pack. Once again, this free surface is controlled by the early transients
and the higher level of cohesion of 3D crosses leads to a more irregular free-surface than that for
2D crosses. Interestingly, in the range Ω ∈ [150; 165] rpm, for both shapes, the pseudo-stationary
regime is quasi-centrifuging, with only a few (less than 5 in any cases) particles plummeting from
the highest point of the free surface to the bottom of the free surface, but the transient regime is
much longer than for any other cases investigated. For instance, for 2D crosses and Ω = 165 rpm,
about 20 drum rotations are necessary to establish the quasi-centrifuging regime, as shown in
Fig. 28.
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5 Conclusion and discussion

We suggested an extension of our DEM from convex to non-convex shapes. As a reference to
the glued spheres model, the novel method is called glued convex method as convex particles are
“glued” together to create any non-convex shape. Our novel method for non-convex shapes relies
on the same tools we used for convex shapes in [39]. In fact, contact detection between two non-
convex bodies relies on contact detection between all the pairs of elementary convex components
that compose each composite non-convex body. This reduces the complexity of the problem of
contact detection between non-convex bodies to the problem of contact detection between convex
bodies, a problem for which we have already suggested a reliable and accurate solution method in
Grains3D-Part I [39] using a Gilbert-Johnson-Keerthi algorithm. The novel method is extremely
versatile as virtually any non-convex shape can be considered. We illustrated the new simulation
capabilities of our in-house code Grains3D in two flow configurations: (i) filling of a reactor and
(ii) flow dynamics in a rotating drum. The simulation results we presented for non-convex 2D and
3D crosses are unprecedented in the literature.

We suggested a simple but robust solution to the problem of multi-contact points that enables
us to keep using analytical estimates of contact features and in particular of contact duration.
This significantly facilitates the estimation of the time-step magnitude in DEM simulations of non-
convex bodies. We considered a normal cylinder-wall impact test case to illustrate the validation
of our implementation. Along the way, we confirmed, as other works of the literature already
showed [19], that the accuracy of the glued sphere method to model particles of arbitrary shape is
highly questionable as it rounds sharp angles and introduce an artificial rugosity. Conversely, our
glued convex approach preserves angularity since a non-convex composite particle is decomposed
into a set of elementary convex shapes, that are by essence sharp. A side effect of composite
particles is their intrinsic ability to better handle contact configurations in which the contact
zone cannot be modelled as a point, but rather as a line or a surface. In fact, composite particles
naturally introduce multiple contact points corresponding to the contact points of their elementary
components. Although decomposing an already convex particle in a set of smaller elementary
convex particles is not the most promising path from a computational viewpoint, this property can
still be exploited to improve the stability of, e.g., static heaps of particles and somehow circumvent
the conceptual inability of our Gilbert-Johnson-Keerthi -based contact detection strategy to provide
a line of contact, a surface of contact or multiple contact points from two simple convex bodies
that overlap.

Although our DEM for non-convex bodies opens up unprecedented numerical modelling per-
spectives, the computing cost is still prohibitive. In fact, the computing cost of contact detection
between two non-convex bodies scales as N ×M , where N denotes the number of elementary com-
ponents of the first particle andM that of the second particle. Another computational drawback of
the current implementation is that potential contacts are assessed with the circumscribed sphere
to the non-convex particles, and then if they overlap with the circumscribed sphere to the convex
elementary components (see Fig. 29). If the non-convex or elementary convex bodies are elongated,
our method is not optimised and many contacts that actually do not exist are considered at the
detection step. This undesirably slows down computations. An alternative solution would be to
use oriented bounding boxes, with however no guarantee that the overall computing time will be
lower as an oriented bounding box overlap test is more time consuming than a two sphere overlap
test. We believe that contact detection between two non-convex bodies should be speeded up at
the serial level.

Potential applications of Grains3D were already quite broad, and our glued convex model broad-
ens even more its range of applicability. Only two examples of application were considered in this
study that adequately illustrated the visible effect of particle non-convex shape on flow dynam-
ics. Results from the rotating drum as shown in Figs. 25 and 26 emphasize how flow dynamics
differs from convex particles to non-convex particles. In order to summarize our study, we plot a
tentative map of rotating drum flow regimes in Fig. 30. Values of critical Ω for regime transitions
are qualitative only, as hard to determine unambiguously. Also please note that this qualitative
flow map is drawn for a given filling ratio (' 0.35) and a given drum size to particle size ratio
(' 17). Changing these two values would certainly change the flow map. The rolling regime dis-
appears progressively as the angularity of the particle increases. It is replaced by an avalanching
regime whose range of occurence increases with angularity. We found a somehow similar rotation
rate range for cascading regime for all angular particles investigated, regardless of convexity/non-
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convexity. A pseudo-cataracting regime appears between the cataracting and centrifuging regimes
for highly concave bodies. The centrifuging regime appears earlier for angular particles compared
to spherical particles. Indeed, our results, although unprecedented, are a first step only towards
an enhanced comprehension of the effect of angularity on the flow dynamics in a rotating drum.
Our analysis can easily be extended to gain more insight into regime transitions and overall flow
dynamics.
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Parameter True cylinder Glued cylinders Error [%]
Diameter[m] 8.0e-03 8.0e-03 0.
Length[m] 5.3e-03 5.3e-03 0.
Volume[m3] 2.66407e-07 2.66413e-07 2.331e-03
Mass[kg] 3.1e-04 3.10007e-04 2.331e-03
Moment of 1.966e-09a 1.9674e-09a 7.543e-02
inertia [kg.m2] 2.480e-09b 2.4793e-09b 2.626e-02
kn (N m−1) 105 105 −
en 0.85 0.85 −
µc 0 0 −
δmax (m) , δmax/lc 3.345× 10−5 , 0.00263 3.345× 10−5 , 0.00263 −
TC (s) 1.14× 10−4 1.14× 10−4 −
∆t (s) 5× 10−6 5× 10−6 −
a about central diameter, b about central axis.

Table 1 Experimental [19] and numerical parameters for the normal impact of a cylinder on a flat wall. Contact
force model parameters and estimate of contact features at vcol = 1m/s. lc is the characteristic length of the object.
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Parameter Experiment Glued-sphere model Our glued-sphere model
of [19] (True parameters)

Diameter[m] 8.0e-03 8.0e-03 8.0e-03
Length[m] 5.3e-03 5.3e-03 5.3e-03
Volume[m3] 2.664e-07 1.916e-07(9 spheres) 1.948e-07(9 spheres)

2.664e-07 2.231e-07(54 spheres) 2.244e-07(54 spheres)
Mass[kg] 3.1e-04 3.1e-04 2.266e-04(9 spheres)

2.611e-04(54 spheres)
Moment of 1.966e-09a 1.966e-09a 1.320e-09a(9 spheres)
inertia[kg ·m2] 2.480e-09b 2.480e-09b 1.738e-09b(9 spheres)

1.830e-09a(54 spheres)
1.871e-09b(54 spheres)

kn (N m−1) 105 105 105

en 0.85 0.85 0.85
µc 0 0 0
δmax (m) , δmax/lc 3.345× 10−5 , 0.00263 3.345× 10−5 , 0.00263 3.345× 10−5 , 0.00263
TC (s) 1.14× 10−4 1.14× 10−4 1.14× 10−4

∆t (s) 5× 10−6 5× 10−6 5× 10−6

a about central diameter, b about central axis

Table 2 Experimental and numerical parameters for the normal impact of a cylinder modelled with glued spheres on
a flat wall. Contact force model parameters and estimate of contact features at vcol = 1m/s. lc is the characteristic
length of the object.
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Parameter Value
Particle-Wall
kn (N m−1) 1× 105

en 0.9
µc 0
δmax (m) , δmax/lc 2.04× 10−5 , 0.00816
TC (s) 3.15× 10−5

∆t (s) 2× 10−6

Table 3 Contact force model parameters, estimate of contact features at vcol = 1m/s and time step magnitude
used for the normal impact of a cube on a flat wall. lc is the characteristic length of the object.
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Parameter Value
Particle-Plexiglas
kn (N m−1) 1× 105

en 0.5
µc 0.4
δmax (m) , δmax/lc 9.795× 10−6 , 0.00489
TC (s) 1.86× 10−4

Particle-Particle
kn (N m−1) 1× 105

en 0.6
µc 0.4
δmax (m) , δmax/lc 9.795× 10−6 , 0.0065
TC (s) 1.33× 10−4

Particle-Plastic wall
kn (N m−1) 1× 105

en 0.6
µc 0.6
δmax (m) , δmax/lc 9.795× 10−6 , 0.00489
TC (s) 1.86× 10−4

∆t (s) 7.5× 10−6

Table 4 Contact force model parameters, estimate of contact features at vcol = 1m/s and time step magnitude
used in the comparison of rotating drum simulation results against experimental data. lc is the characteristic length
of the object.
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Shapes Spheres Cylinders Cubes Tetrahedron 2D cross 3D cross
ε 38.1772 38.5866 39.619 47.4582 69.4569 79.6328

Nb points? 3.2× 107 6.4× 107

ε 38.1794 38.5811 39.5899 47.4586 69.4573 79.6327
Nb points? 2.56× 108 5.12× 108
? Total number of cells in the structured mesh used to estimate ε

Table 5 Estimation of the porosity ε [%]. The domain is dicretised in the three direction.
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Parameter Value
kn (N m−1) 1× 105

en 0.73
µc 0.55
δmax (m) , δmax/Re 1.1403× 10−5 , 0.007602
TC (s) 4.172× 10−5

∆t (s) 2× 10−6

Table 6 Contact force model parameters, estimate of contact features at v0 = 1m s−1 and time step magnitude
used in numerical simulations of 2D/3D crosses in the rotating drum of [39].
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Figure 1 2D illustration of the decomposition of a non-convex particle into a set of elementary convex components.
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Figure 2 Discretisation strategy illustrated in 2D.
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Figure 3 Relative error on (a) the volume and (b) components of the moment of inertia tensor, of a sphere, a
cylinder and a glued convex made of two overlapping cylinders, as a function of the number of discretization points
per direction.
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Figure 6 Sketch of the cylinder-wall impact test case.
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Figure 7 Cylinder-wall impact test case: comparison of the computed dimensionless post-impact velocities for the
real cylinder and the glued cylinder to the analytical solution.
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Figure 10 Cylinder-wall impact test case: glued-sphere approximations of the cylinder considered: (a)-(b) made of
9 glued spheres, (c)-(d) made of 54 glued spheres.
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Figure 11 Cylinder-wall impact test case: comparison of the computed dimensionless post-impact velocities (a,b)
for the 9 glued-sphere cylinder, and (c,d) for 54 glued sphere cylinder with the analytical solution.
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Figure 12 Cube-wall impact test case: comparison of vertical position time evolution and x-component of
angular velocity time evolution for a single cube and a glued convex cube obtained by gluing 8 smaller
cubes of half the edge length of the single cube released with various initial angular position (θx, θy) =
(0o, 0o), (10o, 10o), (25o, 25o), (75o, 75o) and (30o, 0o).
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(a) Real shape (b) DEM shape

Figure 13 Tile spacers used in experiments.
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(a) Experimental set-up (b) Simulation set-up

Figure 14 Tile spacers experiments.
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(a) Experimental image (b) DEM simulation image

Figure 15 Tile spacers experiments: method to identify the free surface of the granular media. The blue dots depict
the free surface and the red line the polynomial fitting function of high order.
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t = 0.5 s t = 1 s t = 1.5 s

t = 2 s t = 2.5 s t = 3 s

t = 3.5 s t = 4 s t = 4.5 s

t = 5.5 s t = 6 s t = 7.5 s

Figure 16 Tile spacers experiments: comparison of the free surface between numerical simulation and experiment
data.

46



(a) 2D cross shape (b) 3D cross shape

Figure 17 Non-convex cross-like shapes considered in the packing test case.
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(a) Spheres (b) Cylinders

(c) Cubes (d) Tetrahedron

(e) 2D cross (f) 3D cross

Figure 18 Packings of 1000 particles of 6 different shapes. Particles in blue are the periodic clones.
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(a) Sphere (b) Cylinder (c) Cube (d) Tetrahedron (e) 2D-cross (f) 3D-cross

Figure 19 Packing of 250 particles of 6 different shapes in a cylindrical container. Results in (a,b,c,d) are from
[39].
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(a) Ω = 5 rpm (b) Ω = 20 rpm (c) Ω = 80 rpm

avalanching regime avalanching regime avalanching regime

(d) Ω = 125 rpm (e) Ω = 150 rpm (f) Ω = 200 rpm

cataracting regime pseudo-cataracting regime centrifuging regime

Figure 20 Rotating drum filled with 3D crosses at various rotation rates: snapshots of the pattern of particles
colored by their translational velocity magnitude (from blue (min) to red (max)).
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Figure 21 Trajectory of a single particle at Ω = 150 rpm over 10 s.
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(a) t = 4.05 s (b) t = 4.225 s (c) t = 4.35 s

(d) t = 6 s (e) t = 6.1 s (f) t = 6.25 s

Figure 22 Avalanching regime of 3D crosses (a,b,c) at Ω = 5 rpm and (d,e,f) at Ω = 20 rpm. Snapshots of the
pattern of particles colored by their translational velocity magnitude (from blue (min) to red (max)) selected at 3
close times to evidence the occurence of an avalanche.
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(a) Ω = 5 rpm (b) Ω = 20 rpm (c) Ω = 80 rpm

avalanching regime avalanching regime avalanching regime

(d) Ω = 125 rpm (e) Ω = 150 rpm (f) Ω = 200 rpm

cataracting regime pseudo-cataracting regime centrifuging regime

Figure 23 Rotating drum filled with 2D crosses at various rotation rates: snapshots of the pattern of particles
colored by their translational velocity magnitude (from blue (min) to red (max)).
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(a) t = 8.9 s (b) t = 9 s (c) t = 9.2 s

Figure 24 Avalanching regime of 2D crosses at Ω = 5 rpm. Snapshots of the pattern of particles colored by their
translational velocity magnitude (from blue (min) to red (max)) selected at 3 close times to evidence the occurence
of an avalanche.

54



0 50 100 150 200 250
Ω (rpm)

0

1

2

3

4

5

6

7

8

C
oo

rd
in

at
io

n 
nu

m
be

r 
[-]

2D cross
3D cross
Sphere
Cylinder
Cube
Tetrahedron

Figure 25 Time averaged coordination number as a function of rotation rate for all particle shapes considered.
Data for spheres, cylinders, cubes and tetrahedra are from [39]
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Figure 26 Evolution of dimensionless mean particle translational velocity as a function of dimensionless time
t∗ = tΩ. Data for spheres and cubes are from [39].
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Figure 27 Probability density function of the time averaged particle translational velocity.
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(a) t = 0 s/0 round (b) t = 0.225 s/0.6 round (c) t = 0.875 s/2.4 rounds (d) t = 2 s/5.5 rounds

(e) t = 3.2 s/8.8 rounds (f) t = 4.6 s/12.6 rounds (g) t = 6.425 s/17.7 rounds (h) t = 8 s/22 rounds

Figure 28 Transient regime of 2D crosses at Ω = 165 rpm from t = 0s to t = 8s (22 rounds). Snapshots of the
pattern of particles colored by their translational velocity magnitude (from blue (min) to red (max)) at selected
times. Centrifuging regime is eventually established after about 20 rounds.
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Figure 29 Sphere circumscribed to a non-convex particle with spheres circumscribed to its elementary convex
components illustrated in 2D.
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Figure 30 Rotating drum flow regime map as a function of rotation rate and particle shape.
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