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Résumé — Identification des formes géologiques en utilisant les données de production — L'identification
des formes géologiques de chenaux, de failles ou de limites de réservoirs à partir des données de tests de puits ou
d'historiques de production constitue un problème délicat en ingénierie de réservoirs pétroliers. Des modèles
analytiques d'interprétation de tests de puits sont utilisés dans des cas simples. Dans les cas multiphasiques ou de
géométries complexes, il est nécessaire de recourir à des modèles de simulation d'écoulement de fluides.

Dans cet article, nous nous proposons de résoudre un problème d'inversion de forme associé à un modèle d'écou-
lement diphasique eau-huile et notre objectif est d'identifier la forme et la position de corps géologiques dans un
réservoir d'hydrocarbures par calage des données de production.

En identification de forme, deux problèmes se posent généralement : le choix de la représentation des formes
géométriques et le calcul des sensibilités. Pour calculer les gradients, des techniques de perturbation de maillages
existent dans des domaines où les éléments finis sont d'utilisation courante. Dans un contexte de maillages struc-
turés fréquemment utilisés en simulation de réservoirs, ces techniques de perturbation de maillages sont difficile-
ment applicables.

La méthode proposée est basée sur le calcul des sensibilités sur le problème continu par rapport à la géométrie
des différents corps géologiques. Cette géométrie est définie par une triangulation. Les paramètres de calage sont
les nœuds de la triangulation, et les gradients de la fonction objectif sont calculés par rapport aux déplacements
de ces nœuds.

Un algorithme d'optimisation couplé avec un simulateur d'écoulements polyphasiques a été développé. Il permet
la prise en compte de contraintes géométriques sur les paramètres de calage et assure la régularité des formes
obtenues. Plusieurs applications de type académique ont été effectuées. Ce qui conduit, à l'aide de calages des
données de production, à une meilleure caractérisation de la forme, de la taille et de la position des corps sédi-
mentaires, plus particulièrement des limites de réservoirs, de la position et de la taille des failles ainsi que de
l'épaisseur et de la largeur des chenaux.
Mots-clés : écoulements multiphasiques, historique de production, inversion de forme, problème adjoint, gradient, optimisation.

Abstract — Identification of Geological Forms Using Production Data — Identifying the geological forms of
channels, faults and boundaries of reservoirs on the basis of well-tests or production history is a tricky problem
for oil reservoir engineering. Analytical interpretation models of well-tests are used in simple cases. In multi
phase cases or those which present a certain degree of geometrical complexity, it becomes necessary to use fluid
flow simulation models. 

In this article, we intend to solve a problem of form inversion associated with a two-phase oil-water flow model
in which the aim is to identify the form and the position of geological bodies in a hydrocarbon reservoir with
production data match. 

In identifying the form, two problems generally occur: the choice of representation of geometrical forms and the
calculation of sensitivities. To calculate the gradients, mesh perturbation techniques exist in fields where finite
elements are commonly used. In the context of structured meshes often used in reservoir simulation, the applica-
tion of such mesh perturbation techniques is difficult. 

http://ogst.ifp.fr/
http://www.ifp.fr/
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NOTATIONS

P pressure in the reservoir
P0 initial reservoir pressure
S water saturation in the reservoir
S0 initial water saturation
u,v solutions of the adjoint problem
K permeability tensor
Kh horizontal permeability
Kz vertical permeability
φ porosity in the reservoir
φ0 porosity at initial pressure
cR rock reservoir compressibility
µ viscosity
kr relative permeability
ρ density
q injected mass volume flow or mass volume

flow produced at well
t time variable
(x, y, z) point in three dimensional space
Ω spatial field representing the reservoir
Ωm region of measurements in Ω
χΩm characteristic function on Ωm

Γ forms of geological bodies
V domain perturbation
tDV DV transposed
j objective function
N number of geometrical parameters
NP number of production wells in the reservoir
l production well index
NT number of measurements made on wells
n index of an instant of measurements
dΓj(Γ)·V derivative ofj in relation to Γ in the direction V
div operator divergence
grad operator gradient
a·b Euclidian scalar product of vectors a and b
L2(Ωm) space of functions that squares can be integrated

on Ωm.

INDICES

w water phase index
o oil phase index
i geometrical node index.

INTRODUCTION

In order to characterize hydrocarbon reservoirs, calibration
techniques of well-tests and production history have been
developed over the last few years. Most of these are based on
effective gradient methods for solving a problem of
inversion. The problem of solving an inversion boils down to
the minimization of an objective function and leads to history
matching. In such methods, numerical simulations are very
often used. 

Most of the procedures merely enable identification of
petrophysical parameters or characterization of wells. The
case of geometrical parameters such as the position of a fault,
reservoir boundaries, breadth, thickness or channel forms has
been treated in recent publications [1]. Such studies have
been concentrated on the definition of geological bodies
using mathematical functions describing the permeability and
the porosity of the rock reservoir. The sensitivities of the
objective function in relation to the petrophysical parameters
(permeability, porosity) or geometrical parameters are
calculated through derivation of direct state discrete
equations [2-6] or through a so-called adjoint state method
[7]. The traditional gradient methods can then be used, but
generalizing such solutions to complex geological models
seems difficult. 

The aim of research in the work presented here is to
develop a shape inversion method which enables the
identification of geometrical parameters which describe
geological bodies using numerical simulation flows and
match of production data. For this, two separate meshes are
used, one supposedly fixed for simulating flows, and the
other subject to modifications to represent the geological
forms. The approach described in this article has been first
applied to single phase flows and then adapted to well-test
interpretation [8]. The encouraging results obtained have

6

The method suggested is based on the calculation of sensitivities on the continuous problem in relation to the
geometry of the various geological bodies. Such a geometry is defined through  triangulation. The adjustment
parameters are the triangulation nodes and the gradients of the objective function are calculated in relation to
the displacement of such nodes. 
An optimization algorithm coupled with a polyphase flow simulator has been developed. It takes into account the
geometrical constraints of the adjustment parameters and guarantees the regularity of the forms obtained.
Several laboratory applications have been carried out. With the help of calibrated production data this leads to
a better characterization of the form, the size and the position  of the sedimentary bodies in particular: reservoir
boundaries, position and size of the faults and thickness and width of the channels.
Keywords: multiphase flows, production history, shape inversion, adjoint problem, gradient, optimization.
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contributed to extending its application to polyphase flows to
match of production history. 

After describing the method, some examples of applica-
tions in two-phase water-oil reservoirs are presented. The
first two models are synthetic cases. The third is a more
realistic, heterogeneous geological model comprising several
geological layers and a significant group of faults. The
efficiency of the method is clearly illustrated through these
examples. Finally, a description of sensitivity calculations is
given in the Appendix. 

1 PROPOSED METHOD 

The traditional interpretation of wells production data on the
basis of analytical solutions only allows the identification of
average values of parameters characterizing simple geometry
hydrocarbon reservoirs. For more complex geological
models and heterogeneous media, it becomes necessary to
use numerical flow simulation models.

In order to achieve efficiency, the optimization or shape
inversion process  requires that the gradients of an objective
function be calculated in relation to the controlled
geometrical parameters. There are at least two ways of
calculating such gradients. 

The first consists of using a finite element formulation and
non structured meshes to represent complex geological
bodies. In such a case, the response sensitivities to the wells,
evaluated through the objective function, in relation to the
perturbations of mesh nodes can be calculated by deriving
discrete equations. Such a solution requires the use of meshes
that can be perturbed, such as the finite elements for
simulating flows in the reservoir [9, 10]. However, such
meshes are not often used in the petroleum sector. 

With the classic fluid flow simulation using regular
meshes, the methods of gradient calculation of the objective
function on discrete equations are difficult to apply,
particularly when the control parameters are not directly
involved in the equations of the model. Moreover, the
discrete problem cannot be differentiated in relation to
perturbations of geological forms when the interface between
two geological bodies crosses a mesh. 

How does one proceed with structured meshes? The
solution proposed is to determine the expression of the
sensitivities of the objective function on the continuous
problem using mathematical theory and then calculate
gradients through the discrete form of the expression
obtained. 

The main stages of the method may thus be summed up as
under:

– determination of sensitivities of the objective function on
the continuous model on the basis of flow equations and so
called adjoint state equations; 

– choice of the representation of geological forms and
gradient calculation; 

– and lastly, use of gradients in an appropriate optimization
algorithm. 

2 DERIVATIVE IN RELATION TO THE GEOMETRY

All the calculations that follow are formal and the authors
will not try to justify them. 

2.1 Direct State Equations

Let Ω be a spatial field of two or three dimensions
representing a hydrocarbon reservoir of regular boundary Σ
and (0,T) a time interval covering the production history
period. The evolution of the pressure P of the fluids and the
saturation S in water corresponding to an oil water two-phase
flow without capillary pressure in the reservoir is governed
by the partial derivatives equations:

(1)

(x, y, z) ∈ Ω, t ∈ [ 0, T]
and:

(2)

(x, y, z) ∈ Ω, t ∈ [ 0, T]
with the boundary conditions:

(3)

(x, y, z) ∈ Σ, t ∈ [ 0, T]

and the following initial conditions:
P (x, y, z,0) = P0 (x, y, z) and S(x, y, z,0) = S0 (x, y, z) (4)

(x, y, z) ∈ Ω

The boundary conditions (3) express the fact that the
external boundary of the reservoir Σ is impermeable to the
flow; this means that the total fluid flux across this boundary
is nil in the course of time. 

2.2 The Objective Function

The forms of the geological bodies contained in the reservoir
Ω are noted Γ, and these constitute the unknowns of the
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problem to be solved. The aim is to minimize a functional j
which depends on Γ and whose expression is defined by:

(5)

Pm, qm
w and qm

o represent respectively the pressure
measurements as well as those of water and oil rates at the
production wells. PΓ, SΓ, qΓ

w and qΓ
o represent respectively the

pressure, the water saturation and the rates of water and oil
produced during the time interval (0,T) corresponding to the
position Γ. Ωm is a part of Ω that is identified with the
reunion of the establishment zones of production wells in Ω.
It is here that the measurements are carried out. β, γand σ are
positive constants which serve as the weighting coefficients.
β, γ and σ are determined in such a way that the terms
evaluated in the cost function are homogeneous. 

Optimal shape depends exclusively on the criterion
chosen. The objective function chosen enables taking into
account certain physical phenomena at the production wells
(arrival of water, fall in pressure, closing of a well, etc.). 

2.3 Derivative of the Objective Function

By using the transport technique and the Lagrangian method
introduced in particular by Céa [11], it is possible to show
that the derivative of the objective function j in relation to Γ
is given by:

(6)

where:
– ΩT = Ω × (0,T);
– A= φ0 (1–cRP0) et B= φ0 cR; cR is the rock compressibility

and φ0 the porosity of the rock at reference pressure P0;
– V is a function called perturbation of the field Ω, in fact

of Γ; this means that V(Γ) is used to determine a new
position of Γ;

– PΓ and SΓ are the pressure and the water saturation in the
field corresponding to the position of the interface Γ;

– uΓ and vΓ are called the adjoint state [7, 12]. These are the
solutions to the evolution problem defined by the following
partial derivatives equations:

(7)

(x, y, z) ∈ Ω, t ∈ [0 , T]

(8)

(x, y, z) ∈ Ω, t ∈ [0 , T]

verifying the boundary conditions:

u = 0; (x, y, z) ∈ Σ , t ∈ [0 , T] (9)
and:

(10)

(x, y, z) ∈ Σ, t ∈ [0 , T]

K
kr S

u n
kr S kr S

K v n =w

w

w

w

o

o

( ) ( ) ( )

µ









 ⋅ +

µ
+

µ



















 ⋅grad grad 0

+ ( ) −( ) ( )











=σ
∂

∂
χq S q

q S

So o

m o

m

Γ
Γ

Γ
Γ

Ω
0

+ ( ) −( ) ( )











γ
∂

∂
χq S q

q S

Sw w

m w

m

Γ
Γ

Γ
Γ

Ω

+ +( )







 ⋅K kr S

S
P gz v

o

o

oµ

∂

∂
ρ

( )
grad grad

+ +( )







 ⋅K kr S

S
P gz v

w

w

wµ

∂

∂
ρ

( )
grad grad

+ +( )







 ⋅K kr S

S
P gz u

w

w

wµ

∂

∂
ρ

( )
grad grad

– ( )φ ∂
∂ ρ

∂

∂ ρ

∂

∂ ρ

∂

∂
P

u

t

q

S
u

q

S

q

S
v

w

w

w

w

o

o− − +










1 1 1

–
( )

(div gradK
kr S

u P – Pw

w

m

mµ









 + =β χ

Γ Ω
) 0

–
( ) ( )

div grad
kr S kr S

K vw

w

o

o
µ

+
µ





















– '( ) – ' ( )S P
u

t
P

v

t
φ ∂

∂
φ ∂

∂

–
kr

K DV + DV K P gz vo

o

t

o
T µ ( ) +( ) ⋅∫ grad grad

ΓΩ Γ
ρ

–
kr

K DV + DV K P gz vw

w

t

w
T µ ( ) +( ) ⋅∫ grad grad

ΓΩ Γ
ρ

+
µ

+( )







 ⋅∫

kr
K P gz v Vo

o
o

T

grad grad div
ΓΩ Γ

ρ

+
µ

+( ) ⋅∫
kr

K P gz v Vw

w
w

T

grad grad div
ΓΩ Γ

ρ

–
kr

K DV + DV K P gz uw

w

t

w
T µ ( ) +( ) ⋅∫ grad grad

ΓΩ Γ
ρ

+
µ

+( ) ⋅∫
kr

K P gz u Vw

w
w

T

grad grad div
ΓΩ Γ

ρ

+





∫ B
P

t
v V

T

∂

∂
Γ

ΓΩ
div

d div
Γ

Γ
Γ

Γ
Γ

Γ
ΓΩ

Γj V A
S

t
BS

P

t
BP

S

t
u V

T

( ) ⋅ = + +














∫

∂

∂

∂

∂

∂

∂

+ ( )∫ ( )
1

2 0

2

2
σ

T

o o

m

L
q S q t

m

Γ
Γ Ω

– d

j P P q S q t
T

m

L w w

m

L
m m

( ) – –Γ
Γ Ω

Γ
Γ Ω

= + ( )∫ ( ) ( )
1
2 0

2 2

2 2
β γ d

8



PF Edoa et al./Identification of Geological Forms Using Production Data

and at the final moment T the condition here below:

u (x, y, z, T) = 0  and  v (x, y, z, T) = 0; (x, y, z) ∈ Ω (11)

The integration of this adjoint problem is done
retrogressively. It may be noted that the direct state equations
system describing the two-phase water oil flow comprises
two non linear partial derivatives Equations (1) and (2) of the
unknowns P and S. The partial derivatives Equations (7) and
(8) of the unknowns u and v relative to the adjoint problem
are linear. A complete description of the calculation of the
derivative of j is given in the Appendix. 

3 CALCULATION OF GRADIENTS

3.1 Representation of Geological Forms

Once the expression of the derivative of the objective
function on the continuous problem has been determined (6),
the calculation of the gradients can now be carried out. 

As specified earlier, the main aim is to develop a shape
inversion technique enabling the characterization of oil
reservoirs using classic fluid flow simulation. Consequently,
the first thing to take into account is to consider a
representation of forms of geological bodies which are
independent of the fixed Cartesian mesh used for flow
calculations. 

The form Γ of a geological body is represented by a finite
elements mesh with either two or three dimensions. The
control parameters are the Cartesian coordinates of the nodes
of such triangulation. Each geological body is associated
with a set of petro physical parameters: a permeability tensor
and a porosity value or a porosity multiplier coefficient. The
permeability and porosity maps pertaining to the Cartesian
meshes of the reservoir are then generated by determining the
meshes located within the body and through homogenization
of the meshes cut by the surface of the body. In case of the
presence of faults, a change of linkage transmissibility in all
the meshes cut by a fault may be carried out. 

3.2 Choice of Perturbation V

The following step consists of defining a perturbation V of
the domain Ωwhose role is to deform the geometry. Its
support is limited to the neighbourhood of Γ. The control
parameters to be identified being the positions on the
Cartesian coordinates of the triangulation nodes of Γ, for
each index node i, a local perturbation Vi is defined in the
following way: 

– the support of Vi is determined by the triangulation
elements of Γ with a common node i;

– Vi varies from 1 at the index node i to 0 in its support and is
nil everywhere else. 

The perturbation V is thus equal to:

(12)

the αi are the coefficients to be determined and N the total
number of nodes or control parameters. Searching for the
values of αi, is then done through an appropriate optimization
algorithm, for example the algorithm of the conjugated
gradient of Polak-Ribière [13] with constraints. 

The discrete form of the objective function j is given by:

(13)

where NP is the number of production wells in the reservoir,
Wl the position of a production well inΩ, NT the number of
measurements carried out at wells and tn a moment of such
measurements.

The expression (6) then allows to calculate for each index
i the value of dΓj(Γ)·Vi, which determine the gradient of j The
functional j not being a priori convex, it would be interesting
to look for local minima of j. 

4 THE OPTIMIZATION PROCESS

After the calculation of the gradients of the objective function
in relation to the perturbations of the nodes representing
geological forms, such gradients can be introduced in a
minimization process. 

Most of the time, the identification of a geometrical form
brings into play a set of constraints that can be either
geometrical or esthetic. Such stresses are often written as
inequalities limiting the control parameter values. Thus the
problem of real optimization boils down to looking for an
optimal form Γ which minimizes the objective function j
while respecting the given geometrical constraints. These are
defined, for example, in accordance with the dimensions of
the reservoir and the data pertaining to well positions. 

The process of optimization developed is summarized
schematically in the following paragraphs. Each time the
optimization process is repeated, the descent of the
objective function j is obtained in a direction projected on
the constraints space. Such a projection ensures at each step
the generation of a new set of parameters respecting the
stresses and is very efficient in the case of linear constraints
[14, 15]. 
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The optimization process schema used to change the
geometry of the model is thus the following:
– Construction of a structured (or non structured) gridded

model of the reservoir.
– Representation of the geometry of geological bodies

through triangulation defining a 2D or 3D surface.
– Attribution of petro physical data (φ, K) to each mesh.
– Attribution of petro physical parameters to volume bodies

and modification of transmissivities for faults.
– Beginning of the optimization loop; 

• updating of maps of φand K by the projection of volume
bodies or modification of transmissivities for the faults;

• resolution of the direct problem (1)-(4): flow simulation,
calculation of pressure and saturation maps;

• resolution of the adjoint problem (7)-(11);
• calculation of gradient for perturbations of mesh nodes

of geological bodies using direct and adjoint state
solutions (see Section 3);

• determination of the direction of displacement of nodes
with the help of a gradient algorithm: conjugated
gradient algorithm of Polak-Ribière with constraints;

• modification of the geometry of the model by
displacement of nodes: new positions of geological
bodies;

• test of stoppage criteria and verification of conditions of
optimality.

– End of the optimization loop.

5 NUMERICAL RESULTS

Some results obtained with the method are presented in this
section. They are purely academic, but are repre-sentative of
certain simple realistic models; real cases still being
extremely difficult to study. 

The first two examples are synthetic models and the third
is the result of a geological model which uses static data
(geometrical and petrophysical). The history production was
generated using a numerical simulator. In these examples
the objective is to identify the form and the position of the
geological bodies (faults, channels) with the help of digital
simulations and by production history matching. For this,
the optimization algorithm used (the projected gradient
method) is coupled with a numerical multiphase flow
simulator Sarip [16]. 

5.1 Elaborated Schema for the Different Tests

Starting from an initial position of the nodes describing the
discrete form of Γ. The minimization process determines at
each iteration a new position of Γ reducing the objective
function while respecting the constraints. This process stops
when one can no longer reduce the objective function or

when the Euclidean norm of the gradient is small, i.e. less
than a given positive number (a local minimum is found).

The stages which have been followed in the different
applications are:
– Construction of a mesh grid model containing a geological

body in reference, to which we give a value of porosity and
a map of permeability or multiplicative coefficients of
transmissivity for the faults.

– Calculate the pressures and the rates of water and oil in the
wells corresponding to this reference that are used as
measurements. Only in the third example, there is in
addition a random noise on the output data.

– Definition of an initial geometry by the modification of the
shape of the geological body in reference; the launching of
the optimization process so as to recover measurements by
minimization of the cost function.

5.2 Example 1: Determination of the Position
of a Fault

The first model shown is a single-layer closed 2D reservoir.
It is a heterogeneous reservoir with dimensions 1250 m
x 750 m, and having a watertight non permeable fault whose
reference position is given in the Figure 1. The Cartesian
mesh grid of the reservoir consists of 25 x 15 meshes of 50 m
side and the roof of the reservoir is situated at a depth of
4700 m. Numerically, the introduction of the fault in the
reservoir is done by multiplying with adequate coefficients
(equal to 0 here) the transmissivities of the connection in all
the meshes cut by the fault. The position of the fault in the
reservoir is shown by a 2D line segment (or by a 3D plan)
connecting 2 nodes whose Cartesian coordinates represent
the parameters of the calibration. For well-tests, the required
geometrical parameters of the fault are its distance from the
well, its length and its inclination.

Figure 1

Example 1: reference position of the fault.

Prod.

Inj.

10
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There are two wells drilled into the reservoir, one for
production and one for injection. Each well has a radius of
7.85 cm. A production history is simulated over a period of
2000 days. The cumulative rate of flow of oil and water is
fixed at 300 m3/d in the production well. The flow of  water
injected into the reservoir is equal to 150 m3/d in the injection
well. The measurements of the pressure and the rates of
water and oil relative to the reference fault are taken every
20 days during a period of production spread out over
2000 days.

The map of absolute permeability of the reservoir is
obtained by log-normal simulation. The variance is equal to 1
and the average permeability is 50 mD. The initial porosity in
the reservoir is  equal to 0.3. The general characteristics of
the model are summarized in Table 1.

TABLE 1

Example 1: parameters of the fault model

Parameters Values

Number of horizontal meshes 25 x 15

Horizontal dimensions 1250 m x 750 m

Thickness of the reservoir 10 m

Depth of the reservoir 4700 m

Reference depth 4700 m

Rock compressibility 5·e-4 bar–1

Water compressibility 4·36e-4 bar–1

Oil compressibility 1·e-4 bar–1

Density of water 1 kg/m3

Density of oil 0.625 kg/m3

Viscosity of water 0.31 Pa·s

Viscosity of oil 0.34 Pa·s

Initial pressure 300 bar

Initial saturation of water 0.3

Number of injection wells 1

Injection rate (water) 150 m3/d

Number of production wells 1

Production rate (water and oil) 300 m3/d

Results

The reference fault has a length of 360 m and is situated at a
distance of 650 m from the production well and at 250 m
from the injection well. The initial fault  in the beginning of
inversion is 350 m long. It is situated at 230 m from the
production well and at 640 m from the injection well. The
optimal position of the fault was found at 700 m from the
production well and at 200 m of the injection well, and it
measures 352 m.

Figure 2 represents from right to left, the successive
positions of the fault during the process of optimization.
Figure 3 shows the graph of water rates of the production
well for the initial position of the fault and the setting
obtained after 6 iterations.

Figure 2

Example 1: successive positions of the fault.

Figure 3

Example 1: water rates match at the production well.

5.3 Example 2: Identification of the Limits
of a Channel

This model, like the earlier one, is a closed single-layer
2D reservoir with a thickness of 10 m. It is designed in the
form of a channel oriented along the Oxaxis and its reference
position is indicated in Figure 4. The dimensions of this
reservoir are 2500 m x 1500 m with a thickness of 10 m. The
roof of the reservoir is located at a depth of 4700 m. The
Cartesian mesh grid of the model consists of 25 x 15 meshes
of side 100 m. The channel is described by 13 nodes (6 for
one of the limits and 7 for the other) and their Cartesian
coordinates represent the calibration parameters.

Eleven wells are drilled in the channel and each one
has a radius of 7.85 cm. They are distributed as follows:
5 production wells (Prod. 1 to Prod. 5) and 6 injection wells
(Inj. 1 to Inj. 6). Their positions are indicated in the Figure 4.
The simulated production history consists in recovering oil
and water from the production wells by injecting water
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through the injection wells over a period of 1000 days. In
each production well the cumulative rate of water and oil
produced is fixed at 300 m3/d and the quantity of water
produced is limited to 150 m3/d. The injected water rate is
equal to 150 m3/d in each injection well. Measurements of
pressure and rates of water and oil produced relating to the
reference channel were done every 20 days over a simulation
period of 1000 days.

Figure 4

Example 2: reference channel permeability map.

The absolute permeability is equal to 500 mD along the
Ox and Oy axes inside the channel and 0.0001 mD outside
the channel. When the banks of the channel cut a mesh, the
permeability in the mesh is calculated using the Cardwell-
Parsons homogenization formulas [17]. The initial porosity is
uniform and has a value of 0.3 in the reservoir. The general
characteristics of the model are summarized in the Table 2.

TABLE 2

Example 2: parameters of the channel model

Parameters Values

Number of horizontal meshes 25 x 15
Horizontal dimensions 2500 m x 1500 m
Thickness of the reservoir 10 m
Depth of the reservoir 4700 m
Reference depth 4700 m
Rock compressibility 5·e-4 bar–1

Water compressibility 4·36e-4 bar–1

Oil compressibility 1·e-4 bar–1

Density of water 1 kg/m3

Density of oil 0.625 kg/m3

Viscosity of water 0.31 Pa·s
Viscosity of oil 0.34 Pa·s
Initial pressure 400 bar
Initial saturation of water 0.3
Number of injection wells 6
Injection rate (water) 300 m3/day
Number of production wells 5
Production rate (water and oil) 300 m3/day

Results

Permeability maps corresponding to the initial position of the
channel and to the solution obtained after inversion are
indicated in Figures 5 and 7. It may be noted that the position
obtained is very close to the reference position and enables
obtaining a satisfactory match of the measurements generated
from the reference over all the production wells. In the
aggregate, the volume of the channel is recovered. 

Figure 5

Example 2: initial guess permeability map.

Figure 6

Example 2: water rates match at well Prod. 2.

Figure 8 shows the evolution of the objective function
during the 10 iterations of the optimization process. Figures 6
and 9 represent respectively the graphs of water and pressure
output at the production well Prod. 2 for the initial position
and the setting obtained. Well Prod. 2 is characteristic of the
behaviour of production wells for the various positions of the
channel. In particular, one can observe that the moments of
massive inflow of water to the well are correctly restored.  
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Figure 7

Example 2: inversion permeability map obtained.

Figure 8

Example 2: evolution of the objective function.

Figure 9

Example 2: pressure match at well Prod. 2.

This has a certain importance because these moments enable
determining at what moment should be carried out the possible
closure of a given well, if its productivity becomes too low. 

5.4 Example 3: Identification of Several Faults

This third example is based on a more realistic geological
model. The geometry and petrophysics of the reservoir are
generated with the help of a Heresim 3D, an integrated tool
for geo-statistical modelling developed at the Institut français
du pétrole (IFP).

5.4.1 Construction of the Geological Model 

The first stage was to construct the structure of the model.
Twenty exploratory wells are used in the model. These wells
contain lithofacies information and the reference depth is
obtained through a log analysis of the wells. This analysis
enabled to define two distinct units in the reservoir. High
resolution models of these two units are generated separately
with Heresim 3D from the proportion of the graphs
representing the vertical distribution of the various
lithofacies. The grid used consists of 132 x 76 meshes of
25 m side. The thickness of the fine meshes is 3 m. The
average thickness of the highest unit is 40 m and that of the
lowest one is 30 m.

Each unit contains three lithofacies with different
petrophysical characteristics. The porosity and permeability
values in each facies follow respectively gaussian and log
normal laws. Figure 10 shows the vertical proportion graphs
used to simulate the distributions of the lithofacies  in the low
and high units of the reservoir. Figure 11 represents a cross-
section of the reservoir after combining the two units. 

5.4.2 Simulation of the Reservoir Model 

Only the western half of the geological model was
considered to construct a model of reservoir simulation. This
part contains sixteen drilling wells. The roof of the reservoir
is located at an average depth of 3600 m and its total average
thickness is equal to 70 m. The fine meshes are grouped
horizontally according to a 4 x 4 size to form a simulation
grid of 21 x 19 meshes of side 100 m. Vertically, the
geological layers of simulation are 3 in number in the lower
part and 2 in the upper part. The permeability values are
brought to scale with Heresim 3D by numerical resolution of
a steady-state equation in each mesh.

Several large faults have been identified in the model and
only two have been taken into consideration for the inversion
(Fig. 12). These two faults are supposed to be impervious,
vertical and of negligible thickness. From the positions of the
two faults proposed after a seismic interpretation and
geological studies, the following production diagram was
adopted:

– The 10 wells—Prod. 1 to Prod. 10—drilled on the roof of
the reservoir are considered as production wells and pass
through the reservoir over 2 or 3 layers, from top to
bottom.
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Figure 10

Example 2: the two vertical proportions curves of the model.

Figure 11

Example 2: cross section of the reservoir.

Figure 12

Example 3: initial positions of the 2 faults and water
saturation map at 3000 days (middle layer).

Figure 13

Example 3: pressure match at well Prod. 1.

Figure 14

Example 3: oil rates match at production well Prod. 6.
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– The wells Inj. 1 to Inj. 6 are considered as injection wells
and pass through the reservoir over 3 layers, from bottom
to top. The general simulation data and the petrophysical
characteristics of the lithofacies are summarized in the
Tables 3 and 4. 

TABLE 3

Example 3: simulation parameters of the 3D model

Parameters Values

Number of horizontal meshes 21 x 19 x 5

Horizontal dimensions 2100 m x 1900 m

Thickness of the reservoir 70 m

Depth of the reservoir 3630 m

Reference depth 3600 m

Reference pressure 300 bar

Water-oil contact 3690 m

Rock compressibility 5.e-4 bar–1

Water compressibility 4.36e-4 bar–1

Oil compressibility 1.e-4 bar–1

Density of water 1.05 kg/m3

Density of oil 0.625 kg/m3

Viscosity of water 0.381 Pa.s

Viscosity of oil 0.715 Pa.s

Initial pressure 300 bar

Irreducible water saturation 0.15

Residual oil saturation 0.20

kr maximum-water phase 0.65

kr maximum-oil phase 1

Number of injection wells 6

Injection rate (water) 300 m3/d

Number of production wells 10

Production rate (water and oil) 250 m3/d

5.4.3 Inversion Data 

Production history was generated with a numerical simulator
of two-phase flows for a reference position corresponding to
the 2 faults.  A random noise was then added on the pressure
data as well as on those of oil and water rates on the
10 production wells. Then, the production data of the first

three years were considered as being the measurements.
These have been integrated in the objective function. 

The calibration parameters are the Cartesian coordinates
of the four nodes defining the position and the length of the
two faults. These are supposed to be vertical and pass
through the entire reservoir from top to bottom.

5.4.4 Results 

Figure 12 represents the initial positions of the faults and the
water saturation maps in the middle layer of the reservoir.
Figure 15 shows the fault positions obtained after five
iterations of the inversion process. For these positions, the
objective function was divided by 100 and a proper match
was obtained on the pressure and rates. Figures 13 and 16
correspond to the setting of the pressure data at the most
significant wells (Prod. 1 and Prod. 5). Figures 14 and 17
show the match of the oil rate data at the wells Prod. 6 and
Prod. 7 on which the impact of the position of the faults was
the greatest.  It may be noted that these settings were carried
out on the first three years of the production history over a
total period of a little more than 8 years (3000 days). The
structure of the model and the location of the wells are shown
on the Figure 18. The results thus obtained through numerical
simulation proved to be satisfactory.

CONCLUSION

The work presented in this article is based on the use and
development of several efficient tools adapted to the form
inversion. The principal originality of this work lies in the
calculation of the gradient. The introduction of an adjoint
problem and the use of methods of mathematical analysis
enable obtaining the expression of the derivative of the
objective function with respect to the geometry on the
continuous problem in an analytical manner. 

The representation of the geological forms is independent
of the Cartesian grid of the reservoir used for the simulation
of flows. Which enables to work with structured grids. The
calculation of the gradient is afterwards done and effective
optimization algorithms can be used.

15

TABLE 4

Example 3: porosity and permeability values for each lithofacies

Units Lower unit Upper unit

Facies Facies 1 Facies 2 Facies 3 Facies 4 Facies 5 Facies 6

Average porosity 0.25 0.12 0.19 0.2 0.11 0.25

Standard deviation 0 3 3.5 0 3 3.5

Kh average (mD) 100 9 350 100 7 235

Standard deviation 0 20 400 0 10 300

Kz/Kh 1 0.1 0.2 0.2 0.5 1
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Figure 15

Example 3: optimum positions of the 2 faults after 5 iterations.

Figure 16

Example 3: pressure match at well Prod. 5.

Figure 17

Example 3: oil rates match at production well Prod. 7.

Figure 18

Example 3: initial water saturation in the 3D simulation
model and well positions.

Figure 19

Example 3: up-scaled Kx permeability in the model - Top
layer and two cross sections.

The technique developed was applied in the first instance
to mono-phase flows. The encouraging results obtained
motivated its generalization to two-phase flows as illustrated
in this article. It was coupled with a polyphase flow
simulator. The optimization process developed enables to
identify 2D and 3D geological forms in heterogeneous
media. The geometrical forms obtained are regular.

The academic applications presented concern synthetic
cases and a more realistic geological model for history
matching of production data. They demonstrate perfectly
the efficiency of the method and its validity for several
types of geological bodies. Real cases are much more
difficult to solve, for example the case of fissured
reservoirs. The advantage of the method concerns
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particularly the identification of the roof of a reservoir or of
position of large faults which influence the flows. The tools
developed open the way to more and more complex 2D
and 3D applications. Their contribution may be important
in the characterization of reservoirs. They may be
particularly useful to define the location of new drilling
wells and to reduce the uncertainties on the geometry of
the reservoir.
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APPENDIX

Calculation of the Derivative Relative
to the Geometry 

Here, we show the calculation of the derivative of the
objective function j relative to Γ. We note that actual
unknown in this problem of optimization is Γ. To simplify
and to use the formalism introduced by Céa in [11], where
one can find the justification for the calculation which will
follow, we will actually determine the derivative of the
objective function relative to the domain Ω. The techniques
used will be the transport method [18] called the
parametrization of the domain and the Lagrangian method.

The idea involves replacing the search for the optimal
form Γ contained in a reference domain Ω, by the search for
a transformation F such that F(Ω), implying F(Γ), is optimal.

For this, we consider the internal transformations of the
domain Ω of form F= I + V. These transformations belong to
an appropriate functional space which we formally denote
as U [12]. V denotes a perturbation of the domain Ω. The
support of V is defined only in the neighbourhood of Γ. We
denote Λ = F(Ω) = Ω + V (Ω) the perturbed domain, ∂Λits
border, (x', y', z') = F (x, y, z), (x, y, z) ∈ Ω , ΩT = Ω × (0,T)
and ΣT = Σ × (0,T).

Let PΛ and SΛ be the solutions of the partial derivatives
equations:

(14)

(x’, y’, z’) ∈ Λ , t ∈ [0, T]
and:

(15)
(x’, y’, z’) ∈ Λ , t ∈ [0, T]

verifying the boundary conditions:

(16)
(x’, y’, z’) ∈ ∂Λ , t ∈ [0, T]

and the initial conditions:

PΛ (x’, y’, z’, 0) = P0(x’, y’, z’); (x’, y’, z’) ∈ Λ (17)
SΛ (x’, y’, z’, 0) = S0(x’, y’, z’); (x’, y’, z’) ∈ Λ (18)

PΛ and SΛ are the pressure and the water saturation in
the “perturbed” reservoir in the presence of a two-phase
oil-water flow without any capillary pressure. PΛ and SΛ
belong to a functional space which we formally denote
as H(Λ). 

The variational formulation of the problem (14)-(18)
is obtained by assuming that PΛ and SΛ are sufficiently
regular, next by multiplying the Equation (14) by a test
function uΛ ∈ H(Λ) and the Equation (15) by a test function
vΛ ∈ H(Λ), and by integrating over Λ × (0,T). Hence, we find
that by taking the boundary conditions (16) and using the
classic Green formula [19]:

E1(Λ, PΛ, SΛ, uΛ) = 0,  ∀ uΛ ∈ H(Λ) (19)

E2(Λ, PΛ, SΛ, vΛ) = 0,  ∀ vΛ ∈ H(Λ) (20)

with:

(21)

and:

(22)

Under conditions of sufficient regularity, we assume that
PF, SF, uF and vF ∈ H(Ω) = {zoF, z ∈ H(Λ), F ∈ U} are
such that:

PΛ = PF oF–1,  SΛ = SF oF–1

uΛ = uF oF–1,  vΛ = vF oF–1

For this, it is sufficient to show that the application:

ƒ ∈ H(Ω) → ƒoF–1 ∈ H(Λ), Λ = F(Ω)

is an isomorphism as soon as F is in an appropriate space U.
The transport method suggests that the transported

solutions PF = PΛoF and SF = SΛoF verify the variational
equations after changing of the variables:

E
~

1(F, PF, SF, u) = 0,  ∀u ∈ H(Ω) (23)
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~

2(F, PF, SF, v) = 0,  ∀v ∈ H(Ω) (24)
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with:

and:

where DF is the jacobian of F, DF–1 is the inverse of DF and
JF = |det DF | the determinant of DF; A = φ0 (1 – cRP0) and
B = φ0 cR.

We are thus taken into the domain of reference Ω on
which the objective function can be defined on U by:

(25)

Here onwards we have to find the transformation F which
minimize the “new definition” j~ of the objective function j.
For this, one must determine the directional derivative

dFj~(F).V of j~relative to F in the direction V. To calculate the
first derivative of j~, we use the Lagrangian method [11].

The Lagrangian method involves defining the following
function on U × H(Ω)4:
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~

1 (F,P,S,u) +E
~

2 (F,P,S,v) (26)

∀ u and  v∈ H(Ω)

in which the direct state equations in the variational form
(23) and (24) appear as constraints.

Since, PF and SF are the solutions of the Equations (23)
and (24), we precisely have:

L(F,PF,SF,u,v) = j~ (F), ∀ u  and v ∈ H(Ω) (27)

It is possible to obtain an expression for the total
derivative of the function j~ which is nothing but a partial
derivative of the Lagrangian. Thus, having u and v as
constants and taking into consideration (27), we have:

The functions uand v can be chosen such that the

derivatives and can be elimi-

nated. These introduce us to the following equations called
the associated adjoint state equations.

(28)

(29)

The functions u and v are dependent on the parametrization
of the domain Ω. Proceeding from the Equations (27) and
(28) for F = I—these are the ones relevant to us—and by
observing that P = PI = PΓ and S= SI = SΓ, we get:
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where χm is the characteristic function on Ωm the region in
the domain where the measurements were carried out, in
other words in the production wells.

Next, by making a right choice of functions ψ and ϕ, we
formally deduce that u = uΓ and v = vΓ verify the problem of
evolution defined by the following equations with partial
derivatives:

(32)

(x, y, z) ∈ Ω , t ∈ [0, T]

(33)

(x, y, z) ∈ Ω , t ∈ [0, T]

the boundary conditions:

u = 0;  (x, y, z) ∈ Σ , t ∈ [0, T] (34)
and:

(35)
(x, y, z) ∈ Σ , t ∈ [0, T]

and at the instant T with the conditions as follows:

u(x, y, z, T) = 0  and v(x, y, z, T) = 0; (x, y, z) ∈ Ω (36)

We thus have the result which follows: for P = PF and
S= SF solutions of the variational direct state Equations (23)
and (24) and for u = uF and v = vF solutions of the adjoint
state Equations (28) and (29), the derivative of j~relative to F
in the direction V is given by:

(37)

If we consider the applications δ: F ∈ U → JF and θ:
F ∈ U →t DF–1, we can show that they are of the class C∞

for F in an adequate space U and that their derivatives are:

(38)

and:
(39)

tDFc is the co-matrix of DFand is defined by the relation
DF tDFc = (det DF)I; tr is the trace operator.

Taking into consideration the formulas (38) and (39), and
by making the hypothesis that the perturbation V is null
on Ωm, the region where the source terms relative to the wells
are situated, we have:
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and:

– – –φ
ρ ρ ρ

ϕ ρ ϕP
u

t

q

S
u

q

S

q

S
v

K kr S

S
P gz u

w

w

w

w

o

o

w

w

w
T T

( ) ∂
∂

∂

∂

∂

∂
+

∂

∂



















 +

µ

∂ ( )
∂

+( ) ⋅








∫ ∫1 1 1

Ω Ω
grad grad

+ ( )( ) ∂ ( )
∂













+ ( )( ) ∂ ( )
∂













+
µ

∂ ( )
∂

+( )







 ⋅∫ ∫ ∫γ χ ϕ σ χ ϕ ρ ϕq S q

q S

S
q S q

q S

S

K kr S

S
P gz v

w w

m w

o o

m o

w

w

w
T m T m T

Γ
Γ

Γ
Γ

Ω Ω
Γ

Γ

Γ
Γ

Ω Ω Ω
– – grad grad

+
µ

∂ ( )
∂

+( )







 ⋅ + ( )( )( ) ( )( )( )( )∫ ∫K kr S

S
P gz v u x, y, z,T P u x, y, z,

o

o

o
T

grad grad Pρ ϕ φ ϕ φ ϕ
Ω Ω

– 0

+
µ

∂ ( )
µ

+( )







 ⋅ = ∀ ∈∫ K kr S

P gz nu H
w

w

w
w

T

ϕ ρ ϕgrad
Σ

Ω0, ( )

(31)



PF Edoa et al./Identification of Geological Forms Using Production Data

with: A = φ0(1 – cRP0) and B = φ0cR.
We note the following fundamental result [11]: the partial

derivative of j relative to F at the point F = I coincides with

the total derivative of j relative to Ω (or Γ) for every
perturbation V of the domain. Finally, given that PΓ = PI,
SΓ = SI, uΓ = uI, and vΓ = vI, we get:
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