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Résumé — Propriétés mécaniques des roches : pression de pore et effets d’échelle—La pression
de pore joue un role de premicre importance dans la considération des propriétés mécaniques des
roches. Dans ce domaine, le concept de contrainte effective est essentiel pour aborder les effets méca-
niques. Toutefois, son utilisation fréquente a conduit a de nombreuses affirmations trompeuses. Compte
tenu des significations diverses accordées a ce concept, nous tentons ici de le clarifier et examinons le
domaine d’application de ses divers emplois dans le cadre du comportement mécanique ou des proprié-
tés des roches. A I’échelle macroscopique, la thermodynamique offre un outil puissant pour cerner ce
concept. La thermodynamique des processus réversibles ou irréversibles fournit des relations générales
d’un intérét majeur. Mais, compte tenu du fait que les roches sont des systémes non homogenes, une
approche microscopique est nécessaire pour analyser les propriétés mécaniques a partir d’une descrip-
tion des phénomenes a petite échelle. L approche microscopique est complémentaire de 1’approche
macroscopique thermodynamique, elle conduit au calcul des propriétés effectives du milieu. Dans ce
cadre, la théorie des milieux effectifs est un outil puissant. Les propriétés effectives déduites de 1’ana-
lyse & I’échelle microscopique peuvent étre combinées aux relations issues de la thermodynamique pour
interpréter les effets de la pression de pore et les effets d’échelle. Le cas des propriétés élastiques des
roches poreuses est plus particulierement traité a titre d’illustration, compte tenu de 1’intérét qu’il pré-
sente et de son importance du point de vue des applications.

Mots-clés : propriétés mécaniques, pression de pore, contrainte effective, effet d’échelle.

Abstract — Mechanical Properties of Rocks: Pore Pressure and Scale Effects — Pore pressure plays
a major role when considering rocks mechanical properties. In that field, the concept of effective pres-
sure is a key one to deal with fluids mechanical effects. However, its frequent use has been the source of
frequent confusing statements. Because of the various meanings which have been attached to that
concept, an attempt is made in this paper to clarify it and examine the validity of its various uses rela-
tive to rock mechanical behaviour or rock properties. At a macroscopic scale, thermodynamics provides
a powerful tool to investigate this. Reversible or irreversible thermodynamics provide general relation-
ships of great interest. But because real rocks are non homogeneous systems, a microscopic approach
is also required in order to analyze the mechanical properties from a description of the small scale pro-
cesses. The microscopic approach is complementary of the macroscopic thermodynamic one as it leads
to the calculation of the effective properties of the medium. In this last approach, effective medium
theory is a powerful tool. The effective properties as derived from the microscale can be nicely com-
bined to thermodynamic relations to interpret pore fluid pressure effects and scale effects. The example
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of elastic properties of porous rocks is more specifically emphasized to illustrate this because of both its
intrinsic interest and importance as far as applications are concerned.

Keywords: mechanical properties, pore pressure, effective stress, scale effect.

1 MACROSCOPIC SCALE : THE EFFECTIVE
STRESS CONCEPT

In the literature, the effective stress concept is applied to
three different problems. It is first used for the constitutive
equations, it is then extended to rock failure and finally to
rock properties. We will review those three categories to
clarify the concept.

1.1 The Effective Stress Concept: Constitutive Law

At a macroscopic scale, the effective stress law is defined
from an assumption. However, the assumption can be made at
two levels. The first level of assumption consists in defining
straightforwardly the stress-pressure relationship. Terzaghi’s
concept is the best known example. However, this stress-strain
relationship introduced as an hypothesis must be consistent
with the thermodynamic coherence that derives from the strain
energy. It can be shown that Terzaghi’s law can also be
derived from energy considerations.

If the stress-strain relationship is derived from energy, that
is from thermodynamics, the consistency of the model is
granted. Note that deriving the stress strain relationship from
thermodynamics means that the level at which the
assumption is made has changed. In other words, the
assumption is now made on the strain energy itself.

The macroscopic laws—both in the elastic and plastic
domains—correspond to micromechanical mechanisms
which are the grain deformation, the cement deformation and
the grain displacement.

1.1.1 Terzaghi’s Effective Stress - Elastic Domain

Terzaghi’s effective stress concept, in this paragraph, is
restricted to its application in the elastic domain.

As previously stated, Terzaghi’s stress is defined from an
assumption on the stresses. It postulates that the pore
pressure has no effect on the shear stress and that it decreases
the effect of compressive stress by an amount equal to the
pore pressure. Thus, the effective stress is defined as:

eff _
o =6, -pd; (1

where compressive stresses are taken positive. Expressing

the volumetric deformation for an elastic body thus leads to:

e, =K, tr(c?)/3 2)

For an elastic rock, plotting the volumetric deformation as
a function of Terzaghi’s effective stress, should lead to a
straight line.

We performed experiments on a Tavel limestone (Boutéca
et al., 1993). Applying an isotropic loading, we increased it
in a stepwise manner: the confining pressure is firstly
increased, the pore pressure is then increased. The pore
pressure increase (App) is equal to the confining pressure
(Ap,) increase. Hence, at the end of a given step, the effective
Terzaghi’s stress is equal to its initial value (ApC—ApI7 =0).
Such a loading cycle is plotted in Figure la and the
theoretical stress-strain plot for this limestone is plotted in
Figure 1b.

The data as obtained during the experiment are plotted in
Figure 1c. The stress-strain line obtained during the confining
pressure increase is not the same as the stress-strain line
obtained during the pore pressure increase. Applying several
cycles as shown in Figure 2a and 2b leads to a behavior that
strongly departs from Terzaghi’s model. In Figure 2a, we
plotted the applied loading cycles. We loaded and unloaded
along this stress path. In Figure 2b, we plotted the volumetric
strain as a function of Terzaghi’s stress. Aside from a very
slight hysteresis, the loading and unloading cycles are
identical. However in this Terzaghi’s plot, the stress strain
relationship is not described by a unique straight line. The
pore pressure does not exactly play the same role as the
confining pressure.

Before moving to another effective stress concept, it is
important to notice that although Terzaghi’s stress has been
defined straightforwardly, its meaning only appears when
considering the rock deformation. That is Terzaghi’s stress is
the one that works in the strain field. Again this leads us
towards an identification of the stress based on the energy.

1.1.2 Biot's Effective Stress - Elastic Domain

Starting from a microscale approach, Biot (Biot, 1941)
proposed a potential from which he derived the constitutive
equation in the elastic domain.

Here, the assumption is no more at the level of the stress
but at the level of the thermodynamic potential. The
potential is assumed to be quadratic, and, following Coussy
(1991), the dual variables are defined as G, €, p and m, where
m is the fluid mass content in the rock. Deriving the
potential, the constitutive law for an isotropic elastic rock is
obtained as:

Y 2G
G, —0;= (K"_T) tre + 2Ge; + b(p—pu)Sij 3)

where K is the drained bulk modulus of the rock, G, the
shear modulus and b, the Biot’s coefficient. 6‘;]. and p,
are initial values.
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As a consequence of the constitutive equation, an effective
stress can be defined:

off _
ol =6, -bpd; 4

Formally, Biot’s effective stress is very similar to
Terzaghi’s one, and it can be shown that b varies in the range
[0, 1], where ¢ is the rock porosity. When b equals 1, one
recognizes Terzaghi’s stress. More precisely the physical
meaning of b can be found from Biot’s relation:

K
b=1-—*%* 5
K ©)

N

where K _ is the skeleton bulk modulus. If the constitutive
grains are incompressible (K — o), then Biot’s effective
stress and Terzaghi’s effective stress are identical.

Note that, from micromechanics considerations, many
authors have been deriving an effective stress such that

G,‘-}ﬁ =G,:,-—T]p5,-j. One can find an updated review in

Lade and de Boer (1997).

For the experiments shown in Figure 2, we determined the
value of the Biot coefficient, it is equal to 0.65. The
volumetric strain is plotted as a function of the Biot’s stress
in Figure 3. The results show a straight line in this plot, in
agreement with the theoretical prediction.

35

30 |-
o5 | :t

Biot's effective stress (MPa)
b=0.65
»

0 0.0005 0.001 0.0015 0.002

Volumetric strain
Figure 3

Volumetric strain vs. Biot’s stress - Tavel limestone (after
Boutéca and Sarda, 1995).

1.1.3 Plastic Domain

The constitutive equations are:
2G olas
G- 0= (KU ey trecles +2Gs§,~[’” +b(p—p,)d;

(6)

elas

with £ = /% 4 gl

where the superscript elas stands for the elastic part and the
superscript plas stands for the plastic part.

It follows from this equation that the stresses inducing the
elastic deformation—the ones that insure the mechanical
equilibrium—ifollow the effective stress concept as explained
above (see Section 1.1.2). Thus we have:

GI;I“‘Y =6,;-bpd; ¢'= o @)

In the plastic domain, one has to introduce hypotheses on
the flow rule to define an effective stress concept. Following
Coussy (1991), we assume that the plastic porosity ¢”
—irreversible change of the pore volume per unit initial
volume—is proportional to the volumetric plastic strain,

which leads to a new effective stress:

1 plas
(I)b ZB[JED =G I_;}a.s ZGij _Bppsij (8)
If the constitutive grains are incompressible then, one
finds back Terzaghi’s stress.

1.2 The Effective Stress Concept: Failure Criterion

A failure criterion deals with a limit in a stress space, which
implies that the relevant effective stress will be derived from
a stress-stress relation and no more from a stress-strain
relation.

At the microscopic level, the mechanisms are inter and
intragranular cracking leading to rock splitting. It results that
the effective stress of the constitutive law and the effective
stress at failure do not have to coincide. This is illustrated by
our experimental results on the Tavel carbonate (Vincké et
al., 1998).

To define the effective stress at failure, we performed
three sets of triaxial experiments with three different pore
pressures (1 MPa, 10 MPa and 20 MPa). Assuming that the
effective stress can be defined as:

ijﬁ =0,;-Bpd; )

then, by plotting the value at failure in a g (deviatoric
stress)-p (total mean stress) plot, one should obtain one
failure curve per pore pressure level. Furthermore, BApp
should be the translation vector between a failure curve
obtained for a given pore pressure P, and a failure curve
obtained for a pore pressure equal to P+ App (Fig. 4).

Using this procedure, we determined 3 for the Tavel
limestone and obtained = 1. This is shown in Figure 5
where we plotted at failure the deviatoric stress as a function
of the mean effective stress (p — BApp= p—App) for the
three different pore pressures.

It is interesting to remind the preceeding results for the
Tavel limestone:

— constitutive equation: Biot’s effective stress
(5;"}7 =0, — 0.65pd;;

— failure criterion: effective stress O ,‘jﬂ =0;— p5,-j.
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Failure criterion (after Vincké et al.)

1.3 The Effective Stress Concept: Rock Properties

The effective stress concept is also applied in the literature to
rock properties, both mechanical properties and transport
properties. We will first review its meaning in the case of
mechanical properties before moving towards transport
properties.

1.3.1 Mechanical Properties

To illustrate this, let us consider the experimental data shown
in Figure 6 (Boutéca et al., 1994). The drained bulk modulus
increases with the confining pressure. Similarly, there is a
shift in the curves obtained with a pore pressure equal to
1 MPa and a pore pressure equal to 51 MPa. This kind of

result is often interpreted in the literature by defining a
relation between the bulk modulus and an effective stress.
Thus, nonlinear elasticity—as it is the case here—is treated
as incremental linear elasticity with properties depending on
an effective stress.

Equation (3) is thus rewritten:

Aol =Ac,; —bAPS,; =(1€0 —E)trAe+ 2GAg;;
3 (10)

[20 =f(tr6ij _Kp)

where the new “effective stress” in f has nothing to do with
the one previously introduced for the constitutive law.
Instead of relating stresses and strains it relates a coefficient
of the constitutive law with stresses and pressure.

HP - 19.8%
10000
oo Y Em L
8000 | oo "
O | |
|
6000 |- =
& O [
4000 - [ p,=1MPa B p,=51MPa
2000 |~ [ u
0 |
0 50 100
p. (MPa)
Figure 6

Bulk modulus under drained conditions Reservoir sandstone
of initial porosity equal to 19.8% (after Boutéca et al., 1994).
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o 60|
40
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o | |
0 0.005 0.010 0.015
dwv
Figure 7

Volumetric strain as a function of the confining pressure
(after Boutéca et al., 1994).
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At the microscopic scale, the evolution of the rock
properties corresponds to Hertz contacts—Ilocalization of the
stress at the grain contact—and elastic behavior of small
cracks in the grain or in the cement. Herein, the model is
purely elastic, as opposed to Hertz-Mindlin model where
friction is involved at the micro scale (see Section 2.1.3).
This departing from the constant value of K , is reflected in
the stress strain curve which is no longer a straight line and
becomes non-linear as shown in Figure 7.

The obvious meaning of Figure 7 is that the hypotheses
that led to a linear relationship between stresses and strains as
expressed in Equation (3) are no longer valid. Then, one has
to come back to the origin of this linear relationship which is
the quadratic form of the strain energy. Instead of assuming a
quadratic form, let us assume a third order one. Obviously,
when deriving with respect to the strain, this will introduce
terms of the second order in strain wich will produce non-
linearity.

Based on a microscopic description, Biot (1973) defined
such a third order potential and we applied it (Boutéca et al.,
1994) to the sandstone shown in Figures 6 and 7. It results in
a nonlinear tangent drained modulus and a nonlinear tangent
Biot coefficient that depend (linearly) on € + p/K where € is
the volumetric strain:

do=2Gde+3(h+N")de+3(b+b")dp,

=[2G +30+x")]de+3(b+ 6" dp, a1

il J@F2D) [ Py | (F+2D) [ Py
3 K 3K K

N N N

do do
?Zthg'i‘btdpp (?=pc)
where do is the incremental volumetric stress, F' and D are
constant rock properties.
The experimental evidence is shown in Figure 8 where we
plotted K, (=K ) as a function of — (g + p/K ).

15000

/— Linear regression

10000

-0.02 -0.015 -0.01 -0.005 0

-@WV + p/Ky)
Figure 8

Tangential bulk modulus (after Boutéca et al., 1994).

Hence the nonlinearity is not to be defined through an a
priori evolution of the bulk modulus, elaborated from
experimental curves in some (K, = k , (0, p)) plot. It has to be
derived from the enrichment of the thermodynamic potential.

1.3.2 Transport Properties

When measuring transport properties for rocks submitted to
pressure and stress evolution (David et al., 1994; Sarda et al.,
1998), an effective stress is often defined. In fact it appears
that a description at the microscale level is needed.

There is a clear definition of the effective stress for the
constitutive law. Hence there is a clear definition of an
effective stress for the strains. The next step is to move from
strains to permeability which implies a knowledge of the
structural evolution at the pore scale. At that scale, cracks and
grain deformation or displacement, will play very different
roles and their contribution will have to be accounted for in
specific ways.

2 MICROSCOPIC SCALE: EFFECTIVE PROPERTIES

Microscopic analysis allows to identify the relevant defor-
mation micromechanisms. It leads to express macroscopic
thermodynamic parameters in terms of microvariables which
can be obtained from various observations. Such an analysis
is a required step in order to discuss possible scale effects on a
sound basis. It may be also a crucial point in preventing any
extrapolation of a macroscopic law beyond its range of
validity. We examine in the following the mechanical
behavior and more specifically the elastic properties. This
refers to Sections 1.1.2 and 1.3.1 above. We do not consider
plastic behavior. The microscopic analysis of failure and that
of transport properties is also beyond the scope of this paper.
Our restrictive choice is dictated by the fact that elastic wave
velocities play a major role for crustal exploration and that our
present understanding of elastic behavior and properties is
much more advanced than for the other issues considered in
Section 1.

2.1 Elastic Moduli of High Porosity Rocks

At a microscopic scale, different descriptions of the rocks are
possible, and, depending on the rock nature, some are more
appropriate than others. High porosity, poorly consolidated
and unconsolidated rocks can be adequately modeled as
granular assemblages where contact stiffnesses play the major
role. The calculation of elastic constants from micromodels is
in that case a two steps procedure: the first step consists in
deriving the contact stiffnesses of two grains, and the second
one is an averaging process over a random packing of
identical spherical particles. As far as elastic properties are
concerned, the rock can be viewed as a network of elastic
springs, each spring being a grain contact (Fig. 9).
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2.1.1 Contact Stiffnesses

All such models rely on the Hertz’s and Mindlin’s contact
theory (Johnson, 1985). In the Hertz model, two identical
spherical grains of radius R (Fig. 9) are deformed by a normal
force N. The radius of the contact area is:

1/3
L [3NRA-V))
8G

N

where v_and G, are respectively the Poisson’s ratio and the
shear modulus of the grain. The normal displacement of a
sphere center relative to the contact area center is u, = a*/R
and the normal stiffness D = dN/ou,, is:

4Gy a
1-v

D

n

s

Mindlin model considers an additional tangential load T
superimposed afterwards on the previous system. Assuming
that there is no partial slip in the contact area, the tangential
stiffness D, = dT/du, is:

D, = 8G,a
2-v

N
where u, is the tangential displacement of a sphere center

relative to the contact area center.

2.1.2 Elastic Moduli

Assuming a random isotropic packing, Digby (1981) derived
the effective elastic constants from the contact stiffnesses. He
used relationships for stiffnesses which are somewhat

different from the above Hertz-Mindlin ones but his
averaging procedure constitutes an independent step which
allows to express the effective bulk and shear moduli as
functions of D, and D,, whatever the precise values of the
stiffnesses are. With the Hertz-Mindlin stiffnesses, one gets
the following expressions for the effective bulk and shear
modulus K and the Geﬂ :

_Cd=9) ,

_C-D)
eff 121R n eff

D +1.5D
20mR (D, )

where C is the coordination number (average number of
contacts per sphere, which is close to 9 for dense random
pack).

2.1.3 Predictions of the Model

A simple test of the above model can be obtained by
comparing predicted Poisson’s ratio values to measured
values on glass beads and high porosity sandstones
(Domenico, 1977). As shown by Winkler (1983) the above
model predicts values (<0.05) much lower than those
observed (0.15) as shown on Figure 10. Although surface
roughness may explain some of these discrepancies at low
pressures (Palciauskas, 1992; Manificat and Guéguen, 1998),
it is likely that other effects have to be accounted for. In the
case of sandstones, the presence of cement at grain contacts
modify strongly the elastic properties (Dvorkin et al., 1994).
Soft cements increase Poisson’s ratio so that even a small
amount of cement could explain the above discrepancies.
Another test is provided by the pressure dependence. It
results from the contact model that the spring constants
depend on stress so that the model is a non linear elastic one.

Figure 9

Granular model. The rock is described as a random packing
of identical spheres of radius R. Normal displacement at
granular contact h=2u,. Tangential displacement is not
shown.

0.15

0.05

0.0 0.1 0.2 0.3 0.4 0.5

Figure 10

Poisson’s ratio of a random packing of spheres (solid line)
from Digby’s model as compared to high porosity sandstones
data (shaded area).
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At zero stress, the elastic moduli should vanish and they are
predicted to vary as (P)!3 from the above stiffnesses
expressions. The results reported by Domenico (1977) for
unconsolidated glass beads follow more closely a (P)!/?
dependence, whereas those of Toksoz et al. (1979) for Berea
sandstone show a much weaker dependence. The soft shell
model proposed by de Gennes (1996) explains a (P)!/?
dependence but is not appropriate for sandstone. Again the
presence of cement is likely to affect strongly the pressure
dependence. As shown by Wong and Wu (1995), normal
stiffness is not sensitive to pressure in a cemented system.

Finally, due to the path dependent nature of contact
forces, effective elastic constants are also path dependent. At
the microscopic scale, each contact is assumed to be rough.
This is why a no slip assumption is made. But this means
also that contact forces are not purely elastic since friction is
involved. Contact forces are not derivable from a
thermodynamic potential. Because of this fundamental
complexity of contact models, it is not possible to establish a
unique result for elastic constants independently of the stress
path trajectory. The medium is not an hyperelastic medium
but an hypoelastic one.

2.2 Elastic Moduli of Low Porosity Rocks

The above model breaks down when porosity is below some
threshold. Vernik (1997) estimated the threshold value to be
approximately 30%. Low porosity rocks can be described by
using inclusion-based models that view the rock as a solid
matrix with randomly embedded inclusions representing
individual pores and cracks (Fig. 11). Several approximate

schemes have been used by different researchers in order to
achieve this. They have their roots in the effective media
theories of physics. This diversity may be confusing and we
attempt here to clarify the problem. The calculation of elastic
constants from micro-models is obtained through the choice
of a specific scheme and of a precise assumption on the
geometrical inclusion shape. In the case of pores, the moduli
are obtained as functions of porosity @ or more generally as
functions of the ratio ®/a for ellipsoidal pores of aspect
ratio o (Guéguen and Palciauskas, 1994). In the case of
cracks (which can be considered as the limiting case of zero
volume inclusions), the moduli are functions of the crack
density parameter defined in 2-D as p=1/A Y (ll,)2 where
each rectilinear crack has a length /; and A is the area of the
considered element.

2.2.1 Effective Media Schemes

The elastic moduli are calculated by replacing the
heterogeneous rock by a simple homogeneous equivalent
medium. The properties of this equivalent medium are the
effective properties. The use of the word effective here should
not be confused with that of Section 1 where effective stress
has been discussed. The effective stress concept assumes that
the medium is statistically homogeneous and replaces the real
rock by an equivalent homogenized medium. The purpose of
Section 2 is precisely to examine how the elastic properties of
this equivalent (effective) medium are derived.

The simplest model is the one which assumes negligible
interactions between inclusions. It may be called a first order
perturbation scheme. In that case, the medium is a simple

Figure 11

Inclusion model: a pore or crack is described as an inclusion
of specific shape (€2) included in the rock matrix (D — €2).

1.0

0.8

0.6
(Sjj? = constant

KIK,

0.4 |

0.2 |

0.0 1 1 1 1
0.0 0.2 0.4 0.6 0.8 1.0

Figure 12

Normalized bulk modulus as a function of porosity for the
inclusion model. The assumptions are: non interacting inclu-
sions and spherical pores. The matrix bulk modulus is K =
38 GPa, the matrix shear modulus is G, = 22.8 GPa. The pores
are saturated with a fluid of bulk modulus K= 2.2 Gpa.
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composite which behaves as if it was made of a single
inclusion within a matrix. The elastic compliances are derived
by submitting this medium to a constant stress at infinity, and
the compliances are found to be linear functions of porosity @
or crack density p. Elastic stiffnesses are thus non linear
functions of @ or p (Fig. 12). In the limit of a diluted
concentration of inclusions, linearization of these expressions
is however possible (Le Ravalec and Guéguen, 1996a).

More sophisticated models account for inclusions
interactions in some approximate ways. Following Kachanov
(1993), we can consider that most of these schemes calculate
the effective elastic constants by analyzing one isolated
inclusion in either an effective matrix or an effective field.
This corresponds to a basic subdivision of effective media
schemes in two groups:

— The effective matrix scheme assumes that the inclusion is
placed within a matrix which has effective moduli. If the
inclusions are placed in a single step, this scheme is known
as the self-consistent one. The interactions between
inclusions are approximately taken into account by
replacing the background medium with the as-yet-
unknown effective medium. The self-consistent scheme is
an implicit scheme which assumes the solution known in
order to calculate it. If the inclusions are placed in
infinitesimal increments, the scheme is an iterative one
and is known as the differential self-consistent scheme
(Le Ravalec and Guéguen, 1996a).

— The method of effective field approximates inclusions
interactions by assuming that an inclusion is submitted to
an effective stress field. This field is not the one applied to
the medium but some average of the real stress field which

takes approximately into account the inclusions inter-
actions. The simplest effective field is the volumetric
average (Mori-Tanaka method).

2.2.2 Predictions of the Model

Effective medium theory has been successfully used to
predict the properties of many heterogeneous systems. The
various possible schemes have each some specific advan-
tages and drawbacks which are discussed below.

The self-consistent (effective matrix) scheme predicts a
strong decrease of moduli down to zero at some cut-off
porosity value, or crack density value (Fig. 13). For that
reason, this model has been attractive and widely used. It can
be shown however that this cut-off does not have a physical
meaning and that it corresponds to an extrapolation of the
model beyond its range of validity as explained below
(Kachanov, 1993, Guéguen et al., 1997). The self-consistent
model overestimates the moduli decrease.

The differential self-consistent (effective matrix) scheme
does not predict any cut-off and exhibits a less severe
decrease of moduli with pores/cracks content. It predicts
remarkably well the porosity dependence, at least for
spherical inclusions (Fig. 13a). Since the pores and cracks are
added incrementally, this model can be extended to consider
various families of pores and cracks, introducing for instance
a range of aspect ratios. But the elastic moduli depend on the
order in which the incremental additions are done. This is a
drawback specific to that method. A possible way to go
around this difficulty is to realize several numerical
simulations with the same input data but with a different
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Figure 13a

Effective Bulk moduli for glass foam samples as a function
of porosity (Walsh et al., 1965). The predictions are those of
the first order perturbation model (noninteracting cracks), the
self-consistent model and the differential self-consistent
model.
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Figure 13b

Effective Young moduli for randomly oriented cracks as a
function of crack density. Numerical simulations are shown
as vertical bars (Kachanov, 1993). The predictions are the
same as above.
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order of introduction of inclusions. Averaging over a large
number of numerical simulations provides then valid results.
In practice, it has been shown that one hundred simulations is
sufficient to get stable solutions (Le Ravalec and Guéguen,
1996a).

The effective field method appears to be a better
approximation in general than the effective matrix method.
An important and interesting result (Kachanov, 1993) is that,
in the case of randomly oriented cracks, the effective moduli
predicted with the Mori-Tanaka method are identical to those
obtained from the approximation of noninteracting cracks
(i.e., from first order perturbation calculations). Kachanov
pointed out clearly that this is not a coincidence but results
from the fact that introducing zero volume cracks does not
change the average stress in a solid if tractions are prescribed
on the boundary. Consequently, the average effective field
in the Mori-Tanaka approximation is exactly the original
field and thus the calculation is that of a noninteracting
approximation. Numerical simulations show that the non-
interacting cracks approximation is the best one in that case.
(Kachanov, 1993). If cracks are described as flat ellipsoids of
nonzero volume, the differential self consistent results and
the noninteracting results remain very close (Le Ravalec and
Guéguen, 1996b).

Up to what degree of heterogeneity can effective media
theory be used? This theory is an approximation which relies
on the assumption that the medium is statistically homoge-
neous. As stated above, the critical thresholds or cut-off
derived from the self consistent scheme do not fit with real
data. This is not surprising since the existence of such
thresholds is linked to clustering effects which become
important in a strongly nonhomogeneous medium (Guéguen
et al., 1997). Using the previous scheme near the threshold is
clearly extrapolating it beyond its range of validity. The
differential scheme should be preferred as it does not exhibit
such thresholds and accordingly does not overestimate so
much the decrease of moduli. The differential scheme itself
has also a limited range of validity however. In the case of a
strongly heterogeneous medium, percolation theory is the
appropriate tool since clustering effects are a central issue of
percolation theory. It can be shown (Guéguen et al., 1997)
that various thresholds have to be distinguished depending on
the properties of interest. In particular, the mechanical
threshold and the permeability threshold are completely
different. For cracked rocks, the first one is reached at high
crack density (of the order of 1) but the second one is reached
at much lower values (of the order of 0.1).

2.3 Pore Pressure and Scale Effects: Combining
Micro- and Macroanalysis

We focus in the following on the elastic properties because of
their importance for underground exploration and also

because they provide a nice example in which combining
micro- and macroanalysis proves to be very fruitful.

2.3.1 Poroelasticity

Poroelasticity describes the mechanical behaviour of a
saturated porous rock at moderate pressure and temperature
conditions (Biot, 1941; Rice and Cleary, 1976). As discussed
in Section 1.1.2, it is a thermodynamic theory which
expresses strains as linear functions of effective stresses. It
can be extended to nonlinear behaviour (Biot, 1973; Boutéca
et al., 1996) and to anisotropic media (Brown and Korringa,
1975) but we restrict here to the simple case of linearity and
isotropy. A basic result of this theory is that the drained bulk
modulus K, is related to the undrained bulk modulus K|
through the following equation (Gassmann equation):

bZ
K,=K, +—g+(b—q>)
K, K

N

Both shear moduli, drained and undrained, are identical.
The b coefficient has been defined in Section 1.1.2.

Poroelasticity does not provide of course any information
on the above moduli. But the micromodels described in
Section2 do. Both drained and undrained moduli are
effective moduli. The drained modulus corresponds to the
situation where fluid can flow at constant pressure. It can be
obtained from effective media theory by considering dry
inclusions, i.e. empty cracks and pores (low porosity rocks)
or a dry granular assemblage (high porosity rocks). If the
drained modulus is known, using the above equation
provides then the undrained modulus. It is this last one which
has to be used for elastic waves velocities.

2.3.2 Scale and Frequency Effects

Pushing the analysis one step further, it is possible to
examine scale and frequency effects. The fluctuating stresses
caused by the passing of a seismic wave in a porous saturated
rock induce pore pressure gradients on the scale of individual
pores and cracks. At high frequencies, the gradients are
unrelaxed and the rock is stiffer than at low frequencies
where pore pressures are equilibrated through the pore space.
Gassmann equation applies at low frequencies (<100Hz)
because in that case there is sufficient time for fluid to flow
so that fluid pressure is equilibrated. Laboratory ultrasonic
measurements (10° Hz) are likely to be high frequency
measurements in the above sense of an unrelaxed pore fluid
state. How can we calculate the appropriate elastic moduli in
such a situation? The answer is given by using effective
media models once more, but with fluid inclusions and no
longer with dry inclusions. For instance the differential self-
consistent scheme considers that the inclusions are isolated.
The pore fluid pressure within each inclusion is consequently
variable from one to the other. This is an unrelaxed state and
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the modulus derived from this model is an unrelaxed one.
Combining porelasticity and effective media theory allows
thus to derive high and low frequency moduli and to predict
elastic wave dispersion (Fig. 14) (Le Ravalec et al., 1996a
and 1996b).

Local flow No flow

Pocket and local

Velocity

>
.
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Figure 14

Velocity dispersion resulting from local and pocket flow.
Low frequency velocity is derived from Gassmann equation
and effective media theory. High frequency velocity is
derived from effective media theory.

A realistic situation is that of partial saturation. We have
so far only considered dry or totally saturated rocks. The
saturation may be variable from one point to the other. In that
case, one can describe the rock as made of pockets (or
patches) of saturation S, in a matrix of saturation S,. Both the
pockets and the matrix are made of a mixture of dry and
saturated inclusions. Using for instance the differential self-
consistent scheme of effective media theory, it is possible to
derive the unrelaxed and relaxed moduli of a pocket and of
the matrix. If the frequency is low enough for the fluid
pressure to be equilibrated at the pocket scale, but high
enough to be unequilibrated at the matrix scale, fluid pressure
gradients exist at the pocket scale and velocity dispersion is
again expected (Fig. 14).

The dispersion mechanisms at local scale and at pocket
scale are frequency and scale effects which have to be taken
into account in many different situations: extrapolation from
laboratory data to field data, interpretation of saturation
hysteresis, interpretation of seismic waves anomalies.

CONCLUSION

The concept of effective stress in rock mechanics covers very
different notions, as summarized in Figure 15. It firstly
applies to the relationship between stresses and strains.

There, the effective stress concept, as pointed out by Coussy
(1991) is a consequence of the constitutive law. At the
microscopic level, the corresponding mechanisms to
be considered are the grain deformation, the cement
deformation and the grain displacement.

The concept is then applied to criteria (shear failure, limit
of the elastic domain, plasticity criterion) and the effective
stress concept involves a stress-stress relation. At the
microscopic level, the mechanisms are inter and intra-
granular cracking leading to rock splitting.

The concept is then applied to rock properties changes.
For mechanical properties the relation between mechanical
properties, stresses and pressure should be derived from
energy considerations. For transport properties, it should be
derived from microscopic considerations, linking structural
changes with pressure and macroscopic stresses.

Effective stress concept

C,p |y
. ' v
Constitutive Criteria Rock properties
law: G, € o, 0o changes
Mechanical Transport
y properties properties
“Linkwith ™, T
{  structural '}
-._Changes .~
Figure 15

The effective stress concept in saturated media.

At a microscopic scale, use of specific descriptions of
the rock microstructure allows to calculate the effective
properties of the rock. Such a microscopic description is
complementary of the macroscopic one. Combining both
allows to investigate scale effects. The example of elastic
properties has been developed and it has been shown that the
frequency dependence of elastic waves in saturated rocks is
in fact a scale effect which can be accounted for within the
framework of poroelasticity and effective medium theory
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