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Abstract

We suggest a reactive Sherwood number model for convective mass transfer around

reactive particles in a dilute regime. The model is constructed with a simple external-

internal coupling and is validated with Particle-Resolved Simulation (PRS). The PRS

of reactive particle-fluid systems requires numerical methods able to handle efficiently

sharp gradients of concentration and potential discontinuities of gradient concentra-

tions at the fluid-particle interface. To simulate mass transfer from reactive catalyst

beads immersed in a fluid flow, we coupled the Sharp Interface Method (SIM) to a

Distributed Lagrange Multiplier/Fictious Domain (DLM/FD) two-phase flow solver.

The accuracy of the numerical method is evaluated by comparison to analytic solutions

and to generic test cases fully resolved by boundary fitted simulations. A previous

theoretical model that couples the internal diffusion-reaction problem with the external

advection-diffusion mass transfer in the fluid phase is extended to the configuration

of three aligned spherical particles representative of a dilute particle-laden flow. Pre-

dictions of surface concentration, mass transfer coefficient and chemical effectiveness

factor of catalyst particles are validated by DLM-FD/SIM simulations. It is shown that
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the model captures properly the effect of an internal first order chemical reaction on the

overall respective reactive Sherwood number of each sphere depending on their rela-

tive positions. The proposed correlation for the reactive Sherwood number is based on

an existing non-reactive Sherwood number correlation. The model can be later used in

Euler/Lagrange or Euler/Euler modelling of dilute reactive particle-laden flows.

Keywords: Sharp Interface Method, Catalyst particle, Mass transfer, Sherwood

number, Chemical reaction, Thiele modulus.

Graphical Abstract

(a) Re = 50, γ = 0.1, Sc = 1 and φ2 = 40

(b) Re = 50, γ = 0.1, Sc = 1 and φ2 = 200

(c) Re = 50, γ = 0.1, Sc = 1 and φ2 =∞
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1. Introduction

Systems involving interactions of a dispersed solid phase with a continuous fluid

phase through momentum, heat and mass transfer are ubiquitous in a wide range of

industrial and energetic processes. A classical process in the chemical enginering in-

dustry is catalytic cracking in a reactor. If the dispersed solid phase, commonly referred

to as particles, is fixed in the reactor, the system is known as a fixed bed and the flow is

relevant of the flow through a porous medium represented by the network of randomly

stacked catalytic particles (Furuta et al., 2006). If particles are mobile, the system is

known as a fluidized bed (Gidaspow, 1994; Montero et al., 2018). In both reactors, the

fluid enters the system with an imposed concentration of reactants and reactants are

transferred from fluid phase bulk to catalytic particles bulk through diffusion, where

chemical reactions take place in the form of heterogeneously catalyzed gas or liquid re-

action. The modeling, operation, design and optimization of these systems necessitate

an advanced comprehension of the coupling among the dominant transfer phenomena,

namely momentum, heat, and mass transfer, that are usually associated to the presence

of chemical reactions. For decades, operating experimental setups and deriving sim-

plified analytical solutions were the two only ways to improve the comprehension of

these systems. With the emergence of robust, accurate and computationally efficient

numerical approaches/methods, we can complement and extend our comprehension

with, e.g., reliable information about the micro-scale interactions in these systems that

are not accessible through experiments or theory.

Over the past two decades, diverse Computational Fluid Dynamics (CFD) ap-

proaches/methods for the simulation of systems involving fluid/solid interactions have

been developed. Combined to the increasing power of supercomputers that now en-

ables one to perform Direct Numerical Simulations (DNS) at the scale of particles,

CFD tools are now capable of supplying reliable and high quality detailed data in the

flow. In this class of highly resolved CFD methods, Particle Resolved Simulation (PRS)

has arisen as a mature method able to provide reliable local information about momen-

tum, heat and mass transfer at the particle scale in particulate flows (Sun et al. (2016)

among many others). PRS methods can be classified into two categories:
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(i) The first category comprises body-fitted mesh methods. The advantage of this

type of method relies on the ease to enforce boundary conditions at the particle

surface, i.e., at the fluid/particle interface. This technique has been used to inves-

tigate transport properties in a bed made of multiple fixed particles by Romkes

et al. (2003); Augier et al. (2010a) and convective heat/mass transfer over a single

particle by Feng and Michaelides (2000). It has also been employed for moving

particles by Hu et al. (2001) and moving boundaries by Duarte et al. (2004).

(i) The second category comprises fixed mesh methods. The challenge of this type

of method is the difficulty in enforcing the correct boundary conditions at the

particle surface while the main advantage is the use of a regular cartesian grid.

The Immersed Boundary Method (IBM) uses Lagrangian markers at the particle

surface to impose boundary conditions and introduces an additional forcing term

(Uhlmann, 2005). Xia et al. (2014) applied IBM to study convective heat/mass

transfer over a single particle. IBM was also used to evaluate the heat transfer

Nusselt number in dense particulate flow systems by Deen et al. (2014) and Sun

et al. (2015). Both studies compared their results to the pioneering experimen-

tal work of Gunn (1978) and proposed corrections of Gunn’s correlation based

on their data sets. Recently, IBM has been used by Lu et al. (2018) to examine

mass transfer in particulate flows with surface reaction. The Lattice Boltzmann

Method (LBM) is another computational method that uses a fixed mesh. LBM

has also been applied to particulate flows with heat transfer by Khiabani et al.

(2010) and Kruggel-Emden et al. (2016). Unlike conventional discretization

schemes that solve the classical conservation equations, LBM solves convection-

collision steps of probability density functions. Finally, the Distributed Lagrange

Multiplier / Fictitious Domain Method (DLM/FD), firstly introduced by Glowin-

ski et al. (2001), combines the particle and fluid equations of motion into a sin-

gle, weak, and general equation of motion called combined momentum equation.

The combined equations are derived through the combined velocity space incor-

porating the rigid body motion (no-slip) in the particle. The DLM/FD method

has been extended to treat heat/mass transfer by Yu et al. (2006), Dan and Wachs
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(2010) and Wachs (2011).

Apart from Yu et al. (2006) that considered diffusion inside particles, the common

feature of the aforementioned fixed-mesh methods is that they solve the convection-

diffusion equation by enforcing a uniform temperature (or concentration) in the whole

solid particle volume. This type of method is inadequate for the treatment of sys-

tems where temperature/concentration gradients are prominent within the particle. In

this case, the convection-diffusion (or convection-diffusion-reaction) equation must be

solved in both domains, i.e., in the solid domain and in the fluid domain. Augier et al.

(2010b) used a Volume of Fluid method (VOF) to study the efficiency of partially-

wetted stacked catalyst particles. Catalyst efficiency was studied for different particles

shapes as a function of Thiele modulus. Haroun et al. (2010) employed a VOF method

to study interfacial-reactive mass transfer in two-phase flows. Although efficient, the

VOF method necessitates a highly refined mesh at interfaces in order to accurately en-

force the correct boundary conditions, which may render, for a fixed Cartesian mesh,

the method computationally inefficient due to the huge computational cost. The main

drawback of the VOF method is that it is not capturing discontinuities.

The Sharp Interface Method (SIM), also referred to as Ghost Fluid Method (GFM),

is a fixed-mesh numerical method used to accurately capture boundary conditions with

discontinuities along embedded interfaces (Shi et al., 2011). In the SIM, jump condi-

tions are incorporated in the discretization of the differential operators on the Cartesian

grid in the vicinity of the interface. SIM was firstly introduced by Fedkiw et al. (1999)

and employed to impose boundary conditions at a contact discontinuity in the invis-

cid Euler equations. SIM was later extended to treat more general discontinuities by

Liu et al. (2000). In their work, Liu et al. (2000) developed a version of SIM to ad-

dress the problem of inhomogeneous Poisson equation in the presence of interfaces.

The method is easy to implement in three dimensions and the matrix associated to the

discrete Laplacian operator remains symmetric, allowing to use ‘black box’ scientific

libraries to solve the corresponding linear system. Gibou et al. (2002) considered the

Poisson equation with a non-uniform coefficient and Dirichlet boundary conditions on

an irregular domain and showed that a second order accuracy can be obtained with a
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simple discretization scheme that also preserves the matrix symmetry. Udaykumar and

Mao (2002) and Gibou et al. (2003) employed the SIM to track the evolution of solidi-

fication fronts in the presence of heat and solute transport in the dendritic solidification

of aqueous salt solutions. Kang et al. (2000) extended the SIM to treat multiphase

incompressible flows including effects of viscosity, surface tension and gravity and ap-

plied the method to two-phase water-air mixtures. Marella et al. (2005) used a SIM to

simulate immersed boundary problems while Liu et al. (2005) simulated droplet inter-

actions with objects of different shapes using a SIM that accounts for surface tension

and viscosity jumps. Kapahi et al. (2013) used a modified SIM to treat interfaces of

embedded objects, with an application to shock-wave particulate flows. Finally, to end

this non-exhaustive list of SIM-related works, Shao et al. (2012) combined the SIM

with a Fictitious Domain method to simulate heat transfer in particulate flows with

heat diffusion inside particles.

PRS is very powerful to supply high quality data inside the flow but is still lim-

ited to up to a few thousands, at best a few tens of thousands, of particles due to the

large computing cost of these simulations. Finely resolved simulations as PRS can

easily comprise hundreds of millions, and even a few billions, of grid cells, that rep-

resent highly challenging parallel computing problems, whether on multi-CPU or the

emerging GPU/multi-GPU technology. Thereby, from a modelling viewpoint, there has

been a sustained appeal to combine these particle-scale models to larger scale models,

namely Euler/Lagrange at the so-called meso scale and Eulere/Euler at the so-called

macro scale. The conceptual features of a fully integrated multi-scale modeling of

particle-laden flows is comprehensively described by Deen et al. (2014). The vast

majority of the multi-scale approaches suggested in the field of particle-laden flows

assume a bottom-up strategy or phrased in a more emphatic way an upwards cascade

of knowledge. In short, what is learnt through highly resolved simulations at the micro

scale on small representative systems is meant to be transferred to higher scale mod-

els and to contribute to a deeper understanding of the particle-laden flow dynamics.

Among the assorted ways to transfer knowledge, the most popular way has undoubt-

edly been over the last 15 years to enhance existing correlations for dimensionless

numbers representative of momentum, heat or mass transfer. Among many others,
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Deen et al. (2014) and Sun et al. (2015) suggested corrections to enhance the Nusselt

number correlation suggested by Gunn (1978) 30 years earlier. Our objective in this

paper follows the same line, i.e., to suggest a new correlation or to enhance an ex-

isting correlation derived from micro scale PRS that can be later used in meso scale

Euler/Lagrange and macro scale Euler/Euler modelling.

In the present study, we combine a Fictitious Domain method and a first order Sharp

Interface method to investigate mass transfer in particulate flows in the presence of a

first order reaction inside particles. The 3D simulation results supplied by this compu-

tational Method in a flow configuration representative of dilute particle-laden flows are

used to assess the validity of a reactive Sherwood number correlation that we already

suggested for the case of a single sphere in an unbounded domain in Sulaiman et al.

(2018) and that we revisit later in this work. We intend to show that a reactive Sherwood

number correlation can be constructed based on simple external-internal coupling. The

obtained model relies on any non-reactive Sherwood number correlation available in

the literature and is deemed to perform well. The rest of the paper is organized as

follows. We shortly summarized in Section 2 the equations and the corresponding di-

mensionless numbers governing the problem. Section 3 elaborates on the features of

our numerical method that combines a DLM/FD method to compute the flow field and

a SIM to compute the chemical species concentration field. Then, we present in Sec-

tion 4 a series of validation tests of growing complexity involving a single sphere. We

start with diffusion, then move on with diffusion-reaction, convection-diffusion, and

finally consider convection-diffusion-reaction. In the last case, and due to the lack of

analytical solutions and previously established correlations to compare our numerical

results to, we perform a comparison between SIM and a body-fitted method that fully

resolves the interface to investigate the efficiency of our SIM method and determine

its limits of validity in terms of range of dimensionless parameters considered and grid

size, through a series of convergence tests. We also show, through comparison in a

diffusion-reaction case, the advantage of SIM over VOF. Finally, and this is the core of

this work, we investigate in Section 5 the problem of three interacting spheres, firstly

presented by Ramachandran et al. (1989) for heat transfer without diffusion and chem-

ical reaction inside the spheres, with mass transfer coupled to diffusion and chemical
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reaction inside the spheres. We test our reactive Sherwood number correlation on this

configuration. The validity of the model and the steps forward in extending/improving

our reactive Sherwood number correlation are discussed in Section 6.

2. Governing equations

We aim at solving the time-dependent and incompressible flow of a Newtonian fluid

past multiple fixed obstacles with mass transfer between the fluid and the solid obsta-

cles. We define the full flow domain as Ω, the part of Ω occupied by the solid obstacles

as P and the part of Ω occupied by the fluid as Ω\P . The problem is governed by the

following conservation equations: fluid mass conservation, fluid momentum conser-

vation and chemical species conservation. Here we assume a single chemical species

C at a low concentration in the fluid such that it does not affect the constant density

and viscosity of the fluid. Dimensional quantities are distinguished from dimensionless

quantities by a ”*” superscript. We denote u∗ the fluid velocity, p∗ the fluid pressure,

C∗f the chemical species concentration in the fluid andC∗s the chemical species concen-

tration in the solid. The chemical species is assumed to undergo a first order reaction

in the solid obstacles. With appropriate initial conditions in Ω on (u∗, C∗f , C
∗
s ) and

boundary conditions on ∂Ω, the boundary of Ω, on u∗ (and potentially on p∗), the set

of conservation equations together with fluid/solid interface conditions is written as

follows:

• in the fluid

ρ∗f

(
∂u∗

∂t∗
+ (u∗ · ∇)u∗

)
− η∗∇2u∗ +∇p∗ = 0, (1)

∇ · u∗ = 0, (2)

∂C∗f
∂t∗

+ u∗ · ∇C∗f −∇ · (D∗f∇C∗f ) = 0, (3)

where ρ∗f denotes the fluid density, η∗ the fluid viscosity and D∗f the chemical

species diffusion coefficient in the fluid.
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• in the solid

u∗ = 0, (4)

∂C∗s
∂t∗
−∇ · (D∗s∇C∗s ) = −k∗sC∗s , (5)

where D∗s denotes chemical species effective diffusion coefficient in the solid

and k∗s the effective first order reaction constant in the solid.

• at the fluid/solid interface ∂P

u∗ = 0, (6)

C∗s = C∗f , (7)

−D∗s
∂C∗s
∂n

= −D∗f
∂C∗f
∂n

, (8)

where n denotes the unit normal vector at the fluid/solid interface.

Governing equations are made dimensionless by introducing a characteristic length L∗c ,

a characteristic velocity U∗c and a characteristic convective time T ∗c = L∗c/U
∗
c . In the

various problems examined thereafter, solid obstacles are spheres, hence an obvious

choice for L∗c is the particle diameter d∗p. When the problem is not purely diffusive,

an obvious choice for U∗c is the far field inlet velocity U∗in. Also, by normalizing the

chemical species concentration between 0 and 1 and introducing the chemical species

diffusion coefficient ratio γ =
D∗s
D∗f

, conservation equations (3) and (5) together with

interface conditions (7)-(8), i.e., continuity of chemical species concentration and con-

tinuity of chemical species normal flux, can be recast into a single dimensionless con-

servation equation for the chemical species C with appropriate no jump conditions at

the fluid/solid interface on the chemical species concentration and on its normal flux.
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The set of dimensionless equations eventually reads as follows:

∂u

∂t
+ (u · ∇)u− 1

Re
∇2u+∇p = 0 in Ω\P, (9)

∇ · u = 0 in Ω\P, (10)

u = 0 in P ∪ ∂P, (11)

∂C

∂t
+ u · ∇C −∇ ·

(
h(γ)

Pe
∇C

)
+
h(γ)g(φ2)

Pe
C = 0 in Ω,

[C]∂P = 0 ,

[
h(γ)

∂C

∂n

]
∂P

= 0,

(12)

where [ ]∂P represents the jump condition across the fluid/solid interface. The dimen-

sionless numbers introduced above are defined as follows:

• Reynolds number: Re =
ρ∗fU

∗
c L
∗
c

η∗
,

• Peclet number: Pe =
U∗c L

∗
c

D∗f
,

• Damkohler number: Da = φ2 =
k∗sL

∗2
c

D∗s

where φ =
√
Da is the Thiele modulus, and the functions h(γ) and g(φ2) are simple

Heavyside-like functions defined as:

h(γ) =

1 in Ω\P,

γ in P.

g(φ2) =

0 in Ω\P,

φ2 in P.

As usual, we can also introduce a Schmidt number Sc =
η∗

ρ∗fD
∗
f

such that Pe = Re·Sc.

Hence the flow is equivalently characterized by the pair (Re, Pe) or the pair (Re, Sc).

3. Numerical Model

The chemical species problem is one-way coupled only to the fluid problem through

the velocity field u. At each discrete time tn+1, n > 0 being the time index and t0
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being the initial time, we solve the full problem as a sequence of the fluid problem

followed by the chemical species problem using the computed velocity field un+1.

The solution algorithm is hence of the 1st order in time weak coupling type. In the next

subsections, we shortly elaborate on the strategy adopted to solve each sub-problem.

3.1. Solution to the fluid problem: flow around fixed obstacles

We use our well validated Finite Volume/Staggered Grid-DLM/FD solver imple-

mented in our in-house code PeliGRIFF. The whole method is fully detailed in Wachs

et al. (2015); Rahmani and Wachs (2014) for freely moving particles and in Dorai et al.

(2015) for fixed obstacles and was pionneered by Glowinski et al. (1999) in a Finite

Element context. To summarize, we use a cartesian structured mesh of constant grid

size around obstacles, we solve the fluid conservation equations (9)-(10) everywhere in

the domain (not only in Ω\P but in the entire Ω) and we enforce the rigid body motion

(motionless in the particular case of the application treated in this paper) in the region

(filled with fictitious fluid) occupied by the obstacles and represented by (11) using

a distributed Lagrange multiplier field. Our Finite Volume/Staggered Grid-DLM/FD

method also involves an implicit solution of the resulting DLM/FD saddle-point prob-

lem by a Uzawa algorithm, a collocation-point method to discretize the solid obstacles

on the fluid mesh and a second-order interpolation of the fluid velocity at the particle

boundary (Wachs et al., 2015; Rahmani and Wachs, 2014; Dorai et al., 2015). In our

Finite Volume/Staggered Grid discretization method, the diffusive term is discretized

with a 2nd order accurate centered scheme while the advective term is discretized with

a 2nd order accurate TVD (Total Variation Diminishing)/Superbee limiter scheme. Fi-

nally, the diffusive term is treated implicitly in time with a 2nd order Crank-Nicholson

scheme while the advective term is treated explicitly in time with a 2nd order Adams-

Bashforth scheme. The strength of our method is that it does not require any kind

of hydrodynamic radius calibration (see Wachs et al. (2015) for more detail about the

problem of hydrodynamic radius calibration). The overall spatial accuracy of the dis-

cretization scheme is however not fully 2nd order due to the non-boundary fitted feature

of the mesh around the solid obstacles. The dimensionless mesh size ∆x is related to

the number of points per sphere diameter through Np = 1/∆x.
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The solution algorithm for the fluid problem is of the 1st order operator-splitting

type and comprises two stages as follows:

1. A classical L2-projection scheme for the solution of the Navier & Stokes prob-

lem: find un+1/2 and pn+1 such that

ũ− un
∆t

− 1

2Re
∇2ũ = −∇pn+1 +

1

2Re
∇2un

− 1

2

(
3un · ∇un − un−1 · ∇un−1

)
− λn,

(13)

∇2ψ =
1

∆t
∇ · ũ ,

∂ψ

∂n
= 0 or ψ = 0 on ∂Ω, (14)

un+1/2 = ũ−∆t∇ψ,

pn+1 = pn + ψ − ∆t

2Re
∇2ψ.

(15)

2. A fictitious domain problem: find un+1 and λn+1 such that

un+1 − un+1/2

∆t
+ λn+1 = λn, (16)

un+1 = 0 in P. (17)

where ũ, λ, ψ and ∆t denote the non divergence-free predicted fluid velocity vector,

DLM/FD Lagrange multiplier to relax the constraint (17), pseudo-pressure field and

time step, respectively.

3.2. Solution to the chemical species problem: Sharp Interface method

The conservation equation in problem (12) is discretized in time with a 1st order

scheme. The diffusive term is treated implicitly in time with a 1st order Backward

Euler scheme and the advective term is discretized explicitly in time with a 2nd order

Adams-Bashforth scheme. Since the reactive term is linear with C, it can be easily

treated implicitly too. The discrete in time version of the conservation equation in

problem (12) reads as follows:

Cn+1 − Cn
∆t

−∇ ·
(
h(γ)

Pe
∇Cn+1

)
+
h(γ)g(φ2)

Pe
Cn+1 =

−1

2

(
3un+1 · ∇Cn − un · ∇Cn−1

) (18)
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The primary difficulty in the spatial discretization of (18) is how to discretize the dif-

fusive operator on a non-boundary fitted mesh and to account for the continuity of C

and of its normal flux across the fluid/solid interface through the 2 no jump conditions

[C]∂P = 0 and
[
h(γ)

∂C

∂n

]
∂P

= 0, respectively. This is achieved with a Sharp In-

terface Method (Fedkiw et al., 1999; Liu et al., 2000; Shao et al., 2012). We use the

original version suggested by Fedkiw et al. (1999). The method is only 1st order ac-

curate in space but is discontinuity capturing and easy to implement. The core of the

method is to incorporate the jump conditions into the discrete in space diffusive term.

The other terms in (18) are discretized in a classical way. Since the method is well

established, we simply shortly summarized its construction in 1D and the extension to

3D suggested by Shao et al. (2012) in the special case of spherical solid bodies.

3.2.1. Description of the Sharp Interface Method in one dimension

To ease notation, let’s rewrite h(γ)
Pe as β. β is hence a diffusion coefficient with a

discontinuity across the fluid/solid interface. We shortly elaborate below on the dis-

cretization of the diffusive term∇ · (β∇C) in 1D, i.e., (βCx)x, with x = ∂
∂x .

We consider general jump conditions on C and on its flux defined at the interface

∂P as: [
C
]
∂P

= C+
∂P − C−∂P = a∂P (19)[

βCx
]
∂P

=
(
βCx

)+
∂P
−
(
βCx

)−
∂P

= b∂P (20)

where Ω− denotes the part of the domain on one side of the interface (e.g., Ω− =

Ω\P is the fluid domain) and Ω+ denotes the part of the domain on the other side

of the interface (e.g., Ω+ = P is the solid domain). We assume that the 1D space

is discretized uniformly with a constant grid size ∆x and that the interface ∂P lies

between two grid points i ∈ Ω− and i+ 1 ∈ Ω+. Following Fedkiw et al. (1999); Liu

et al. (2000), the diffusive term (βCx)x for point i is discretized in a Finite Difference

fashion as follows:(
βCx

)
x

=

1

∆x

[
β̂

(
Ci+1 − Ci

∆x

)
− β−

(
Ci − Ci−1

∆x

)]
− β̂a∂P

∆x2
− β̂b∂P (1− ζ)

β+∆x
(21)
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where the coefficient β̂ is calculated as follows:

β̂ =
β+β−

β+ζ + β−(1− ζ)
(22)

and ζ is the cell fraction, calculated through the level set function χ based on the

interface location.

ζ =
|χi|

|χi|+ |χi+1|
(23)

In our case, we have neither a jump for C nor for its flux βCx, which translates into

a∂P = 0 and b∂P = 0, so (21) simplifies to:

(
βCx

)
x

=
1

∆x

[
β̂

(
Ci+1 − Ci

∆x

)
− β−

(
Ci − Ci−1

∆x

)]
(24)

3.2.2. Extension to three dimensions

The discretization of the diffusive term ∇ · (β∇C) in the vicinity of an inter-

face ∂P in 3D is a bit trickier as jump conditions exist only for C and its normal

flux [βCn]∂P = 0, but nothing is specified about the tangential flux across ∂P . Liu

et al. (2000) suggested a dimension by dimension application of the 1D discretization

method that we adopt here. However, Liu et al. (2000) also emphasized that a simple

projection of the normal flux jump condition on the cartesian coordinate axis leads to

the right jump condition in the normal direction but also imposes an artificial and es-

sentially physically wrong additional condition on the tangential flux across ∂P of the

form [βCt]∂P = 0, while the right physical condition is simply [Ct]∂P = 0.

Since our solid obstacles are all spheres, we follow the approach suggested by Shao

et al. (2012) that involves changing coordinates from cartesian to spherical and writing

the jump conditions in cartesian coordinates as a function of the jump conditions in

spherical coordinates in a way that the right jump conditions are imposed.

Cartesian and spherical coordinate systems are related to each other through:

x = rsin(θ)cos(ϕ) (25)

y = rsin(θ)sin(ϕ) (26)

z = rcos(θ) (27)
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with θ ∈ [0, 2π] and ϕ ∈ [−π/2,+π/2]. The gradient of C in the cartesian coordinate

system is related to the gradient of C in the spherical coordinate system through:

Cx = Crsin(θ)cos(ϕ) + Ctθcos(θ)cos(ϕ)− Ctϕsin(ϕ) (28)

Cy = Crsin(θ)sin(ϕ) + Ctθcos(θ)sin(ϕ) + Ctϕcos(θ) (29)

Cz = Crcos(ϕ)− Ctϕsin(ϕ) (30)

where tθ is the unit tangential vector in the θ direction and tϕ is the unit tangential

vector in theϕ direction. Obviously on a sphere surface we haveCr = Cn. Multiplying

the above equations by β we can write the jump conditions in the cartesian directions

x, y and z as a function of the jump conditions in the normal and tangential directions

as:

[βCx]∂P = [βCn]∂P sin(θ)cos(ϕ) + [βCtθ ]∂P cos(θ)cos(ϕ)

− [βCtϕ ]∂P sin(θ)
(31)

[βCy]∂P = [βCn]∂P sin(θ)sin(ϕ) + [βCtθ ]∂P cos(θ)sin(ϕ)

+ [βCtϕ ]∂P cos(θ)
(32)

[βCz]∂P = [βCn]∂P cos(ϕ)− [βCtθ ]∂P sin(ϕ) (33)

In our problem, we have [C]∂P = 0, [βCn]∂P = 0, [Ctθ ] = 0 and [Ctϕ ] = 0. However,

[βCtθ ]∂P = [β]∂PCtθ and [βCtϕ ]∂P = [β]∂PCtϕ are non zero because [β]∂P 6= 0,

i.e., the diffusion coefficient β is discontinuous across the interface ∂P . To calculate

these 2 terms, we need to calculate the tangential derivativesCtθ andCtϕ at the particle

surface. At the discrete level, these 2 tangential derivatives are approximated for each

point on the particle surface using a central difference scheme that involves the values

of C at two adjacent points. As C is not known at the time level tn+1, we use C from

the previous time level, i.e., tn, to compute Ctθ and Ctϕ as suggested by Shao et al.

(2012). Eventually, the 3 jump conditions (31)-(33) are added to the right hand side of

the conservation equation as in a 1D case.
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4. Validations

We verify here our implementation of the SIM and assess its capability to resolve

the different flow problems we are interested in. We perform a step by step valida-

tion of the computed solution in problems of growing complexity. For diffusion and

diffusion-reaction problems, we compare our SIM results to existing analytical so-

lutions. For convection-diffusion problems, we compare our SIM results to existing

correlations. Finally, for convection-diffusion-reaction problems, there does not exist

any correlation or analytical solution, to the best of our knowledge. For this reason,

we compare our SIM results to results computed with a boundary-fitted method with

local mesh refinement that fully resolves the gradients at the particle interface. We test

the limitations of SIM for a wide range of dimensionless numbers. In all the cases ex-

amined from now on, we are interested in the steady state solution only. However, the

steady state solution is computed by our transient algorithm as the solution obtained

when time derivatives are negligibly small. All transient computations are run with

∆t = 10−3.

4.1. Pure diffusion in a finite domain

4.1.1. Steady state diffusion from a single particle

The first validation test is performed in a purely diffusive regime. A spherical

particle of radius r∗p is placed at the center of a cubic domain Ω = L∗x × L∗y × L∗z

and a zero concentration Cs = 0 is imposed at the particle boundary and inside the

particle. This condition is enforced through an infinitely fast reaction φ2 → ∞ and

a large diffusion coefficient ratio γ that makes the problem mass transfer controlled.

A fixed concentration C∞ is imposed at the boundary ∂Ω of the domain so that the

concentration difference (or driving force) is constant. When the problem is posed in

a spherical domain Ω of finite radius r∗
∞

, we can solve the 1D problem and derive an

expression for the Sherwood number (see Appendix A for the details) as follows:

Sh =
k∗d∗p
D∗f

=
2r∗
∞

r∗
∞
− r∗p

(34)
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where k∗ denotes the mass transfer coefficient defined as:

k∗ =
D∗f

4πr∗2p (C∞ − Cs)

∫
π/2

−π/2

∫
2π

0

∂C(r∗)

∂r∗

∣∣∣∣
r∗=r∗p

r∗2p sin(θ)dφdθ (35)

We set the dimensionless box size to Lx = Ly = Lz = 10. The particle dimen-

sionless radius is rp = 0.5. The analytical value of the Sherwood number in a spherical

domain of finite radius r∞ = 5 is Shan = 20/9 = 2.22. We assume that this solution is

a good approximation of the solution posed in a cubic domain Lx = Ly = Lz = 2r∞ .

We examine the convergence of the method by computing Sh as a function of the

grid size ∆x = 1/Np. We then compute the relative error with respect to Shan as

ε =
Sh(Np)−Shan

Shan
and plot the convergence of ε with Np in FIG. 1. The solution fol-

lows an expected first order spatial convergence. In this test, the error originates from

two contributions. The first contribution is related to the spatial discretization of the

problem and the contribution we are interested in. The second contribution is due to the

fact that the analytical solution is derived in a spherical domain and compared to the

computed solution in a cubic box. For the range of Np considered, it is clear in FIG. 1

that the second contribution is negligible and that provided r∞ = Lx/2 is chosen large

enough, the analytical solution in a spherical domain does not differ much from the

solution in a cubic domain.

4.1.2. Steady state diffusion from a single particle in a gradient of concentration

We test our SIM in another diffusive configuration previously examined by Shao

et al. (2012). A solid particle of diffusion coefficient D∗s is immersed at the center of a

cubic domain Ω = L∗x × L∗y × L∗z of fluid at rest of diffusion coefficient D∗f . Dirichlet

boundary conditions C = C1 = 1 at the top wall and C = C2 = 0 at the bottom wall

are imposed to generate a concentration gradient in the z direction. Zero normal flux

boundary conditions are imposed on the 4 lateral walls. The average Sherwood number

corresponding to the flux through a horizontal xy plane is defined as:

Sh =
L∗z

C2 − C1
· 1

L∗xL
∗
y

∫ L∗x

0

∫ L∗y

0

(
∂C

∂z∗

)
dy∗dx∗ (36)

The average Sherwood number can be analytically predicted based on the analogy
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with Maxwell-Garnett electric conductivity (Maxwell et al., 2005) as:

Sh = 1 +
3α(γ − 1)

γ + 2
(37)

where α is the solid volume fraction. Following Shao et al. (2012), we simulate two

cases with two different solid volume fractions. We keep the dimensional box size

constant to L∗x = L∗y = L∗z = 10mm and vary the solid volume fraction α through

selecting 2 different particle radii r∗p = 1.25mm and r∗p = 2mm, i.e., r∗p/L
∗
x =

0.125 and r∗p/L
∗
x = 0.2, respectively. We select the diffusion ratio γ to span the

interval [10−2, 102]. For each value of γ we compute the average Sherwood number

and compare its value to the theoretical prediction and the numerical results of Shao

et al. (2012). FIG. 2 exhibits a very satisfactory agreement of our results with both

the analytical prediction and numerical results of Shao et al. (2012). We compute an

additional case for r∗p = 1.5mm, i.e., r∗p/L
∗
x = 0.15, and plot the convergence towards

the analytical solution in FIG. 3 for the three solid volume fractions corresponding to

r∗p/L
∗
x = 0.1, 0.15, 0.2. As expected, a first order spatial convergence is obtained. The

error is shown to increase with the increase of α. The concentration contours in a xz

vertical cut plane containing the sphere center are illustrated in FIG. 4 for the case of

r∗p/L
∗
x = 0.2 and γ = 0.1.

4.2. Steady state internal diffusion and chemical reaction in a single particle

We consider a spherical porous catalyst particle of diameter d∗p and diffusion coef-

ficient D∗s immersed at the center of a cubic domain Ω = L∗x × L∗y × L∗z . The particle

is assumed to undergo a first order chemical reaction controlled by a constant k∗s such

that the chemical species concentration C inside the particle satisfies (5). If the surface

concentration denotedCs is known and assumed to be constant over the sphere surface,

the problem becomes 1D in space and we can easily write the steady state solution of

(5) as follows:

C(r) = Cs
sinh(φr)

2r sinh(φ/2)
(38)

where as usual r = r∗/d∗p is the dimensionless radial position and φ = d∗p

√
k∗s
D∗s

is the

Thiele modulus. The derivation of (38) can be found in many textbooks.
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Dirichlet boundary conditions C = 1 are imposed on the 6 walls of the cubic

domain. We impose Cs = 1 through an infinitely large diffusion coefficient D∗f in

fluid phase, i.e., γ is chosen asymptotically small. The domain size does not matter

here and only needs to be chosen dimensionlessly larger than 1. We compare our SIM

concentration profile inside the particle to the analytical solution (38) in FIG. 5 for

Np = 20. The agreement is once again very satisfactory. The numerical method is

capable of capturing the steep concentration gradients at the particle surface even for a

modest resolution. The corresponding concentration iso-countours are shown in FIG. 6

for Np = 80.

Based on the concentration profile, the effectiveness factor η for a catalyst particle

can be defined as the ratio of the overall internal reaction rate in the particle to the

reaction rate that can be attained in the absence of diffusion limitations. For a spherical

catalyst particle with a fixed surface concentration Cs, we have:

η =

∫
2π

0

∫
+π/2

−π/2

∫
r∗p

0
−k∗sC(r∗)sin(θ)r∗2dφdθdr∗

−k∗s 4π
3 r
∗3
p Cs

=
Cv
Cs

=
3

φ

(
1

tanh(φ)
− 1

φ

) (39)

where C(r∗) = Cs
r∗p sinh(φr∗)

r∗ sinh(φr∗p)
is the Thiele concentration profile given by (38) in a

dimensional form for a given surface concentration Cs and Cv is the average volume

concentration in the particle.

Depending on reaction kinetics and assuming, e.g., γ ∈ [10−2, 102], i.e., γ is not

asymptotically small/large, the effectiveness factor η exhibits two asymptotic limits.

When the reaction rate is very low compared to diffusion, φ � 1, the system is con-

trolled by kinetics and the catalyst surface concentration Cs is equal to fluid concentra-

tion, and so η → 1. When the reaction rate is high compared to diffusion, i.e. φ � 1,

the system is limited by diffusion and the surface concentration Cs approaches zero,

therefore η → 3/φ.

In the following test, we once again impose Cs = 1 through an asymptotically

small γ. We vary the Thiele modulus φ in the range [0.2, 120] by varying the reaction
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rate constant k∗s . For each value of φ, we calculate numerically the effectiveness factor

η and examine the spatial convergence of the solution computed with our SIM and a

standard VOF method. Hence we compute SIM solutions for Np = 10, 40, 80 and

VOF solutions for Np = 40, 80. FIG. 7 shows η as a function of φ for Np = 10, 80

with SIM and Np = 40 with VOF. Results obtained with SIM and VOF are further

compared to each other and to the analytical solution in FIG. 8 and FIG. 9 for various

values of φ and Np. We can make the 3 following comments: (ii) both methods show a

first order spatial convergence, (ii) VOF with a grid size 4 times smaller than SIM gives

approximately the same computed solution, and (iii) when Np = 80, SIM predictions

are very close to the analytical solution with a slightly growing deviation for φ > 20.

The superior accuracy of the solution computed with SIM compared to that computed

with VOF is further emphasized in FIG. 8 where we plot the error to the analytical

solution as a function of φ for Np = 80. Finally, FIG. 9 also highlights that fact that

the magnitude of the error increases with increasing φ in relation to the concentration

gradients becoming steeper in the vicinity of the particle surface as φ increases, i.e.,

the internal mass boundary layer gets thinner as φ increases.

4.3. Steady state convection-diffusion in the flow past a single sphere: external mass

transfer problem

We now validate our SIM in the case of external mass transfer in the flow past a

spherical solid particle in an unbounded domain. A spherical particle is placed in a box

of sizeLx×Ly×Lz = 5×5×15. The fluid enters the flow domain on the left boundary

with an imposed fluid velocity u = (0, 0, 1) and a concentration C = C∞ = 1.

The particle is centered in the x and y directions. Periodic boundary conditions are

imposed in x and y directions and C = C∞ = 1 is imposed on the 4 lateral walls

while a classical outflow boundary condition ∂u
∂z = ∂C

∂z = 0 and p = pref = 0 is

imposed at the outlet boundary. FIG. 10 illustrates the flow configuration in a xz cut

plane containing the sphere center. The concentration C in the particle is imposed to 0

by selecting an extremely large value of φ. The problem is hence controlled by Sc and

Re.

To illustrate that our SIM predicts the right external mass transfer, we set Sc = 1
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and vary Re in the range [0, 200]. We compute the steady state Sherwood number Sh

for Np = 80 and compare its value to literature correlations as, e.g., the correlation

of Feng and Michaelides (2000), in FIG. 11. Overall, we observe a very satisfactory

agreement between our SIM results and literature correlations.

4.4. Steady state convection-diffusion in the flow past a single reactive sphere: external-

internal mass transfer

We now consider a similar problem to the one in Section 4.3 but with a first order

reaction inside the particle. To validate our SIM, we compare the results computed

with our SIM to results supplied by a highly accurate boundary fitted method imple-

mented in the JADIM code. JADIM solves the same system of equations (9)-(12) but

with a different discretization scheme in space and in time. The high accuracy of solu-

tions computed with JADIM derives both from its boundary fitted spatial discretization

scheme and the ability to locally refine the mesh in both the internal and external mass

boundary layers.

The numerical methods used in JADIM have been thoroughly described by Mag-

naudet et al. (1995) and Calmet and Magnaudet (1997). Consequently they are only

quickly summarized here. The JADIM code solves the incompressible Navier-Stokes

equations and the concentration equation in general orthogonal curvilinear coordinates

which are boundary fitted to the particle surface. Equations are integrated in space us-

ing a finite volume method in which advective and diffusive terms are evaluated with

second-order accurate centered schemes. The solution is advanced in time by means of

a three-step Runge-Kutta time-stepping procedure in which advective terms are com-

puted explicitly while diffusive terms are treated by a semi-implicit Crank-Nicholson

scheme. Incompressibility is satisfied after the third intermediate time step by solving

a Poisson equation for an auxiliary potential from which the true pressure is deduced,

similarly to (13)-(15). The complete algorithm is second order accurate in both space

and time.

The mesh grid used in the present work is sketched in FIG. 12. The orthogonal ax-

isymmetric mapping is obtained by using the streamlines and the equipotential lines of

the potential flow around a circular cylinder. The mesh is stretched in order to have at
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least four points in the external mass boundary layer that scales as Pe−1/3. Simulations

are performed in a 2D axisymmetric configuration which reproduces the geometry of

a spherical particle. The fluid computational domain is limited by the particle surface

and by external boundaries on which inflow, free stream, axial symmetry, and outflow

boundary conditions are imposed. The equations are solved inside the particle over a

polar mesh adjusted to the fluid mesh at the particle surface. The internal mass bound-

ary layer thickness reduces when the kinetics of the chemical reaction, i.e., φ, increases.

The mesh inside the particle is thus refined close to the particle surface following the

scaling of the boundary layer as φ−1. At least four grid points stand within the internal

boundary layer in order to compute properly the internal concentration gradient at the

particle surface. A particle of radius r∗p is placed in a domain with a spatial extension

of at least r∗∞ = 100r∗p , so that the assumption of infinite domain is physically valid.

All simulations are performed with Np = 80 unless spatial convergence is inves-

tigated. The used DLM-FD simulation domain is 5 × 5 × 15. We set γ = 10, φ = 2

and Sc = 1 and vary Re in the range [0, 200]. Our SIM results plotted in FIG. 13 agree

well with the JADIM results and the model for the mean surface concentration Cs sug-

gested in Sulaiman et al. (2018). FIG. 13 shows that the mean surface concentration

Cs increases with the increase of Re. Then we set γ = 10, φ = 150 and Sc = 1 and

vary φ in the range [0, 40]. Once again a good agreement between our SIM results, the

JADIM results and the model for the mean surface concentration Cs suggested in Su-

laiman et al. (2018) is highlighted in FIG. 14, with a small deviation of our SIM results

from the JADIM results and the model predictions that grows as φ increases due to the

internal boundary layer getting thinner as 1/φ.

We now compare concentration profiles computed with our SIM and JADIM. We

set γ = 10, Re = 10, and Sc = 1, select two Thiele moduli φ = 4 and φ = 10 and

plot the concentration profile obtained with each method in FIG. 15. The agreement

is visually very good. The actual error between SIM and JADIM (not shown here

for the sake of conciseness) increases for φ = 10 compared to φ = 4, in line with

what we observe for Cs. We run another set of simulations with γ = 10, φ = 10,

Sc = 1 and two Reynolds numbers Re = 10 and Re = 100. Concentration profiles

plotted in FIG. 16 once again in a cross-section normal to the inlet flow, corresponding
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to θ = 90. They highlight a satisfactory agreement between our SIM results and the

JADIM results. The error between SIM and JADIM (not shown here for the sake of

conciseness) only mildly increases with Re. The numerical accuracy is consequently

mostly controlled by the internal mass boundary layer thickness.

Finally, we examine the spatial convergence of the SIM computed solution to the

JADIM reference solution. We set γ = 0.1, φ2 = 40 and Re = 150, select Sc = 0.1,

Sc = 1 and Sc = 10 and Np in the range [10, 80]. We then compute and plot the error

ε on the mean surface concentration Cs between SIM and JADIM. FIG. 17 shows that ε

increases slightly only with the increase of Sc. This behavior is similar to the behavior

of the solution with increasing Re at constant φ, that shows that ε is mainly controlled

by the reaction rate and the internal mass boundary layer thickness. To investigate

the effect of the reaction rate on the solution, we perform a final set of simulations

with γ = 0.1, Sc = 10, Re = 150 and φ2 varying in the range [40, 4000]. FIG. 18

reveals that ε increases significantly with the increase of φ2. For φ2 = 40, even a mesh

resolution Np = 20 is sufficient to supply a computed solution with a relative error of

3%. At φ2 = 200, a grid resolution Np = 60 is needed to reach the same accuracy. For

φ2 = 400, a grid resolution with more than Np = 80 is needed to reach an accuracy

corresponding to a relative error of less than 4%. And finally at φ2 = 4000, even the

finest grid resolution considered here Np = 80 supplies a computed solution that is

still 11% off from the reference solution.

5. Interacting Spheres

We examine here the external forced convection-diffusion on a sequence of inter-

acting spheres undergoing an internal first order irreversible chemical reaction. The

non-reactive problem without diffusion inside solid bodies was firstly introduced by

(Ramachandran et al., 1989) for heat transfer. As in Section 4, we are interested in

the steady state solution only and all transient computations leading to steady state

are run with ∆t = 10−3. Ramachandran et al. (1989) suggested empirical corrective

terms to relate the non-reactive Sherwood number of a single sphere to the non-reactive

Sherwood numbers of interacting spheres. The corrective terms account for separation
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distances effect between the particles. The aim of this work is to include the effect of

a chemical reaction inside the solid bodies and to introduce, based on internal-external

coupling, a model for the reactive Sherwood number for each particle, that accounts for

the effects of diffusion, convection, and reaction. We aim at extending the model we

suggested for a single sphere in (Sulaiman et al., 2018) to more concentrated particle-

laden flows and consider the flow configuration investigated here as a proper toy model

for mass transfer with reaction in dilute particle-laden flows. The core aspect of our

model is that it is possible to construct a reactive Sherwood number formula based

on an existing non-reactive Sherwood number formula. We show thereafter that this

approach is still valid in dilute particle-laden systems experiencing hydrodynamic in-

teractions.

5.1. Problem definition

We consider a system composed of three aligned spherical catalyst particles along

z in a box of size Lx×Ly ×Lz = 5× 5× 15. The fluid enters the flow domain on the

left boundary with an imposed fluid velocity u = (0, 0, 1) and concentration C = 1.

The three particles are centered in the x and y directions. Periodic boundary conditions

are imposed in x and y directions and C = C∞ = 1 is imposed on the 4 lateral walls

while a classical outflow boundary condition ∂u
∂z = ∂C

∂z = 0 and p = pref = 0 is

imposed at the outlet boundary. The separation distances between the first and second

particles and between the second and third particles are d12 and d23, respectively, as

shown in FIG. 19. The problem is controlled by the Reynolds number Re, the Schmidt

number Sc, the diffusion coefficient ratio γ and the Damkohler φ2. All computations

are performed with Np = 70.

We approach the problem through the external-internal coupling based on the con-

tinuity of C and of its normal flux at the fluid/solid interface ∂P . The normal flux

density at the particle surface in the solid phase N∗s,∂P is given by:

N∗s,∂P = −D∗s
dC

dr∗

∣∣∣∣
r∗=r∗p

(40)

The concentration profile in the solid phase is given by (38). Calculating the radial

derivative at r∗ = r∗p (or r = 0.5), the flux in the solid phase can be written as:
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N∗s,∂P = −D
∗
sCs
r∗p

(
φ

tanh(φ)
− 1

)
(41)

The normal flux density at the particle surface in the fluid phase N∗f,∂P can be written

as:

N∗f,∂P = −k∗f (Cs − C∞) (42)

where k∗f is the external mass transfer coefficient in the fluid phase, analytically un-

known in case of external convection. The continuity of the normal flux at ∂P , i.e.,

N∗s,∂P = N∗f,∂P , leads to:

k∗f (Cs − C∞) = D∗s
Cs
r∗p

(
φ

tanh(φ)
− 1

)
(43)

And we can hence deduce the expression of the surface concentration Cs:

Cs =
C∞

1 +
D∗s
r∗pk
∗
f

( φ
tanh(φ) − 1)

(44)

In order to determine Cs, we need to evaluate the external mass transfer coefficient

k∗f . Here, we assume that the internal problem is only affecting the external problem

through the concentration gradient. Thus, the external Sherwood number is assumed

independent of the reaction rate. We hence evaluate the external mass transfer coeffi-

cient from the external Sherwood number Sh, i.e., a non-reactive Sherwood number, as

k∗f = ShD∗f/d
∗
p. Then, any appropriate empirical correlation available in the literature

for Sh can be used. For instance in (Sulaiman et al., 2018), we used for a single sphere

the correlation defined by Feng and Michaelides (2000):

Sh = 0.992 +Re1/3Sc1/3 + 0.1Re2/3Sc1/3 (45)

For a series of three interacting spheres, Ramachandran et al. (1989) suggested to

account for the interactions between the spheres through corrective coefficients for the

Sherwood number of each of the three spheres. These corrective coefficients, mainly

empirical, are established based on computational data, and related to the correlation

for a single sphere. The individual Sherwood number reads:

Shj = Sh · βj j = 1, 2, 3 (46)
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where j is the sphere number and the βj , j = 1, 2, 3 are the empirical corrective terms

defined by Ramachandran et al. (1989) as:

β1 = 0.9555Sc0.0276Re0.0108d
0.113/[1+1.5ln(10Pe)]
12 e−0.02113/d23 (47)

β2 = 1− 0.0697(1 + ln(Re))0.767[1 + ln(10ReSc)]0.095d23
−0.13

− 4.807(1 + ln(Re))0.012d−5.2812 (48)

β3 = 1− 0.532Sc−0.019Re0.032e−0.0146/d12

(
1

d23

)3.044/[1+1.1ln(10Pe)]

(49)

The average surface concentration Cs,j for sphere j with corresponding Sherwood

number Shj , can be written as follows:

Cs,j =
C∞

1 + 2γ
Shj

( φ
tanh(φ) − 1)

j = 1, 2, 3 (50)

The formulation of a ‘reactive’ Sherwood number that accounts for convection,

diffusion and reaction is based on two concentration gradients instead of a single con-

centration gradient in the external non-reactive case. The first gradient is the external

gradient involving (Cs − C∞) and the second gradient is the internal gradient involv-

ing (Cv − Cs), where Cv is the mean volume concentration of C in each sphere. To

derive an expression for Cv , we integrate the 1D concentration profile given by (38),

assuming Cs is a function of the position on the sphere and the radial dependence is

still reasonably valid, over the particle volume as

Cv '
3

4πr∗3p

∫ 2π

0

∫ +π/2

−π/2

∫ r∗p

0

Cs(φ, θ)
r∗p sinh(φr∗)

r∗ sinh(φr∗p)
sin(θ)r∗2dφdθdr∗ (51)

and further approximate this integral as:

Cv '
3Cs

4πr∗3p

∫ 2π

0

∫ +π/2

−π/2

∫ r∗p

0

r∗p sinh(φr∗)

r∗ sinh(φr∗p)
sin(θ)r∗2dφdθdr∗

=
3Cs
φ

(
1

tanh(φ)
− 1

φ

) (52)

Cs is estimated by model (50) and we eventually obtain an expression for the mean

volume concentration Cv,j for sphere j that reads as follows:

Cv,j =
3C∞

1 + 2γ
Shj

( φ
tanh(φ) − 1)

(
1

φtanh(φ)
− 1

φ2

)
j = 1, 2, 3 (53)
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The conjugate mass transfer problem is formulated with the additivity rule. The

additivity rule states that the overall resistance to mass transfer in the system is the

sum of two resistances. The resistance is related to the inverse of the mass transfer

coefficients. We hence define the 2 Sherwood numbers as:

• internal Sherwood number Shin

Shin =
N∗s,∂P d

∗
p

D∗s(Cs − Cv)
=
k∗ind

∗
p

D∗s
(54)

where k∗in is the internal mass transfer coefficient.

• external Sherwood number Sh

Sh =
N∗f,∂P d

∗
p

D∗f (C∞ − Cs)
=
k∗fd
∗
p

D∗f
(55)

We now introduce the total mass transfer coefficient k̃∗ and write the additivity rule

as:
1

k̃∗
=

1

k∗in
+

1

k∗f
(56)

(56) can be reformulated in terms of Sherwood numbers. Introducing the reactive (i.e.

total) Sherwood number S̃h =
k̃∗d∗p
D∗f

, we get:

1

S̃h
=

1

γShin
+

1

Sh
(57)

Finally, using the continuity of the flux density at ∂P , we can obtain Shin as a function

of Sh, inert this in (57) and after some simple algebra get the following expression:

S̃h = Sh
C∞ − Cs
C∞ − Cv

= Sh
∆Cs

∆Cv
(58)

with ∆Cs = C∞−Cv and ∆Cv = C∞−Cs. Finally, using (50) and (52), we establish

the expression of the reactive Sherwood number S̃h of each sphere as:

S̃hj(Re, Sc, φ, γ) =
Shj(Re, Sc)

Shj(Re, Sc)

2γ

[
tanh(φ)

φ− tanh(φ)
− 3

φ2

]
+ 1

j = 1, 2, 3 (59)
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Shj(Re, Sc) in the above expression is the individual Sherwood number for a sphere j

in the convective-diffusive problem (without reaction) where the particle internal con-

centration is uniform, and the mass transfer is only controlled by the Reynolds number

Re and the Schmidt number Sc. The ‘reactive’ Sherwood number, S̃hj(Re, Sc, φ, γ),

also depends on the Damkohler number Da = φ2 and the diffusion coefficient ratio γ,

in addition to the first two dimensionless numbers for convection-diffusion. (59) can

further be written in an explicit form:

1

S̃hj
=

1

2γ

[
tanh(φ)

φ− tanh(φ)
− 3

φ2

]
+

1

Shj
(60)

(60) has two asymptotic limits. When the reaction rate is very fast, i.e., the Thiele

modulus φ → ∞, the term
[ tanh(φ)
φ−tanh(φ) − 3

φ2

]
→ 0 and so S̃hj → Shj . In this case

the system is limited by diffusion, i.e., controlled by mass transfer. When the reaction

rate is very slow, i.e. the Thiele modulus φ → 0, the term
[ tanh(φ)
φ−tanh(φ) − 3

φ2

]
→ ∞,

S̃hj → 0. In this case the system is controlled by internal reaction kinetics.

5.2. Model validation

We examine here how the model performs in the 3-aligned sphere configuration by

spanning ranges of the 4 governing dimensionless numbers Re, Sc, γ and φ2, as well

as assorted interparticle distances. The mean surface concentration Cs, given by (50),

is the main unknown in the problem. Therefore, we primarily assess the validity of

our proposed model by comparing Cs as computed by our DLM/FD-SIM numerical

method to Cs as predicted by our model.

We vary the dimensionless parameters in the ranges: Re ∈ [0, 100], φ2 ∈ [0,∞],

Sc ∈ [0.5, 10] and γ ∈ [10−2, 102] and select the following three different geometric

configurations:

A. d12 = 4 and d23 = 2,

B. d12 = 2 and d23 = 4,

C. d12 = 2 and d23 = 2.

We first examine the influence of the geometric configuration. To do this, we set

Re = 50, γ = 0.1, and Sc = 1 and keep them constant while we vary the Damkohler
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number φ2 in the range [0, 400] and compare our model to our numerical results for the

three geometric configurations A, B, and C in FIG. 20, FIG. 21 and FIG. 22, respec-

tively. Overall, Cs as predicted by the model show a good agreement with computed

Cs for the three geometric cases. Essentially, the error increases with the increase of

φ2 as the internal concentration boundary layer thickness decreases with the increase

of φ2 as 1/φ. However, the inter-particle distances have literally no impact on the

magnitude of the differences between model predictions and numerical results. Even

in configuration C where the 3 particles are the closest to each other, no significant

difference is visible between FIG. 22, and FIGS. 20 and 21. For the 3 configurations,

the system is still dilute enough such that the first sphere behaves similarly, and quite

close to a single isolated sphere.

From now on, we consider the geometric configuration A in the rest of this sub-

section. We fix Re = 50, Sc = 1, and φ2 = 40 and we vary the diffusion ratio

γ in the range [10−2, 102]. Once again, we compute numerically the mean surface

concentration Cs and we compare it to the value predicted by the model for the three

particles in FIG. 23. Results show again a good agreement between model predictions

and numerical results.

Finally, we examine the influence of Sc. To do this, we fix Re = 50, γ = 0.1, and

φ2 = 40 and we vary Sc ∈ [0.5, 10], which consequently varies Pe ∈ [25, 500]. Com-

puted Cs is compared to Cs predicted by the model for the three particles in FIG. 24.

The agreement is deemed to be satisfactory.

We now plot Cs as a function of Re ∈ [0, 100] and φ2 ∈ [0,∞] per particle for

γ = 0.1 and Sc = 1. Computed values and values predicted by the model are compared

in FIG. 25 for the first sphere, FIG. 26 for the second sphere and FIG. 27 for the third

sphere. We also compare the mean volume concentration Cv in FIG. 28 for the first

sphere, FIG. 29 for the second sphere and FIG. 30 for the third sphere. In general, the

agreement between computed values and values predicted by the model is once again

deemed to be satisfactory. The Damkohler number φ2 has the most significant impact

on the observed difference between computed values and model predictions. For φ2 <

200, the agreement in very satisfactory for all spheres and the observed difference is

very small. Then for larger φ2 > 200, the observed difference, though still limited,
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increases with φ2. The maximum difference of the order of 10% is attained for φ2 =

4000. As pointed out in the above, this trend is related to the internal concentration

boundary layer that decreases with the increase of the Thiele modulus as 1/φ. The

same comments apply to the plots of the reactive Sherwood numbers given by (59) for

the 3 spheres in FIG. 32 for the first sphere, FIG. 33 for the second sphere and FIG. 34

for the third sphere.

The observed differences between computed values of Cs, Cv or S̃h and the values

of the same quantities predicted by the model have 3 sources:

1. approximations and assumptions adopted to derive the model,

2. not fully converged in space computed solutions for large values of φ2,

3. correlations proposed for the coefficients βj by Ramachandran et al. (1989) and

established by a least square regression with a maximum error of 2.5% for β1,

4.6% for β2 and 10% for β3.

In the case of the 3 aligned spheres, the equivalent solid volume fraction around the

spheres is low and the system is representative of a dilute regime. The interactions

between the 3 spherical obstacles, both in terms of momentum and mass transfer, are

limited, though far from negligible. As a result, the chemical concentration does not

vary much along each sphere surface as shown in FIG. 31. Consequently, the approxi-

mations (51)-(52) to calculate the mean volume concentration, i.e., assuming that C is

a function of the radial coordinate only and Cs(θ, φ) does not vary too much around

Cs, are valid. The model is assumed to perform well in this flow configuration and

this range of dimensionless parameters. So we believe that source 1 does not contri-

bution much to the observed differences. The increase of the observed differences as

a function of the Damkolher number φ2 is certainly a sign that for high φ2, Np = 70

points per diameter might not yet be enough to yield fully spatially converged com-

puted solutions as the internal boundary layer is getting thinner with the increase of φ2,

as suggested by FIG. 7 and FIG. 14. Source 2 is thereby a significant contribution to the

observed differences at high φ2. Finally, the magnitude of the error on the coefficients

βj as reported by Ramachandran et al. (1989) is of the same order as the observed
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differences, so we cannot rule out the contribution of source 3. Overall, the model per-

forms well. The difference between computed values and model predictions increases

with the Damkohler number φ but is capped to 10% in the range of dimensionless

parameters investigated.

6. Discussion and perspectives

We presented a numerical framework that couples a Sharp Interface Method (SIM)

for the convection-diffusion-reaction conservation equation of the chemical species to

a DLM/FD method to solve the incompressible Navier-Stokes equations with fixed ob-

stacles. We presented multiple validation tests of growing complexity to ensure that

our implementation of our DLM/FD-SIM method supplies computed solution with the

expected accuracy. We have shown through various convergence tests, comparisons to

analytical solutions, comparisons to correlations and comparisons to body-fitted sim-

ulations that our numerical tool indeed supplies reliable computed solutions. We then

used our numerical tool to examine the problem of convective-diffusive mass transfer

in the flow past 3 reactive spheres.

The primary objective of the work was to show that a reactive Sherwood number

correlation can be constructed in a dilute system on the basis on a simple external-

internal coupling and the additivity rule, in a similar way as we constructed a reactive

Sherwood number correlation for a single isolated sphere in Sulaiman et al. (2018).

Model predictions show a satisfactory agreement with our DLM/FD-SIM numerical

results for wide ranges of the 4 governing parameters in the problem of convective-

diffusive mass transfer in the flow past 3 reactive spheres. We consider this problem

as an adequate toy model of a dilute particle-laden system experiencing hydrodynamic

interactions. The strength of our reactive Sherwood number correlation is that it is

based on any existing non-reactive Sherwood number correlation. Here we used the

non-reactive Sherwood number correlations of Feng and Michaelides (2000) and Ra-

machandran et al. (1989), but this is not mandatory.

The ultimate objective is to extend the suggested reactive Sherwood number cor-

relation to denser regime and eventually to use it in larger scale numerical models as
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Euler/Lagrange and Euler/Euler modelling of reactive particle-laden flows. This can

be achieved in 2 complementary ways. The former way involves investigating pairwise

interactions in terms of reactive mass transfer. A model system would be the flow past

2 spheres not aligned with the flow and then investigate not only the effect of the inter-

particle distance but also of the relative angular position of the 2 particles, in a similar

way to Akiki et al. (2017) for momentum transfer. The latter way involves computing

the flow through a random array of reactive spheres up to a high solid volume frac-

tion αs close to packing, as illustrated in FIG. 35. This would require large computing

resources to span all parameter ranges but is feasible as our code is fully parallel and

can run on large supercomputers with a satisfactory scalability. This work is currently

under way.

Appendices
A. Derivation of the diffusive Sherwood number in a finite spherical domain

We consider a sphere of radius r∗p at concentration C = Cs|r∗=r∗p at the center of a

spherical domain of radius r∗ = r∗∞ filled with a quiescent fluid of diffusion coefficient

D∗f . At steady state, the concentration distribution C in the fluid is governed by:

D∗f∇2C = 0 (61)

(61) can easily be integrated with the two Dirichlet boundary conditions C = Cs|r∗=r∗p
and C = C∞|r∗=r∗∞ . The solution, i.e., the concentration profile C(r∗) in the fluid

phase, reads:

C(r∗) =
r∗pr
∗
∞

(r∗p − r∗∞)r∗
(C∞ − Cs) +

Csr
∗
p − C∞r∗∞
r∗p − r∗∞

(62)

The mass transfer coefficient k∗ can be calculated through the calculation of the

total flux through the sphere surface as:

k∗ =
D∗f

4πr∗2p (C∞ − Cs)

∫ 2π

0

∫ +π/2

−π/2

∂C(r∗)

∂r∗

∣∣∣∣
r∗=r∗p

r∗2p sin(θ)dφdθ (63)
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Substituting (62) into (63), the diffusive Sherwood number in a finite spherical

domain Sh =
k∗d∗p
D∗f

can be written as:

Sh =
k∗d∗p
D∗f

=
2r∗
∞

r∗
∞
− r∗p

(64)

For an infinite domain, i.e., when r∗∞ → ∞, Sh → 2. For a spherical domain of

finite size, Sh is larger than 2 and its value can be calculated by (64).
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Figure 1: Steady state diffusion from a single particle in a finite domain

Lx = Ly = Lz = 10: spatial convergence of the error on the Sherwood

number computed with SIM compared to the analytical solution.
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Figure 2: Steady state diffusion from a single particle in a gradient of

concentration: comparison of average Sherwood number computed with

SIM to the analytical solution and to the previous study of Shao et al.

(2012). Case 1, r∗p/L
∗
x = 0.2: continuous black line corresponds to

the analytical solution, open triangles correspond to the results of Shao

et al. (2012), and disks correspond to our simulation results. Case 2,

r∗p/L
∗
x = 0.125: dashed black line corresponds to the analytical solution,

open squares correspond to the results of Shao et al. (2012) and triangles

correspond to our simulation results.
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Figure 3: Steady state diffusion from a single particle in a gradient

of concentration: spatial convergence of the relative error on the av-

erage Sherwood number computed with SIM. Triangles correspond to

r∗p/L
∗
x = 0.1, disks correspond to r∗p/L

∗
x = 0.125, and squares corre-

spond r∗p/L
∗
x = 0.2.
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Figure 4: Steady state diffusion from a single particle in a gradient of

concentration: concentration iso-countours for r∗p/L
∗
x = 0.2 and γ = 0.1

in a 3D view (left) and in a xz vertical cut plane containing the sphere

center (right).
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Figure 5: Internal diffusion and chemical reaction in a single particle:

comparison of concentration profiles computed with SIM to analytical

profiles for different Thiele moduli. Lines correspond to analytical solu-

tions and markers correspond to our simulation results. Red line and red

circles for φ2 = 1.6. Black doted line and open triangles for φ2 = 160.

Blue line and open squares for φ2 = 16000.
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(a) φ2 = 1.6

(b) φ2 = 160

(c) φ2 = 16000

Figure 6: Internal diffusion and chemical reaction in a single particle:

concentration iso-surfaces inside the particle for different reaction rates.
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Figure 7: Internal diffusion and chemical reaction in a single particle:

comparison of effectiveness factor computed with VOF and SIM as a

function of φ. Red color corresponds to VOF obtained with Np = 40

and green color corresponds to SIM obtained with Np = 10. Blue color

corresponds to SIM with Np = 80 and black line corresponds to the

analytical solution.
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Figure 8: Internal diffusion and chemical reaction in a single particle:

relative error on the effectiveness factor as a function of φ for Np = 80.

Red color corresponds to VOF and blue color corresponds to SIM.
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Figure 9: Internal diffusion and chemical reaction in a single particle:

spatial convergence of relative error on effectiveness factor computed

with SIM and VOF for various Thiele moduli: φ = 1.2, blue triangles

with SIM, φ = 12, red disks with SIM, φ = 20, black filled pentagons

with SIM, black open pentagons with VOF, φ = 120, green squares with

SIM.
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Figure 10: Geometric configuration for the problem of steady state

convection-diffusion in the flow past a single sphere with or without re-

action inside the particle: view in a xz cut plane containing the sphere

center (Simulation domain is 5d∗p × 5d∗p × 15d∗p).
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Figure 11: Steady state convection-diffusion in the flow past a single

sphere: comparison of computed Sherwood number with literature cor-

relations at Sc = 1. Our SIM results are represented by circles while

correlations are as follows: red line for Feng and Michaelides (2000),

black line for Ranz et al. (1952), green-doted line for Whitaker (1972)

and blue-dashed line for Clift et al. (2005).
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Figure 12: Comparison of the finest meshes used by JADIM (boundary

fitted) and SIM (cartesian grid).
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Figure 13: Steady state convection-diffusion in the flow past a single

reactive sphere: comparison of the mean surface concentration Cs at

φ = 2, γ = 10 and Sc = 1 as a function of Re, computed with SIM

(red squares), computed with JADIM (black disks), and predicted by the

model of Sulaiman et al. (2018) (black line).
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Figure 14: Steady state convection-diffusion in the flow past a sin-

gle reactive sphere: comparison of mean surface concentration Cs at

Re = 150, γ = 10 and Sc = 1 as a function of φ, computed with SIM

(red squares), computed with JADIM (black disks), and predicted by the

model of Sulaiman et al. (2018) (black line).
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Figure 15: Steady state convection-diffusion in the flow past a single re-

active sphere: comparison of concentration profile in the direction nor-

mal to the flow (θ = 90), at Re = 10, γ = 10 and Sc = 1 for two

Thiele moduli: φ = 4, red color, and φ = 10, blue color. Continuous

line correspond to JADIM and markers correspond to SIM.
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Figure 16: Steady state convection-diffusion in the flow past a single re-

active sphere: comparison of concentration profile in the direction nor-

mal to the flow (θ = 90), for φ = 4, γ = 10 and Sc = 1 and two

Reynolds numbers: Re = 100, red color, and Re = 10, blue color.

Continuous lines correspond to JADIM and markers correspond to SIM.
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Figure 17: Steady state convection-diffusion in the flow past a single

reactive sphere: spatial convergence of relative error on mean surface

concentration Cs computed with SIM at Re = 150, φ2 = 40, and γ =

0.1 for Sc = 0.1, red disks, Sc = 1, black triangles, and Sc = 10, black

open circles.
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Figure 18: Steady state convection-diffusion in the flow past a single

reactive sphere: spatial convergence of relative error on mean surface

concentration Cs computed with SIM at Re = 150, Sc = 10, and γ =

0.1 for φ2 = 40, red disks, φ2 = 200, blue triangles, φ2 = 400, green

squares, and φ2 = 4000, black open circles.
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Figure 19: Geometric configuration for the problem of steady state

convection-diffusion in the flow past 3 aligned reactive spheres: view

in a xz cut plane containing the sphere center (Simulation domain is

5d∗p × 5d∗p × 15d∗p).
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Figure 20: Steady state convection-diffusion in the flow past 3 aligned

reactive spheres: mean surface concentration Cs as a function of φ2 in

configuration A at Re = 50, Sc = 1 and γ = 0.1. Lines correspond

to model and markers correspond to SIM. Red color corresponds to first

sphere, blue color to second sphere and green color corresponds to third

sphere.
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Figure 21: Steady state convection-diffusion in the flow past 3 aligned

reactive spheres: mean surface concentration Cs as a function of φ2 in

configuration B at Re = 50, Sc = 1 and γ = 0.1. Lines correspond

to model and markers correspond to SIM. Red color corresponds to first

sphere, blue color to second sphere and green color corresponds to third

sphere.
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Figure 22: Steady state convection-diffusion in the flow past 3 aligned

reactive spheres: mean surface concentration Cs as a function of φ2 in

configuration C at Re = 50, Sc = 1 and γ = 0.1. Lines correspond

to model and markers correspond to SIM. Red color corresponds to first

sphere, blue color to second sphere and green color corresponds to third

sphere.
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Figure 23: Steady state convection-diffusion in the flow past 3 aligned

reactive spheres: mean surface concentration Cs as a function of γ in

configuration A at Re = 50, Sc = 1 and φ2 = 40. Lines correspond

to model and markers correspond to SIM. Red color corresponds to first

sphere, blue color to second sphere and green color corresponds to third

sphere.
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Figure 24: Steady state convection-diffusion in the flow past 3 aligned

reactive spheres: mean surface concentration Cs as a function of Sc in

configuration A at φ2 = 40, Re = 50 and γ = 0.1. Lines correspond

to model and markers correspond to SIM. Red color corresponds to first

sphere, blue color to second sphere and green color corresponds to third

sphere.
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Figure 25: Steady state convection-diffusion in the flow past 3 aligned

reactive spheres: mean surface concentration Cs of sphere 1 as a func-

tion of Re in configuration A at γ = 0.1 and Sc = 1. Lines correspond

to model and markers correspond to numerical simulation. Red color

corresponds to φ2 = 40, blue color to φ2 = 200 and green color corre-

sponds to φ2 = 4000.
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Figure 26: Steady state convection-diffusion in the flow past 3 aligned

reactive spheres: mean surface concentration Cs of sphere 2 as a func-

tion of Re in configuration A at γ = 0.1 and Sc = 1. Lines correspond

to model and markers correspond to numerical simulation. Red color

corresponds to φ2 = 40, blue color to φ2 = 200 and green color corre-

sponds to φ2 = 4000.
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Figure 27: Steady state convection-diffusion in the flow past 3 aligned

reactive spheres: mean surface concentration Cs of sphere 3 as a func-

tion of Re in configuration A at γ = 0.1 and Sc = 1. Lines correspond

to model and markers correspond to numerical simulation. Red color

corresponds to φ2 = 40, blue color to φ2 = 200 and green color corre-

sponds to φ2 = 4000.
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Figure 28: Steady state convection-diffusion in the flow past 3 aligned

reactive spheres: mean volume concentration Cv of sphere 1 as a func-

tion of Re in configuration A at γ = 0.1 and Sc = 1. Lines correspond

to model and markers correspond to numerical simulation. Red color

corresponds to φ2 = 40, blue color to φ2 = 200 and green color corre-

sponds to φ2 = 4000.
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Figure 29: Steady state convection-diffusion in the flow past 3 aligned

reactive spheres: mean volume concentration Cv of sphere 2 as a func-

tion of Re in configuration A at γ = 0.1 and Sc = 1. Lines correspond

to model and markers correspond to numerical simulation. Red color

corresponds to φ2 = 40, blue color to φ2 = 200 and green color corre-

sponds to φ2 = 4000.
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Figure 30: Steady state convection-diffusion in the flow past 3 aligned

reactive spheres: mean volume concentration Cv of sphere 3 as a func-

tion of Re in configuration A at γ = 0.1 and Sc = 1. Lines correspond

to model and markers correspond to numerical simulation. Red color

corresponds to φ2 = 40, blue color to φ2 = 200 and green color corre-

sponds to φ2 = 4000.
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(a) φ2 = 40

(b) φ2 = 200

(c) φ2 =∞

Figure 31: Steady state convection-diffusion in the flow past 3 aligned

reactive spheres: concentration iso-surfaces in configuration A at Re =

50, γ = 0.1, Sc = 1 and different φ2.
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Figure 32: Steady state convection-diffusion in the flow past 3 aligned

reactive spheres: reactive Sherwood number S̃h of sphere 1 as a function

of Re in configuration A at γ = 0.1 and Sc = 1. Lines correspond

to model and markers correspond to numerical simulation. Red color

corresponds to φ2 = 40, blue color to φ2 = 200, green color correspond

to φ2 = 4000 and black color corresponds to φ2 =∞.
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Figure 33: Steady state convection-diffusion in the flow past 3 aligned

reactive spheres: reactive Sherwood number S̃h of sphere 2 as a function

of Re in configuration A at γ = 0.1 and Sc = 1. Lines correspond

to model and markers correspond to numerical simulation. Red color

corresponds to φ2 = 40, blue color to φ2 = 200, green color corresponds

to φ2 = 4000 and black color corresponds to φ2 =∞.
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Figure 34: Steady state convection-diffusion in the flow past 3 aligned

reactive spheres: reactive Sherwood number S̃h of sphere 3 as a function

of Re in configuration A at γ = 0.1 and Sc = 1. Lines correspond

to model and markers correspond to numerical simulation. Red color

corresponds to φ2 = 40, blue color to φ2 = 200, green color corresponds

to φ2 = 4000 and black color corresponds to φ2 =∞.
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(a) φ2 = 40 (b) φ2 = 200 (c) φ2 =∞

Figure 35: Concentration iso-surfaces in the the flow through a random

array of spheres at Re = 25, γ = 0.1, Sc = 1, αs = 0.5 and different

Damkohler numbers φ2.
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