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Résumé— Identification des formes géologiques en utilisant les données de productienL'identification

des formes géologiques de chenaux, de failles ou de limites de réservoirs a partir des données de tests de puits oL
d'historiques de production constitue un probléeme délicat en ingénierie de réservoirs pétroliers. Des modeéles
analytiques d'interprétation de tests de puits sont utilisés dans des cas simples. Dans les cas multiphasiques ou de
géométries complexes, il est nécessaire de recourir a des modeles de simulation d'écoulement de fluides.

Dans cet article, nous nous proposons de résoudre un probléeme d'inversion de forme associé a un modéle d'écou-
lement diphasique eau-huile et notre objectif est d'identifier la forme et la position de corps géologiques dans un
réservoir d'hydrocarbures par calage des données de production.

En identification de forme, deux probléemes se posent généralement: le choix de la représentation des formes
géomeétriques et le calcul des sensibilités. Pour calculer les gradients, des techniques de perturbation de maillages
existent dans des domaines ou les éléments finis sont d'utilisation courante. Dans un contexte de maillages struc-
turés fréquemment utilisés en simulation de réservoirs, ces techniques de perturbation de maillages sont difficile-
ment applicables.

La méthode proposée est basée sur le calcul des sensibilités sur le probleme continu par rapport a la géométrie
des différents corps géologiques. Cette géométrie est définie par une triangulation. Les parametres de calage sont
les nceuds de la triangulation, et les gradients de la fonction objectif sont calculés par rapport aux déplacements
de ces noeuds.

Un algorithme d'optimisation couplé avec un simulateur d'écoulements polyphasiques a été développé. Il permet
la prise en compte de contraintes géomeétriques sur les parameétres de calage et assure la régularité des formes
obtenues. Plusieurs applications de type académique ont été effectuées. Ce qui conduit, a l'aide de calages des
données de production, a une meilleure caractérisation de la forme, de la taille et de la position des corps sédi-
mentaires, plus particulierement des limites de réservoirs, de la position et de la taille des failles ainsi que de
I'épaisseur et de la largeur des chenaux.

Mots-clés : écoulements multiphasiques, historique de production, inversion de forme, probleme adjoint, gradient, optimisation.

Abstract— Identification of Geological Forms Using Production Data- Identifying the geological forms of
channels, faults and boundaries of reservoirs on the basis of well-tests or production history is a tricky problem
for oil reservoir engineering. Analytical interpretation models of well-tests are used in simple cases. In multi
phase cases or those which present a certain degree of geometrical complexity, it becomes necessary to use fluid
flow simulation models.

In this article, we intend to solve a problem of form inversion associated with a two-phase oil-water flow model

in which the aim is to identify the form and the position of geological bodies in a hydrocarbon reservoir with
production data match.

In identifying the form, two problems generally occur: the choice of representation of geometrical forms and the
calculation of sensitivities. To calculate the gradients, mesh perturbation techniques exist in fields where finite
elements are commonly used. In the context of structured meshes often used in reservoir simulation, the applica-
tion of such mesh perturbation techniques is difficult.
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The method suggested is based on the calculation of sensitivities on the continuous problem in relation to the
geometry of the various geological bodies. Such a geometry is defined through triangulation. The adjustment
parameters are the triangulation nodes and the gradients of the objective function are calculated in relation to
the displacement of such nodes.
An optimization algorithm coupled with a polyphase flow simulator has been developed. It takes into account the
geometrical constraints of the adjustment parameters and guarantees the regularity of the forms obtained.
Several laboratory applications have been carried out. With the help of calibrated production data this leads to
a better characterization of the form, the size and the position of the sedimentary bodies in particular: reservoir
boundaries, position and size of the faults and thickness and width of the channels.
Keywords: multiphase flows, production history, shape inversion, adjoint problem, gradient, optimization.
NOTATIONS INDICES
P pressure in the reservoir w water phase index
P initial reservoir pressure o0 oil phase index
S water saturation in the reservoir i geometrical node index.
initial water saturation
u,v solutions of the adjoint problem
K permeability tensor INTRODUCTION
K horizontal permeability In order to characterize hydrocarbon reservoirs, calibration
K, vertical permeability techniques of well-tests and production history have been
(0} porosity in the reservoir developed over the last few years. Most of these are based on
@ porosity at initial pressure effective gradient methods for solving a problem of
Ca rock reservoir compressibility invers;liqn..The.,- problem of so!ving an ?nversion boils doyvn to
u viscosity the minimization of an objective function and leads to history
. . matching. In such methods, numerical simulations are very
kr relative permeability
_ often used.
P q§n5|ty Most of the procedures merely enable identification of
q injected mass volume flow or mass volume oy ohysical parameters or characterization of wells. The
flow produced at well case of geometrical parameters such as the position of a fault,
t time variable reservoir boundaries, breadth, thickness or channel forms has
(x,y,2) pointin three dimensional space been treated in recent publications [1]. Such studies have
Q spatial field representing the reservoir been concentrated on the definition of geological bodies
Q, region of measurements@h using mathematical functions describing the permeability and
Xom characteristic function o2, thg porosity o_f th(_—:~ rock_reservow. The sensitivities of the
r forms of geological bodies objective f_u_nctlon in rt_elanon to the petrophysmal parameters
v domain perturbation (permeability, porosity) or _geometrl_cal paramete_rs are
p
‘ calculated through derivation of direct state discrete
DV DVtransposed : .
) e ) equations [2-6] or through a so-called adjoint state method
] objective function [7]. The traditional gradient methods can then be used, but
N number of geometrical parameters generalizing such solutions to complex geological models
NP number of production wells in the reservoir seems difficult.
I production well index The aim of research in the work presented here is to
NT number of measurements made on wells develop a shape inversion method which enables the
n index of an instant of measurements identification of geometrical parameters which describe
dj(N)-V derivative of in relation to” in the directiorV geological bodie; using numer'ical simulation flows and
div operator divergence match of production datg. For '[hIS,. two geparate meshes are
grad operator gradient used, one supposedlly' flxgd for simulating flows, and Fhe
o other subject to modifications to represent the geological
ab Euclidian scalar product of vectasnd b forms. The approach described in this article has been first
L%(Q,) space of functions that squares can be integrateghplied to single phase flows and then adapted to well-test

onQ,, interpretation [8]. The encouraging results obtained have
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contributed to extending its application to polyphase flows te- choice of the representation of geological forms and
match of production history. gradient calculation;

After describing the method, some examples of applica= and lastly, use of gradients in an appropriate optimization
tions in two-phase water-oil reservoirs are presented. Thealgorithm.
first two models are synthetic cases. The third is a more
realistic, heterogeneous geological model comprising several
geological layers and a significant group of faults. The DERIVATIVE IN RELATION TO THE GEOMETRY

efficiency of the method is clearly illustrated through these

examples. Finally, a description of sensitivity calculations iéa‘l,lnthet tt:alf[:u[atlgnstr:hat follow are formal and the authors
given in the Appendix. will not try to justify them.

2.1 Direct State Equations

1 PROPOSED METHOD
Let Q be a spatial field of two or three dimensions

The traditional interpretation of wells production data on th&epresenting a hydrocarbon reservoir of regular bourBary
basis of analytical solutions only allows the identification ofand (OT) a time interval covering the production history
average values of parameters characterizing simple geomepgriod. The evolution of the pressiref the fluids and the
hydrocarbon reservoirs. For more complex geologicasaturatiorSin water corresponding to an oil water two-phase
models and heterogeneous media, it becomes necessanyflew without capillary pressure in the reservoir is governed
use numerical flow simulation models. by the partial derivatives equations:

In order to achieve efficiency, the optimization or shape 0 kr (S 0 q
inversion process requires that the gradients of an objecti\—(cp(P)S)—divEK - grac(P+p gz)D——W =0 (1)
function be calculated in relation to the controlled o M "goe
geometrical parameters. There are at least two ways of (x,y,2) (D, t] 0T]
calculating such gradients. and:

The first consists of using a finite element formulation and

w w

non structured meshes to represent complex geologic og(P) . 0 kr (S) O

bodies. In such a case, the response sensitivities to the we 5t vH<Tgrad(P+pwgz)E

evaluated through the objective function, in relation to the " )
perturbations of mesh nodes can be calculated by deriving 0 kr (9 0 g

discrete equations. Such a solution requires the use of meshes —diviK —° gra({P +p gz)D——W -——=
that can be perturbed, such as the finite elements for O M, °'oep, P,
simulating flows in the reservoir [9, 10]. However, such vy, 2D, t 0T

meshes are not often used in the petroleum sector.

With the classic fluid flow simulation using regular g k(9 y .
meshes, the methods of gradient calculation of the objective! X, r
function on discrete equations are difficult to apply,D H grad(P+prz)+K“—grad(P+pogz)E
particularly when the control parameters are not directly W ©
involved in the equations of the model. Moreover, the ®)
discrete problem cannot be differentiated in relation to xy,2)Z, t 0T
perturbations of geological forms when the interface betwee‘,ghd the following initial conditions:

two geological bodies crosses a mesh.
P(xYy,z0)=P,(X,y,2z) and ¥&,y,z0)=S (X, y,2) (4
How does one proceed with structured meshes? The (.Y, 20) =P, (x.y. 2) Hy.z0) =5k y.2) )

solution proposed is to determine the expression of the (x.y,2) [X2
sensitivities of the objective function on the continuous The boundary conditions (3) express the fact that the
problem using mathematical theory and then calculatexternal boundary of the reservairis impermeable to the
gradients through the discrete form of the expressiofiow; this means that the total fluid flux across this boundary

with the boundary conditions:

h=0

obtained. is nil in the course of time.
The main stages of the method may thus be summed up as
under: 2.2 The Objective Function

— determination of sensitivities of the objective function on
the continuous model on the basis of flow equations and dthe forms of the geological bodies contained in the reservoir
called adjoint state equations; Q are noted’, and these constitute the unknowns of the
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problem to be solved. The aim is to minimize a functipnal where:

which depends oh and whose expression is defined by: - Q. =Q x(0,T);
oy AT _om|j2 r __m|2 — A=¢ (1-cP,) et B= @, c; cy is the rock compressibility
(= 2_[0 BH Pr P H LZ(QM)"Lqu(Sr) q, Lz(Qm)dt andgq, the porosity of the rock at reference pressijre
— Vs a function called perturbation of the fielt] in fact
+}J-T0 qr(s )_qm 2 g ®) of r this means that (V) is used to determine a new
2Jo o\ T °lzfa ) position ofT";

—P- and§ are the pressure and the water saturation in the
P™, gm and g", represent respectively the pressure figd corresponding to the position of the interface
measurements as well as those of water and oil rates at th%| andv, are called the adjoint state [7, 12]. These are the
production wellsPy, S, of, anddf, represent respectively the solutlons to the evolution problem defined by the following
pressure, the water saturation and the rates of water and Oihartial derivatives equations:
produced during the time interval {0, corresponding to the

positionl". Q_is a part ofQ that is identified with the _sfp-(p)iu —@ (p)l

reunion of the establishment zones of production wel3.in

It is here that the measurements are carriedpyando are Okr (S) kr (90 O

positive constants which serve as the weighting coefficients. —div%L K gradv% )
B, y and o are determined in such a way that the terms H, Hy O

evaluated in the cost function are homogeneous.

: ) L O kr (9 O
Optimal shape depends exclusively on the criterion —divK gradug+B(P. -PM)x . =0
chosen. The objective function chosen enables taking into o M, O r On

account certain physical phenomena at the production wells

(arrival of water, fall in pressure, closing of a well, etc.). (x,y, )0, to ]

2.3 Derivative of the Objective Function P )@ iﬂu 01 0aq, L1 oq O
. _ _ o p 9S p, 0S p_osp
By using the transport technique and the Lagrangian method w
introduced in particular by Céa [11], it is possible to show Ok okr (s)
that the derivative of the objective functipim relation tol” +O— grad(P +p QZ)DUJfadU
is given by: oH,
(0 oS oP_ 0S. O DK okr (S)
d j(l‘)B/:I +BS —-+BP. —ru_ DdlvV +O— grad(P+p QZ)DEgradv
r Q, at r at ot
8)
Ok ok (S) 0 (
oP K
+J- EBrV Edivv +0— grad(P+p gz)DQl;radv
oH ot T o,
kr
+J’ WK grad(P +p gz)@radu divv . " oq,, (S )D
Q. uw r w r +E/( ( ) w) as H
krW .
_IQTLT(K DV + DV K)grad(Pl_ +pwgz)E_L]radu|_ 0 ( )D
w +|:b‘(q0r (Sr) 0 ) D =0
©) H s gor

kr
+ —2Kgrad|P +p gz|gradv_divV
IQT M, (F w ) r (x,y,2)X, tOo0 ,T]

verifying the boundary conditions:

J' WKgrad(P +p gz)Dﬁgradv divv u=0: (x.y,2)E , t0 ,T] ©)
and:
kr .
—I —W(K DV + DVK)grad(F’r +p gz)@]radvr O k(9 O Ok (S) kr (S0 O
M, v K 0K gradvgh=0

gradupjCh+ o
o M, 0 % M, Mo O
(10)

kr
- (K DV + DVK grad(P +p gz)l]gradv
(x,y,2) &, tJ0 ,T]

o
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and at the final momeritthe condition here below: The perturbatiolV is thus equal to:
ux,y,z,T)=0 and &, y,z, T)=0;X, vy, 22 (11) N
. . . . _ v=YaV 12)
The integration of this adjoint problem is done Lo

retrogressively. It may be noted that the direct state equations

system describing the two-phase water oil flow comprisethie o; are the coefficients to be determined &hthe total

two non linear partial derivatives Equations (1) and (2) of theumber of nodes or control parameters. Searching for the
unknownsP andS The partial derivatives Equations (7) andvalues ofa;, is then done through an appropriate optimization
(8) of the unknownsi andv relative to the adjoint problem algorithm, for example the algorithm of the conjugated
are linear. A complete description of the calculation of thgradient of Polak-Ribiére [13] with constraints.

derivative of is given in the Appendix. The discrete form of the objective functiois given by:
1 NP NT 2
j(r== ZB(P (Wt )-Pm(w .t ))
3 CALCULATION OF GRADIENTS 2645 Vv I'n
1 NP NT
3.1 Representation of Geological Forms +5 V(quv (VV| ,tn) - q\';(V\/I ,tn)) (13)
=1 n=1
Once the expression of the derivative of the objective NP NT
function on the continuous problem has been determined (6), L1 (qr (W t ) - qm(W t ))
the calculation of the gradients can now be carried out. 2645 AN ol 1°n

As specified earlier, the main aim is to develop a shape
inversion technique enabling the characterization of oivhereNPis the number of production wells in the reservoir,
reservoirs using classic fluid flow simulation. ConsequentlyYV the position of a production well @2, NT the number of
the first thing to take into account is to consider gneasurements carried out at wells §nd moment of such
representation of forms of geological bodies which aréneasurements.
independent of the fixed Cartesian mesh used for flow The expression (6) then allows to calculate for each index
calculations. i the value of d(I")-V;, which determine the gradientjcfhe

The formr™ of a geological body is represented by a finitefunctionalj not being a priori convex, it would be interesting
elements mesh with either two or three dimensions. Th& |00k for local minima of.
control parameters are the Cartesian coordinates of the nodes
of such triangulation. Each geological body is associated
with a set of petro physical parameters: a permeability tensfr

and a porosity value or a porosity multiplier coefficient. TheAfter the calculation of the gradients of the objective function

fner;?1eezb'¥%§?dsp?\/roi?'g n,:ﬁgi perr]tar'gt'gg go ;h?eSnirr:ienSIa{!ﬁ relation to the perturbations of the nodes representing
€ 0 CSErvolr are gene y de ng e?ological forms, such gradients can be introduced in a
meshes located within the body and through homogenization. . = " .
inimization process.
of the meshes cut by the surface of the body. In case of tﬁne f the fi he identificati ¢ ical
presence of faults, a change of linkage transmissibility in a|l ,MOSt,O the time, the icenti |cat|0|j1 ofa geometrica orm
rings into play a set of constraints that can be either

the meshes cut by a fault may be carried out. : X .
geometrical or esthetic. Such stresses are often written as
inequalities limiting the control parameter values. Thus the

3.2 Choice of Perturbation V problem of real optimization boils down to looking for an
optimal formI™ which minimizes the objective functign

The following step consists of defining a perturbationf  \yhile respecting the given geometrical constraints. These are

the domain Qwhose role is to deform the geometry. ItSdefined, for example, in accordance with the dimensions of

support is limited to the neighbourhoodlaf The control  the reservoir and the data pertaining to well positions.
parameters to be identified being the positions on the tno hrocess of optimization developed is summarized

Carte_5|an coordmates of the tnan_gulajuon n_odeE_,dbr schematically in the following paragraphs. Each time the

each _mdex nodg a local perturbatioV, is defined in the optimization process is repeated, the descent of the

following way: objective functionj is obtained in a direction projected on

— the support of Vis determined by the triangulation the constraints space. Such a projection ensures at each ste

elements of with a common node the generation of a new set of parameters respecting the

-V, varies from 1 at the index notl® O in its support and is  stresses and is very efficient in the case of linear constraints

nil everywhere else. [14, 15].

THE OPTIMIZATION PROCESS
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The optimization process schema used to change theéhen the Euclidean norm of the gradient is small, i.e. less

geometry of the model is thus the following: than a given positive number (a local minimum is found).

— Construction of a structured (or non structured) gridded The stages which have been followed in the different
model of the reservoir. applications are:

— Representation of the geometry of geological bodies Construction of a mesh grid model containing a geological
through triangulation defining a 2D or 3D surface. body in reference, to which we give a value of porosity and

— Attribution of petro physical data,(K) to each mesh. a map of permeability or multiplicative coefficients of

— Attribution of petro physical parameters to volume bodies transmissivity for the faults.
and modification of transmissivities for faults. — Calculate the pressures and the rates of water and oil in the

— Beginning of the optimization loop; wells corresponding to this reference that are used as

« updating of maps apandK by the projection of volume  measurements. Only in the third example, there is in
bodies or modification of transmissivities for the faults;  addition a random noise on the output data.

« resolution of the direct problem (1)-(4): flow simulation, — Definition of an initial geometry by the modification of the
calculation of pressure and saturation maps; shape of the geological body in reference; the launching of

« resolution of the adjoint problem (7)-(11); the optimization process so as to recover measurements by

« calculation of gradient for perturbations of mesh nodes Minimization of the cost function.
of geological bodies using direct and adjoint state
solutions (see Section 3); 5.2 Example 1: Determination of the Position
« determination of the direction of displacement of nodes  of a Fault
with the help of a gradient algorithm: conjugated
gradient algorithm of Polak-Ribiére with constraints; ~ The first model shown is a single-layer closed 2D reservoir.
« modification of the geometry of the model by It is a heterogeneous reservoir with dimensions 1250 m
displacement of nodes: new positions of geologicak 750 m, and having a watertight non permeable fault whose
bodies: reference position is given in the Figure 1. The Cartesian
« test of stoppage criteria and verification of conditions of"€Sh grid of the reservoir consists of 25 x 15 meshes of 50m
optimality. side and the ropf of the reservoir is situated at a dgpth of
— End of the optimization loop. 4700 m. Numerically, the introduction of the fault in the
reservoir is done by multiplying with adequate coefficients
(equal to 0 here) the transmissivities of the connection in all
5 NUMERICAL RESULTS the meshes cut by the fault. The position of the fault in the
reservoir is shown by a 2D line segment (or by a 3D plan)
Some results obtained with the method are presented in tifignnecting 2 nodes whose Cartesian coordinates represent
section. They are purely academic, but are repre-sentativetbe parameters of the calibration. For well-tests, the required
certain simple realistic models; real cases still beingeometrical parameters of the fault are its distance from the
extremely difficult to study. well, its length and its inclination.

The first two examples are synthetic models and the third
is the result of a geological model which uses static data
(geometrical and petrophysical). The history production wa:
generated using a numerical simulator. In these example
the objective is to identify the form and the position of the
geological bodies (faults, channels) with the help of digital
simulations and by production history matching. For this,
the optimization algorithm used (the projected gradien

simulator Sarip [16].

5.1 Elaborated Schema for the Different Tests

Starting from an initial position of the nodes describing the
discrete form of". The minimization process determines at
each iteration a new position bfreducing the objective

function while respecting the constraints. This process stops
when one can no longer reduce the objective function or

Figure 1

Example 1: reference position of the fault.
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There are two wells drilled into the reservoir, one for
production and one for injection. Each well has a radius o
7.85cm. A production history is simulated over a period of

2000 days. The cumulative rate of flow of oil and water is ! f
fixed at 300 ré/d in the production well. The flow of water o L

injected into the reservoir is equal to 15%dhrin the injection | IE

well. The measurements of the pressure and the rates l. .rl' ]

water and oil relative to the reference fault are taken ever e i

20 days during a period of production spread out ove
2000 days.

The map of absolute permeability of the reservoir is
obtained by log-normal simulation. The variance is equal to .
and the average permeability is 50 mD. The initial porosity ir
the reservoir is equal to 0.3. The general characteristics &

the model are summarized in Table 1. Figure 2
Example 1: successive positions of the fault.
TABLE 1
Example 1: parameters of the fault model 120
Parameters Values — ¢
100 - ¢ Initial guess
Number of horizontal meshes 25x 15 —— Solution
Horizontal dimensions 1250 m x 750 m < 804 + Reference position
Thickness of the reservoir 10m E 60.
Depth of the reservoir 4700 m )
Reference depth 4700 m § 40
Rock compressibility 5-e-4 bar %
Water compressibility 4.36e-4 bat = 201
Oil compressibility 1-e-4 bar :
Density of water 1 kg/n? ° 0 500 1000 1500 2000
Density of oil 0.625 kg/mi Time (d)
Viscosity of water 0.31 Pa's
Viscosity of oil 0.34 Pa:s Figure 3
Initial pressure 300 bar Example 1: water rates match at the production well.
Initial saturation of water 0.3
Number of injection wells 1
Injection rate (water) 150%d 5.3 Example 2: Identification of the Limits
Number of production wells 1 of a Channel
Production rate (water and oil) 300 n¥#/d

This model, like the earlier one, is a closed single-layer
Results 2D reservoir with a thickness of 10 m. It is designed in the
form of a channel oriented along & axis and its reference
The reference fault has a length of 360 m and is situated apasition is indicated in Figure 4. The dimensions of this
distance of 650 m from the production well and at 250 meservoir are 2500 m x 1500 m with a thickness of 10 m. The
from the injection well. The initial fault in the beginning of roof of the reservoir is located at a depth of 4700 m. The
inversion is 350 m long. It is situated at 230 m from theCartesian mesh grid of the model consists of 25 x 15 meshes
production well and at 640 m from the injection well. Theof side 100 m. The channel is described by 13 nodes (6 for
optimal position of the fault was found at 700 m from theone of the limits and 7 for the other) and their Cartesian
production well and at 200 m of the injection well, and itcoordinates represent the calibration parameters.
measures 352 m. Eleven wells are drilled in the channel and each one
Figure 2 represents from right to left, the successivlas a radius of 7.85cm. They are distributed as follows:
positions of the fault during the process of optimization5 production wells (Prod. 1 to Prod. 5) and 6 injection wells
Figure 3 shows the graph of water rates of the productiofinj. 1 to Inj. 6). Their positions are indicated in the Figure 4.
well for the initial position of the fault and the setting The simulated production history consists in recovering oil
obtained after 6 iterations. and water from the production wells by injecting water
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through the injection wells over a period of 1000 days. IResults

each production well the cumulative rate of water and oil . ) _ »

produced is fixed at 300#d and the quantity of water Permeability maps corresponding to the initial position of the

produced is limited to 150%d. The injected water rate is channel and to the solution obtained after inversion are

equal to 150 Rid in each injection well. Measurements 0findic'ated _in Figures 5 and 7. It may be noteq Fhat the position

pressure and rates of water and oil produced relating to tR@tained is very close to the reference position and enables

reference channel were done every 20 days over a simulatiBftaining a satisfactory match of the measurements generated

period of 1000 days. from the reference over all the production wells. In the
aggregate, the volume of the channel is recovered.

Figure 4

Example 2: reference channel permeability map. Figure 5

Example 2: initial guess permeability map.
The absolute permeability is equal to 500 mD along the
Ox and Oy axes inside the channel and 0.0001 mD outside
the channel. When the banks of the channel cut a mesh, the
permeability in the mesh is calculated using the Cardwell 149

Parsons homogenization formulas [17]. The initial porosity is o Initial auess r
uniform and has a value of 0.3 in the reservoir. The gener: o Solutign
characteristics of the model are summarized in the Table 2. 12°1 | ; Reference position <><><><>
) &
E &
TABLE 2 £ 304 <><><>
Q
Example 2: parameters of the channel model © ooooo
o]
Parameters Values g 404
Number of horizontal meshes 25x15
Horizontal dimensions 2500 m x 1500 m PV y
Thickness of the reservoir 10m 0 i ' '
1c € 0 200 400 600 800 1000
Depth of the reservoir 4700 m Time (d)
Reference depth 4700 m
Rock compressibility 5.e-4 bar Figure 6
Water compressibility 4-36e-4 bat )
Oil compressibility 1.e-4 bart Example 2: water rates match at well Prod. 2.
Density of water 1 kg/m?
Density of oil 0.625 kg/rf Figure 8 shows the evolution of the objective function
Viscosity of water 0.31Pas during the 10 iterations of the optimization process. Figures 6
Viscosity of ol 0.34 Pas nd 9 represent r tively the graphs of water and pr r
Initial pressure 400 bar a eprese espep ely the grapns o ae _a p.e.SSU €
Initial saturation of water 03 output at the production well Prod. 2 for the initial position
Number of injection wells 6 and the setting obtained. Well Prod. 2 is characteristic of the
Injection rate (water) 300 #day behaviour of production wells for the various positions of the
Number of production wells 5 channel. In particular, one can observe that the moments of
Production rate (water and oil) 300 nt/day massive inflow of water to the well are correctly restored.
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Figure 7

Example 2: inversion permeability map obtained.
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Example 2: evolution of the objective function.
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Example 2: pressure match at well Prod. 2.

5.4 Example 3: Identification of Several Faults

This third example is based on a more realistic geological
model. The geometry and petrophysics of the reservoir are
generated with the help of a Heresim 3D, an integrated tool
for geo-statistical modelling developed at lthgtitut frangais

du pétrole (IFP).

5.4.1 Construction of the Geological Model

The first stage was to construct the structure of the model.
Twenty exploratory wells are used in the model. These wells
contain lithofacies information and the reference depth is
obtained through a log analysis of the wells. This analysis
enabled to define two distinct units in the reservoir. High
resolution models of these two units are generated separately
with Heresim 3D from the proportion of the graphs
representing the vertical distribution of the various
lithofacies. The grid used consists of 132 x 76 meshes of
25m side. The thickness of the fine meshes is 3m. The
average thickness of the highest unit is 40 m and that of the
lowest one is 30 m.

Each unit contains three lithofacies with different
petrophysical characteristics. The porosity and permeability
values in each facies follow respectively gaussian and log
normal laws. Figure 10 shows the vertical proportion graphs
used to simulate the distributions of the lithofacies in the low
and high units of the reservoir. Figure 11 represents a cross-
section of the reservoir after combining the two units.

5.4.2 Simulation of the Reservoir Model

Only the western half of the geological model was
considered to construct a model of reservoir simulation. This
part contains sixteen drilling wells. The roof of the reservoir
is located at an average depth of 3600 m and its total average
thickness is equal to 70 m. The fine meshes are grouped
horizontally according to a 4 x4 size to form a simulation
grid of 21x19 meshes of side 100 m. Vertically, the
geological layers of simulation are 3 in number in the lower
part and 2 in the upper part. The permeability values are
brought to scale with Heresim 3D by numerical resolution of
a steady-state equation in each mesh.

Several large faults have been identified in the model and
only two have been taken into consideration for the inversion
(Fig. 12). These two faults are supposed to be impervious,
vertical and of negligible thickness. From the positions of the
two faults proposed after a seismic interpretation and
geological studies, the following production diagram was
adopted:

— The 10 wells—Prod. 1 to Prod. 10—drilled on the roof of

This has a certain importance because these moments enabtlae reservoir are considered as production wells and pass
determining at what moment should be carried out the possiblethrough the reservoir over 2 or 3 layers, from top to

closure of a given well, if its productivity becomes too low.

bottom.
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Example 2: the two vertical proportions curves of the model.
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Example 2: cross section of the reservoir.
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Example 3: initial positions of the 2 faults and water
saturation map at 3000 days (middle layer).
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Figure 13

Example 3: pressure match at well Prod. 1.

250 4
240+
o Initial guess
—— Solution N

230 + Measurement

220 T T T T T

0 500 1000 1500 2000 2500 3000
Time (d)
Figure 14

Example 3: oil rates match at production well Prod. 6.
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— The wells Inj. 1 to Inj. 6 are considered as injection wellthree years were considered as being the measurements
and pass through the reservoir over 3 layers, from bottoifhese have been integrated in the objective function.
to top. The general simulation data and the petrophysical The calibration parameters are the Cartesian coordinates
characteristics of the lithofacies are summarized in thef the four nodes defining the position and the length of the

Tables 3 and 4.

TABLE 3

Example 3: simulation parameters of the 3D model

Parameters Values
Number of horizontal meshes 21x19x5
Horizontal dimensions 2100 m x 1900 m
Thickness of the reservoir 70 m
Depth of the reservoir 3630 m
Reference depth 3600 m
Reference pressure 300 bar
Water-oil contact 3690 m
Rock compressibility 5.e-4 bar
Water compressibility 4.36e-4 bartt
Oil compressibility 1.e-4 bar'
Density of water 1.05 kg/n?
Density of oil 0.625 kg/m
Viscosity of water 0.381 Pa.s
Viscosity of oil 0.715 Pa.s
Initial pressure 300 bar
Irreducible water saturation 0.15
Residual oil saturation 0.20
k. maximum-water phase 0.65
k. maximum-oil phase 1
Number of injection wells 6
Injection rate (water) 300 n¥/d
Number of production wells 10
Production rate (water and oil) 250 n¥/d

5.4.3 Inversion Data

two faults. These are supposed to be vertical and pass
through the entire reservoir from top to bottom.

5.4.4 Results

Figure 12 represents the initial positions of the faults and the
water saturation maps in the middle layer of the reservoir.
Figure 15 shows the fault positions obtained after five

iterations of the inversion process. For these positions, the
objective function was divided by 100 and a proper match

was obtained on the pressure and rates. Figures 13 and 1
correspond to the setting of the pressure data at the mos
significant wells (Prod. 1 and Prod.5). Figures 14 and 17
show the match of the oil rate data at the wells Prod. 6 and
Prod. 7 on which the impact of the position of the faults was

the greatest. It may be noted that these settings were carriet
out on the first three years of the production history over a
total period of a little more than 8 years (3000 days). The
structure of the model and the location of the wells are shown
on the Figure 18. The results thus obtained through numerical
simulation proved to be satisfactory.

CONCLUSION

The work presented in this article is based on the use and
development of several efficient tools adapted to the form
inversion. The principal originality of this work lies in the
calculation of the gradient. The introduction of an adjoint
problem and the use of methods of mathematical analysis
enable obtaining the expression of the derivative of the
objective function with respect to the geometry on the
continuous problem in an analytical manner.

Production history was generated with a numerical simulator The representation of the geological forms is independent
of two-phase flows for a reference position corresponding tof the Cartesian grid of the reservoir used for the simulation
the 2 faults. A random noise was then added on the pressafeflows. Which enables to work with structured grids. The
data as well as on those of oil and water rates on ttalculation of the gradient is afterwards done and effective
10 production wells. Then, the production data of the firsbptimization algorithms can be used.

TABLE 4

Example 3: porosity and permeability values for each lithofacies

Units Lower unit Upper unit
Facies Facies 1 Facies 2 Facies 3 Facies 4 Facies 5 Facies 6
Average porosity 0.25 0.12 0.19 0.2 0.11 0.25
Standard deviation 0 3 3.5 0 3 3.5
K, average (mD) 100 9 350 100 7 235
Standard deviation 0 20 400 0 10 300
KJ/K, 1 0.1 0.2 0.2 0.5 1
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Example 3: optimum positions of the 2 faults after 5 iterations.
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Example 3: pressure match at well Prod. 5.
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Example 3: oil rates match

at production well Prod. 7.

Prod. 10

Figure 18

Example 3: initial water saturation in the 3D simulation
model and well positions.

507.201
== 462.756
= 418.312
373.868
329.424
281.98
210.536
196.092
151.618
107.204
62.76

Figure 19

Example 3: up-scaled(, permeability in the model - Top
layer and two cross sections.

The technique developed was applied in the first instance
to mono-phase flows. The encouraging results obtained
motivated its generalization to two-phase flows as illustrated
in this article. It was coupled with a polyphase flow
simulator. The optimization process developed enables to
identify 2D and 3D geological forms in heterogeneous
media. The geometrical forms obtained are regular.

The academic applications presented concern synthetic
cases and a more realistic geological model for history
matching of production data. They demonstrate perfectly
the efficiency of the method and its validity for several
types of geological bodies. Real cases are much more
difficult to solve, for example the case of fissured
reservoirs. The advantage of the method concerns
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particularly the identification of the roof of a reservoir or of 8
position of large faults which influence the flows. The tools
developed open the way to more and more complex 2D
and 3D applications. Their contribution may be important o
in the characterization of reservoirs. They may be
particularly useful to define the location of new drilling
wells and to reduce the uncertainties on the geometry P
the reservoir.

11
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APPENDIX P, andS, are the pressure and the water saturation in
the “perturbed” reservoir in the presence of a two-phase
oil-water flow without any capillary pressure, andS,
belong to a functional space which we formally denote
asH(A).

Here, we show the calculation of the derivative of the The variational formulation of the problem (14)-(18)
objective functionj relative tol'. We note that actual is obtained by assuming thRl, and S, are sufficiently
unknown in this problem of optimization is To simplify ~ regular, next by multiplying the Equation (14) by a test
and to use the formalism introduced by Céa in [11], wher@inctionu, [0 H(A) and the Equation (15) by a test function
one can find the justification for the calculation which will v, O H(A), and by integrating oveéx x (0, T). Hence, we find
follow, we will actually determine the derivative of the that by taking the boundary conditions (16) and using the
objective function relative to the domah The techniques classic Green formula [19]:

used wi_II pe the transp_ort method [18]_ called the E,A Py, Sy U) =0, [, O H(A) (19)
parametrization of the domain and the Lagrangian method.

The idea involves replacing the search for the optimal
form I contained in a reference domain by the search for with:
a transformatiofr such that ), implying F(I'), is optimal.

For this, we consider the internal transformations of the¢E (/\,P S u ):J' i(cp(P )S )u
domainQ of form F=1+V. These transformations belong to AR Inem) ot TR ATATA
an appropriate functional space which we formally denote kr

Calculation of the Derivative Relative
to the Geometry

E,A, Py, Su V) =0, 0V, OH(A) (20)

w ' qW
asU [12]. V denotes a perturbation of the dom&nThe +J'AX(O’T) Ku—grad(PA +p, gz) (grad u —?UA
support ofV is defined only in the neighbourhood laf We w w
denoteN =F(Q) = Q +V (Q) the perturbed domain, dits 0 K 0 (21)
borderl ‘C!y‘vzl) =F (X! Y, Z)! ((! Y, Z) mv QT =Qx (0,1—) +I El(iwgraj(P +p gz')[":hu
andx; =X x(0,T). LS CUIS TS A Pw IR A
Let P, andS, be the solutions of the partial derivatives
equations: and:
O« (s O o9(P,)
0 , w o 9 = A
E((P(PA)SA) _dlvék u( 2 gad (P, +p, gz)g_p 0[RS Joon "ot %
(14) O ke \O
x,y,z)I\, tO[0,T] +I/\><(0,T) [K—grad(PA P, gz)g@rad A
and: (22)
9 P/\) O K (S/\) O +I E}( <, grad(PA +p, gz')g@rad A
—divik X grad(P +p gz')D AOT) g My 0
ot E uw A w E
0 (s ) 0 Under conditions of sufficient regularity, we assume that
_divEK o\ A grad(P +p gz)m_ql_i:o P., S U andve OH(Q) = {zoF, zO H(A), F O U} are
E M A To E p, P, such that:
(15) Pp=PzOF™, § = §oF?
(x,y,z)I\, tO[0,T] Uy = UzoF % v, = v oF !
verifying the boundary conditions: For this, it is sufficient to show that the application:
0k, ke 0 fOHQ) - foF!OHN), A=F(Q)
H(u—grad(PA P, gz) * Ku—grad(PA P, gz)g[h- 0 is an isomorphism as soonfag in an appropriate spate
N ° (16) The transport method suggests that the transported
x,y,z) DA , tO[0,T]  solutionsP. = P,oF and§: = S,oF verify the variational
and the initial conditions: equations after changing of the variables:
P, (X,Y,Z,0)=P(X,y,2); X,y,Z) I\ (17) Ey(F, Pe, S u) =0, [WOHQ) (23)

S\(X,y,Z,0)=§(X,y,2); (X,y,Z) I\ (18) EZ(F, P, § V) =0, WOH(Q) (24)
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with:
E (F,P S ,u):E (/\,P S u )
1 F F 1 N AN A

|:| aS 0P aS q U
I +BS —F+BP. —F - YHuJF
20 6t F at F ot P, O

+I S(kitDF'lgrad(P +p gz)gﬂDF‘lgraduJF
QTD UW F w 0

a krWt orad O
+LQTH<“— DF ~gr (PF+prz)EmuJF

and:

EZ(F,PF,SF,V):EZ(A,PA,SA,V) J’ B—VJF
[ ok pps recl(P, + z)DmDF‘1 radvIF
_[QTD . orad|F. +p,, 97)0 ¢

g kr 0
+I K— tDF'lgrad(P +p gz)gﬂDF‘lgravaF
Q F o
Ll UO [l
whereDF is the jacobian of, DF'is the inverse oDF and
= |detDF | the determinant dbF; A= ¢ (1 —c5P,) and
B=¢@c
We are thus taken into the domain of refereficen
which the objective function can be definedbhy:

N

“(a,)

F(Q)
1 T F(Q) ( )_ m| 2 2
+2L y|a;, SF(Q) q; HLZ(Qm) dt (25)
1 T F(Q) ( )_ mil 2

+2L ola; SF(Q) a, LZ(Qm) dt

Here onwards we have to find the transformafiamhich
minimize the “new definition’] of the objective function. j

i) =iF@=2[ 8P, -P"

dej(F).V of j relative toF in the directionV. To calculate the
first derivative off, we use the Lagrangian method [11].

The Lagrangian method involves defining the following
function onU x H(Q)*

L(F,P,S,u,v) §(F) + El (F,P,S,u) +|§2 (F,P,S)y (26)

Ou and vO H(Q)

in which the direct state equations in the variational form
(23) and (24) appear as constraints.

Since,P. and§. are the solutions of the Equations (23)
and (24), we precisely have:

L(F,P..SuV) =] (F), Ou andvOH(Q)  (27)

It is possible to obtain an expression for the total
derivative of the function which is nothing but a partial
derivative of the Lagrangian. Thus, havingand v as
constants and taking into consideration (27), we have:

dj

dj j(F+ev)-j(F ) _du
dF

€ T dF
aL oL Ok DaLEBS D

“oF Vo Hor VH asFor VH

The functions uand v can be chosen such that the
o aLDP. O LS L -
derivatives — ~—F [V~and — —~=Vcan be elimi-
apHor " H asHor T E

nated. These introduce us to the following equations called
the associated adjoint state equations.

(F)v =lim e (F s uv)v

li
€

Z:;(FP s, uv)l]p 0,0y 0H(Q)  (28)
a;(FP S..uv)® =0, 06 TH(Q) (29)

The functionss andv are dependent on the parametrization
of the domainQ. Proceeding from the Equations (27) and
(28) for F =1—these are the ones relevant to us—and by

For this, one must determine the directional derivativ@bserving thaP =P, =P.and S= §=§, we get:

. ou O

k.. @Scp( P 5 @ (P)f —dlsz

D ke (S) k(90 0

gradu%w+ @de%K m +K )DKgradvEﬂ?a(P Pm)meEqJ

+f, (8 (Puy)(xy.2T) = (S0 (PJuw)(x v, 2.0)) + [, ((@(Pwb)(x.y,2T) ~(¢'(P)h)(x.y,2,0)) (30)

EDkrS o d

Uk ( kr (
+I %K gradugm%¢+‘[' %7

O kr (9

O
gradv%fm@w +IXT %KTgraqu Hjhu =0, OY OH(Q)

w
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and:

U 0 0 og OO Ok okr (S O
J’ o )@—i& gt B 1%, + [ﬁ - )grad(P+p gz)@radum
QTQ ot P, S P 0S p 0SQ o w 0

O oq (s )¢ O Ok ok
r M w\ I r K r ({ )
+_IQT é{/(qw(sl') qw) 0S Qm¢ +IQT Ej(qo (SI' o as @ gra P+p 9z D@rad\lq)
31
Ok okr (S) (31)
N grad(P+p QZ)mradvcb +, (eP)ud)(x.y.2T) ~ (@(P)ud)(xy.2.0))
Ok okr (S) 0
+[. w ¢grad(P+p gz) hu=0, 06 OH(Q)
T w Yorg
wherey . is the characteristic function d@_ the region in  the boundary conditions:
the domain where the measurements were carried out, in
' u=0; (x,y,zxx , tgjo, 34
other words in the production wells. and: .y 2k2 [0.7] (34)
Next, by making a right choice of functiogsand¢, we '
formally deduce that = u- andv = v;. verify the problem of 1 | (g) 0 Ok (9 k(90 0
evolution defined by the following equations with partial [Kwigraduuljw%w— DK gradv%m (0
derivatives: o H, O H., Hy O
(35)
ou_ v LS ke (9)0 x,y,3E , tO[0, T
_&"(P)E_(p(P)E —dive— [Kgrao\/% _ _ y 5.3 10.7]
H, o and at the instarit with the conditions as follows:
O kr ( 9 (32) ux,y,z, T)=0 andx,y,z, T)=0;X,y,z) (R  (36)
—dIVEK gradug+ B(P Pm)X =0 We thus have the result which follows: o= P and
Hu " S= § solutions of the variational direct state Equations (23)
(x,y,z) @, tO[0,T] and (24) and fou=u. andv=v, solutions of the adjoint
state Equations (28) and (29), the derivativgrefative toF
( )au 1 0q 01 oqg 109 0 in the directiorV is given by:
- P ——— —W%yu-— Wy —_ 0O
o p 0S P. 0S p 0S[]
" ;J:(F)W—Z:;(FP S v, )V (37)
Ok okr (S) 0
O grad(P+p gz)%@radu If we consider the applicatior® F 0 U — JF and6:
FOU -!DF? we can show that they are of the cl@ss
Ok okr (S) for F in an adequate spatkeand that their derivatives are:
O grad(P+p gz)D@radv P
B a—F(F)w:‘DF—l ‘DV 'DF (38)
Ok okr (S O (33)
+0— grad(P+p gz) [gradv and:
[j'lo 00 t (39)
= (F)IV=DF : Dv:tr[ DF. DV]
E/(qr (s )_qm)aquv(sr)m
H r w] dS a(f?m 'DF, is the co-matrix of DFand is defined by the relation
DF 'DF_ = (detDF)I; tr is the trace operator.
U " 6qg Sr)D Taking into consideration the formulas (38) and (39), and
+Gaqo (Sr)—qo) 3s a(Q” =0 by making the hypothesis that the perturbatibis null
onQ,_, the region where the source terms relative to the wells
(x,y,2) X2, tO[O,T] are situated, we have:



PF Edoaet al/ldentification of Geological Forms Using Production Data 21

P q E, oE
9 myy aL(F P..S..U_ v )w:d—J(F)w —2(Fr.su)ve—2(Fr sy v
dF oF dF oF oF PR VE
BS a =00 DF :DV i DF DV
= —F +
“l %‘\ a "B B o Ja EB Yef]
I(rw t -1t t -1 -1 I(rw t -1 -1t t -
_IQ Ku— DF™ 'DV 'DF gra({PF +pwgz)EDF gradu_ JF —J’Q Ku— DF grad(PF +pwgz)EDF DV 'DF ]graduF JF
T w T w
+ KﬂtDF‘l rad P. +p gz|'DF *gradu_DF :DV - Kﬁ‘DF-1 'DV 'DF *grad P. +p gz|'DF *gradv_JF
LT m gradP_+p g gradu_DF : _[QT " gradP_+p g gradv_
kr 1 1 1 kr 1 1
—J'Q Kp—" 'DF 'DV 'DF - grad(PF +p0gz)EDF’ gradv_JF +J’Q Ku—w 'DF~ grad(PF +pwgz)l‘:DF’ gradv_DF : DV
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with: A=¢P(1- P, and B = ¢fc,. the total derivative of relative toQ (or I') for every

We note the following fundamental result [11]: the partialPerturbationV of the domain. Finally, given that-P= P,
derivative ofj relative toF at the poinf = coincides with &= S, Y- = u, and y = v, we get:
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