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Abstract. In this work, we present the development of models for the prediction of the Equivalent Alkane
Carbon Number of a dead oil (EACNdo) usable in the context of Enhanced Oil Recovery (EOR) processes.
Models were constructed by means of data mining tools. To that end, we collected 29 crude oil samples orig-
inating from around the world. Each of these crude oils have been experimentally analysed, and we measured
property such as EACNdo, American Petroleum Institute (API) gravity and C20� , saturate, aromatic, resin,
and asphaltene fractions. All this information was put in form of a database. Evolutionary Algorithms (EA)
have been applied to the database to derive models able to predict Equivalent Alkane Carbon Number (EACN)
of a crude oil. Developed correlations returned EACNdo values in agreement with reference experimental data.
Models have been used to feed a thermodynamics based models able to estimate the EACN of a live oil. The
application of such strategy to study cases have demonstrated that combining these two models appears as
a relevant tool for fast and accurate estimates of live crude oil EACNs.

Symbols and acronyms

API American Petroleum Institute
CCC Concordance Correlation Coefficient
cEOR Chemical Enhanced Oil Recovery
EA Evolutionary Algorithms
EACN Equivalent Alkane Carbon Number
EACNdo Dead Oil EACN
EACNg Gas EACN
EACNlo Live Oil EACN
EOR Enhanced Oil Recovery
GA Genetic Algorithm
GC Gas Chromatography
GP Genetic Programming
HLD Hydrophilic–Lipophilic Deviation
MAE Mean Absolute Error
MGGP Multi-Gene Genetic Programming
MPLC Medium Pressure Liquid Chromatography
n-CV n-fold Cross-Validation
PCA Principal Component Analysis
QPPR Quantitative Property Property Relationship
QSPR Quantitative Structure Property Relationship

RMSE Root Mean Square Error
S* Optimal Salinity
SARA Saturates, Aromatics, Resins, Asphaltenes
SG Specific Gravity
SRK Soave-Redlich-Kwong
SVM Support Vector Machine

1 Introduction

Microemulsions are commonly encountered in many of
products or formulations dedicated to various domains such
as pharmaceuticals, cosmetics, or petroleum applications.
Among these latter, crude oil extraction after applying pri-
mary and secondary recovery methods can be roughly esti-
mated to half of the initial oil reservoir content, according
to the considered field [1]. The development of tertiary
recovery methods – Enhanced Oil Recovery (EOR) – has
gained interest especially with the increase of crude oil
prices [2]. The Chemical Enhanced Oil Recovery (cEOR)
technique involving combinations of alkali, surfactants
and/or polymers aims at decreasing water/oil Interfacial* Corresponding author: benoit.creton@ifpen.fr
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Tension (IFT) in order to mobilize the oil trapped by cap-
illary forces. Optimizing these combinations or formulations
to form an efficient microemulsion is a challenging and
time-consuming task considering that each potentially
eligible reservoir exhibits different conditions such as the
oil composition, brine salinity and hardness, pressure,
temperature.

The Hydrophilic–Lipophilic Deviation (HLD) concept
as proposed by Salager has been applied in numerous
studies to mimic phase behavior of {brine/surfactant/oil}
systems [3, 4]. When HLD value is zero, the Salager
relation linearly correlates the optimal salinity (S*) –

the logarithm of the optimum salinity in g/L – with
alcohol amount and type (f(A)), the temperature and
the Equivalent Alkane Carbon Number (EACN), see
equation (1) [5].

S� ¼ KðEACNÞ þ f ðAÞ þ aðT � T refÞ � Cc; ð1Þ
where Tref is set to 298.15 K, a is a temperature coeffi-
cient, Cc – the characteristic curvature – and K are
parameters related to the surfactant chemistry [6]. The
concept of EACN is commonly considered during surfac-
tant formulation design. It assumes that the EACN of
an oil is equal to the number of carbon atoms of the
n-alkane exhibiting a similar phase behavior. EACN of
the dead oil (EACNdo) – oil degassed at standard
conditions – are experimentally determined by means of
test tubes and salinity scans. It consists in identifying
the n-alkane matching {brine/surfactant/dead crude
oil} and {brine/surfactant/n-alkane} phase behaviors
[7, 8]. However, depending on the crude oil composition
several weeks may be necessary to reach the thermody-
namics equilibrium.

Bouton et al. proposed a Quantitative Structure Prop-
erty Relationship (QSPR) for the prediction of the EACN
of hydrocarbons by means of two theoretical descriptors,
i.e., the average negative softness and the Kier A3 [9], with
EACN values in between �4 and +35. More recently,
Lukowicz et al. proposed a QSPR based on COSMO-RS
r-moments to predict EACN of polar hydrocarbon oils
[10] and then extended their model to the case of aprotic
polar oils [11]. To determine EACN of hydrocarbon mix-
tures, Cayias et al. [12] and Cash et al. [13] proposed the
use of a mixing rule in which individual hydrocarbon
EACNs are weighted according to corresponding mole frac-
tions. In the case of live oils – oils containing dissolved gases
at specific temperature and pressure conditions – we
recently proposed an approach to predict the EACN of live
oil (EACNlo) on the basis of volumetric fractions of oil and
gas [14]. Indeed, Marliere et al. have experimentally shown
that EACN linearly varies with the gas volumetric fraction
[7]. Our EACNlo model necessitates the a priori knowledge
of the gas composition, gas to oil ratio, temperature and
pressure conditions, and the EACN of the dead oil. The vol-
umetric fractions of light hydrocarbons are estimated using
the Soave-Redlich-Kwong (SRK) equation of state [15] with
the volume correction as proposed by Péneloux et al. [16].
The use of our model for the prediction of live crude oil
EACN [14] would gain in relevancy developing methods

to predict crude oil EACNdo. A crude oil contains thou-
sands of diverse chemicals and the exact composition is
never known, as a consequence the combined use of above
mentioned models and mixing rules to predict EACNdo is
unrealistic.

During the past decade, we considered the use of data
mining based approaches to extract information from
databases and predict properties of complex fluids [17].
These approaches known by the acronym QSPR aim at
identifying non-obvious correlations between property val-
ues of the matter and some features rendering information
about the matter [18, 19]. In this work, we propose (i) the
creation of a database containing experimental EACNdo
values as well as results of experimental analysis for a ser-
ies of crude oils, (ii) the application of machine learning
methods to derive models for the prediction of crude oil
EACN values, and (iii) the use of developed models for
the prediction of live oil EACN for a set of crude oils.
The article is organized as follows: the next section deals
with materials and methods and gives all details regarding
the database creation and methods used to generate mod-
els, a subsequent section presents the predictive perfor-
mance of models and an application of generated models
to predict live oil EACN, and the paper ends with con-
cluding remarks.

2 Materials and methods

2.1 Experimental data and database creation

Wan et al. proposed a review and comparisons of applicable
approaches to experimentally determine the EACN of a
dead crude oil [20]. As detailed in previous works [7, 8],
all EACNdo values reported hereafter were obtained follow-
ing the method referred to as the direct method by Wan
et al.This method is mainly based on the use of equation (1)
and consists in performing several phase diagrams for a
{brine/surfactant/crude oil} system varying the salt con-
centration, i.e. a salinity scan. The S* for the {brine/surfac-
tant/crude oil} system is reached when the phase diagram
exhibits an equal repartition of the microemulsion between
the oil and the aqueous phase. The so-obtained salinity scan
and the S* value are then compared to those previously
obtained for similar conditions (surfactant formulation,
temperature, brine composition. . .) in the case of linear
alkanes such as n-decane (C10), n-dodecane (C12) and
n-tetradecane (C14). The EACNdo value for the crude oil
is finally determined by solving equation (1) using K and
Cc parameters obtained for C10, C12 and C14. This analyt-
ical methodology has been applied on 29 crude oils from
around the world, and obtained EACNdo values are
reported in Table 1. EACNdo values for crude oils of inter-
est lie in between 1.2 and 18.0. The experimental determi-
nation of EACNdo for crude oils requires days to weeks
to reach thermodynamic equilibrium depending on their
nature, whether they are light or heavy. The interest of a
fast and accurate theoretical method to predict EACNdo
for a crude oil thus becomes evident but its parameters
should be easily determined.
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The American Petroleum Institute (API) gravity mea-
sures whether a crude oil is lighter or heavier than water.
It is defined using the following expression:

API ¼ 141:5
SG

� 131:5; ð2Þ

with the Specific Gravity (SG) = qcrude oil/qwater, where
qcrude oil and qwater denote the density of the crude oil and
the density of water, respectively at 15.5 �C (60 �F).
Densities for the 29 crude oils were measured using an
Anton Paar density meter (model DMATM 4500 M) includ-
ing an oscillating U-tube sensor, and the uncertainty associ-
ated to density measurements is 0.1%. API gravity values
were then calculated using equation (2). Table 1 presents
API gravity values for crude oils #01 to #29, it reveals that
the set of crude oils covers a broad range of API gravity val-
ues from 11 to 50 denoting heavy and light crude oils,
respectively. It is interesting to note that in the set of crude
oils, crude oil #19 appears as an outlier in terms of API
gravity.

The Saturates, Aromatics, Resins, Asphaltenes (SARA)
analysis is a method based on fractionation to characterize
the crude oil content in terms of saturates, aromatics, resins,
and asphaltenes [21]. The basic idea is to divide the crude oil
into smaller fractions playing with oil component solubilities
in solvents such as linear alkanes. Different SARA method-
ologies have been described for instance varying the used
n-alkane, i.e. n-pentane or n-heptane changing the amount
of precipitated asphaltenes [22]. All considered crude oils
were characterized using a SARA analysis similar to that
used by Behar et al. [23], and the analytical procedure can
be briefly described as follows: Each crude oil is dissolved
in n-pentane at 43 �C, and the resulting solution is filtered
(Durapore� membrane in polyvinylidene fluoride with
0.45 lm pore size) to separate by-products from other crude
oil components. By-products are treated by adding dichlor-
omethane at the same temperature to recover the precipi-
tated asphaltenes, and fractions are weighted during the
entire procedure. An aliquote of the n-pentane rich solution
is analyzed by Gas Chromatography (GC) to quantify the

Table 1. Experimental EACNdo, API gravity, C20� fraction (%wt) and fractions (%wt) of saturates (Sat.), aromatics
(Aro.), resins (Res.), and asphaltenes (Asp.) measured for the 29 crude oils considered in this study.

Crude oil EACNdo API gravity C20� Sat. Aro. Res. Asp.

#01 18.0 22.3 31.36 21.01 15.62 27.49 4.52
#02 1.2 49.8 94.18 2.68 1.52 1.50 0.12
#03 12.0 27.6 39.71 11.81 13.42 19.63 15.42
#04 9.0 39.0 64.08 15.94 10.33 9.03 0.62
#05 14.7 37.9 12.60 13.45 23.90 38.58 11.48
#06 11.0 30.5 46.74 18.62 14.79 18.20 1.65
#07 17.5 29.5 24.39 38.59 7.62 22.69 6.70
#08 15.5 37.9 44.83 36.34 7.46 10.28 1.08
#09 13.5 37.5 50.77 36.81 4.63 6.86 0.93
#10 12.0 26.3 50.63 30.97 7.19 10.33 0.88
#11 6.7 28.9 50.49 22.12 10.27 16.45 0.66
#12 13.0 34.3 30.91 35.30 15.72 16.35 1.72
#13 14.0 22.6 39.90 10.24 12.32 19.58 17.97
#14 13.6 31.9 40.21 24.57 13.78 18.15 3.29
#15 15.5 37.8 29.26 44.41 9.39 15.35 1.59
#16 16.4 31.1 25.22 32.49 7.94 30.29 4.04
#17 12.4 24.4 39.29 19.52 12.31 22.26 6.62
#18 10.2 32.3 44.61 15.46 15.89 21.74 2.29
#19 13.6 11.0 13.87 13.21 16.64 40.26 16.03
#20 16.5 37.6 34.54 42.24 8.02 13.88 1.31
#21 7.2 30.9 45.07 26.51 12.33 15.09 1.00
#22 12.0 29.5 41.90 13.29 16.98 25.07 2.76
#23 13.8 26.1 25.41 12.08 20.02 24.28 18.21
#24 15.5 34.8 34.61 36.14 8.36 13.74 7.15
#25 16.5 35.9 32.67 40.51 6.73 15.24 4.85
#26 14.2 27.1 23.06 23.38 19.56 32.78 1.23
#27 11.9 23.7 40.38 25.88 14.22 18.68 0.84
#28 13.0 31.1 47.86 14.16 14.83 19.25 3.89
#29 12.5 27.5 46.10 27.19 11.24 11.64 3.83
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C20� fraction – the crude oil fraction containing compounds
with a number of carbon atoms lower than 20. An another
aliquote is evaporated and separated using Medium Pres-
sure Liquid Chromatography (MPLC) to characterize
weight amounts of saturates, aromatics, and resins. All frac-
tions are then standardized according to measured masses,
and the crude oil is assumed as the blend of C20� , saturates,
aromatics, resins, and asphaltenes. Table 1 presents results
of the SARA analysis for the 29 considered crude oils. Frac-
tions of saturates, aromatics, resins, and asphaltenes are
determined with associated uncertainties of 2%wt, in agree-
ment with conclusions drawn by Aske et al. [24]. Experi-
ments necessary to determined C20� , saturate, aromatic,
resin, and asphaltene fractions demand approximatively
4 days whatever the nature of the oil. Note that fractions
of saturates obtained with different SARA methodologies
should be similar, and that the Aro., Res. or Asp. fraction
determined with one SARA analysis should correlate with
its corresponding fraction issued from a different SARA
methodology. These assumptions result from comparisons
of data reported in Table 1 with fractions determined using
another SARA methodology (not shown here). From data
reported in Table 1, it is interesting to note that in this set
of crude oils, crude oil #02 appears as an outlier in terms
of C20� and SARA fractions.

Hereafter, each crude oil is characterized by descriptors
presented in Table 1, i.e. API gravity, C20� fraction and
fractions of saturates (Sat.), aromatics (Aro.), resins
(Res.), and asphaltenes (Asp.). The development of models
will then consist in relating EACNdo to descriptors leading
to relations between properties, i.e. Quantitative Property
Property Relationships (QPPR). Several works in the liter-
ature report correlations of crude oil properties with SARA
analysis outputs [25–30].

2.2 Modeling methods

2.2.1 Data sets

The accuracy of predictive QPPR (similarly to QSPR) is in
part related to the quality of data, hence the quality of the
database is a keystone for the success of such modeling
works. Possible correlations between descriptors have been
investigated by generating a correlation matrix by means of
the Materials Studio software [31]. No evidence of highly
correlated descriptors has been found, and the highest val-
ues in the correlation matrix were obtained for couples: Res.
with Aro. and Res. with C20� . Fan and Buckley proposed on
the basis of six medium-gravity dead crude oils (with API
gravity values from 22.6 to 37.2) a relation between API
gravity and SARA fractions [25]. No evidence of such a rela-
tion has been found in our data set. The best found corre-
lation between API gravity and SARA fractions has a
low coefficient of determination (R2 ’ 0.4). Data presented
in the Table 1 have been used to constitute our database.

As a preprocessing of the data, we performed a Principal
Component Analysis (PCA) applied on API gravity, C20�

and SARA fractions measured for the 29 crude oil samples.
Figure 1 presents projections of the 29 crude oils in the
space formed by the three main principal components
resulting from the PCA. The diagram thus provides a

representation of crude oil distributions in the chemical
space of our database. This distribution reveals that one
crude oil (crude oil #02) is isolated from all other samples
that thus confirms crude oil #02 as an outlier. In Figure 1,
each symbol is filled as a function of their EACNdo value,
and there is no obvious relation between the location of a
crude oil on the diagram and the value of its EACNdo.

Application of external validation has been shown as
necessary to validate model’s robustness when predicting
new compound property values, meaning candidates not
used during the model development [32]. One of the popular
methods is the n-fold Cross-Validation (n-CV) in which the
data set is randomly divided in approximately equal n por-
tions, the leave-one-out being its extreme version with n
equals the number of samples in the database. An aggregate
of (n�1) portions forms the Training set used to optimize
predictive models, the remaining portion constituting the
Test set. We emphasize that no data point belonging to
external sets is used to derived models. This procedure is
repeated n times choosing at each new fold another portion
of data as a Test set. From conclusions drawn during the
preprocessing of the database, we choose to impose crude
oils #01 and #02 in all Training sets in order to keep
EACNdo ranges constant. The 27 remaining crude oils were
randomly distributed into nine portions, therefore the
Training sets and Test sets represent 90% and 10% of the
database, respectively.

Perfomances of models are evaluated on both Training
and Test sets calculating values for some statistical indica-
tors such as the Mean Absolute Error (MAE), Root Mean
Square Error (RMSE), R2, and the Concordance Correla-
tion Coefficient (CCC) [33]. Chirico and Gramatica have
shown that the use of this latter coefficient is advocated
considering various scenarios such as location shifts, scale
shifts, and location plus scale shifts [34, 35].
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Fig. 1. Projections of crude oils on PC1, PC2 and PC3, the
three first principal components resulting from the PCA.
Symbols are filled using a colorbar and intensities are as follows:
low and high EACNdo values are indicated in blue and red,
respectively.
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2.2.2 Machine learning methods

The application of machine learning methods for thermo-
physical property predictions has been the subject of our
numerous past and ongoing research works [17]. From com-
parisons drawn in these previous studies, we have observed
that Support Vector Machine (SVM) based models outper-
form other evaluated learning algorithms such as neural
networks, partial least squares, Genetic Algorithm (GA).
However, the number of data points is in this work quite
small and we hereafter search for explicit multilinear equa-
tions that can be easely implemented in a spreadsheet. One
possible manner to generate multilinear models is to use
Evolutionary Algorithms (EA). EA are based on the Dar-
winian evolution theory of biological species in nature,
and they represent promizing methods for optimization
problems. When applied to regression problems, the resolu-
tion consists in the iterative evolution of a population of
equations initially randomly generated and respecting the
general following form:

Property ¼ k0 þ
XN

i¼1

kiGi; ð3Þ

where k0 is the inercept, ki denotes a weight associated to
the gene i (Gi), and N is the total number of genes in the
model. To derive models, two approaches were tested
varying from the level of information in genes.

In the first approach, a gene (see the proposed schematic
representation in Fig. 2) consists of a tree built by combining
descriptors (API gravity, fractions of C20� , Sat., Aro., Res.,
and Asp.) and mathematical functions (see Tab. 2) allowing
to catch non-linearity in property variation. Multi-Gene
Genetic Programming (MGGP) based models were gener-
ated using the Genetic Programming Toolbox for the Iden-
tification of Physical Systems (GPTIPS) coded in the
MATLABenvironment [36–38].We applied the tournament
method to select individuals in the population of equations
on the basis of their fitness and complexity. We fixed the
tournament size to 25 corresponding to 10% of the popula-
tion size. Generations are constructed by survival of fitter
individuals, and reproduction of individuals consists in
applying crossover as well asmutation operations to produce
child equations. The iterative procedure ends when one of
the fixed criteria such as maximum number of generations,
best fitness values is reached. Note that during the iterative
procedure, the structure of trees evolves through out cross-
over and mutation operations applied to sub-tree elements.
Clearly, the maximum numbers of genes and nodes per tree
must be limited to prevent overfitting problems. Addition-
ally, the maximum numbers of generations and runs –

repetition of the calculation – should be optimized to ensure
convergence of calculations for reasonable computational
ressources. Table 2 reports details about values and/or
ranges of investigated GPTIPS settings in this work.

In the second approach, a gene (see Eq. (3)) simply
stands for one of the descriptors. A GA based variable selec-
tion method was followed, and the Genetic Function
Approximation (GFA) as implemented in the Materials
Studio software was used to build multilinear models [31].
The GFA procedure consists in iterations of selection,

crossover, and mutation operations, coupled with objective
criteria such asR2 in order to extract the best fitting models.
In this work, the adjusted R2 was used as the objective cri-
teria. The initial population (i.e., initial number of equa-
tions) was set to 6, and the maximum generation number
to 50 000. This procedure was performed on each of the nine
Training sets, noting that the same decompositions (folds,
Training, and Test sets) are used during GFA and GPTIPS
based procedures.

3 Results and discussion

3.1 Development of QPPR models

In this section, we report various QPPR models to predict
EACN of dead crude oil knowing a series of experimental
data such as API gravity, C20� fraction, and fractions of sat-
urates, aromatics, resins, and asphaltenes, see Table 1. Two
machine learning methods based on EA were used: GFA
and GPTIPS.

Descriptor Descriptor

ConstantFunction

Function

Fig. 2. Schematic representation of a tree. Function stands for
a mathematical operator belonging to the function set (see
Tab. 2), for instance +, �, � or �. Descriptor denotes either API
gravity, fractions of C20� , Sat., Aro., Res., or Asp.

Table 2. Investigated parameter settings for the MGGP
based method.

Parameter Corresponding values

Function set +, �, �, �,
p
, exp, ln

Population size 250
Number of runs 1, 5, 10, 15, 20, 25, 30, 40
Tournament size 25
Maximum tree depth 4
Number of generations 100, 500, 1000, 2000
Maximum number of genes 1, 2, 3, 4, 5, 6
Maximum number of
nodes per tree

2, 4, 6, 8, 10, 12

Mutation events 0.10
Crossover events 0.85
Reproduction events 0.05
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During the development of GFA based models, the
maximum number of variables allowed to form equations
was set to four. This value meets the statistical criteria
n � 4k, where k and n are the number of variables in the
model and the number of data points in the Training set,
respectively [39]. GFA based models were optimized follow-
ing a 9-fold cross-validation procedure. Samples #01 and
#02 are fixed in Training sets, and therefore each of the
nine folds contains three randomly selected crude oils.
Equation (4) presents the so-obtained model. This model
is composed of three descriptors weighted by ki coefficients,
and a constant k0 as follows:

EACNdo ¼ k0 þ k1C20� þ k2Sat:þ k3Asp:; ð4Þ
ki values obtained considering successively each fold as
external data (not used during the optimization proce-
dure) are reported in Table 3. Equation (4) is in line with
some physical intuitions. For instance, the negative value
of k1 agrees with the fact that EACNdo should decrease
with increasing C20� fractions (the light fraction of the
crude oil). The opposite effect is observed through out
the positive values for k2 and k3, i.e. EACNdo values
should increase with Sat. and Asp. fractions (heavy frac-
tions of the crude oil). Note that the value obtained for
k0 roughly corresponds to the average of EACNdo values
in the database (12.9 points of EACN). Table 4 presents
performance characteristics for equation (4), calculated
as follows: (i) For all crude oils belonging to Test sets
and corresponding ki coefficients (see Tab. 3). For
instance, for crude oils belonging to Fold-01 we used
k0 = 13.761, k1 = �0.120, k2 = 0.141, and k3 = 0.112.
Performance characteristics reported in Table 4 so reflect
the predictive capabilities of GFA based models. (ii) For
all crude oils and average parameters (see Tab. 3). In this
case, no conclusion can be drawn regarding the predictive

capabilities of the GFA based model as all crude oils have
been indirectly involved in the learning procedure.

Figure 3 presents scatterplots of experimental EACNdo
versus predicted EANCdo values using equation (4) with
either parameters associated to each fold in Test set, or
average parameters. The diagram exhibits no huge differ-
ence between the two sets of parameters in terms of pre-
dicted EACNdo values. Values taken by some statistical
indicators as reported in Table 4 quantitatively confirm this
observation. Noting that EACNdo values for samples fixed
in Training sets (i.e., 18.0 and 1.2 for crude oils #01 and
#02, respectively) can only be predicted using average
parameters, and GFA based model fails in predicting the
EACNdo value for crude oil #01.

GP is a generalization of GA. The main difference
between GP and GA is that models obtained by the latter
are strings of weighted descriptors, while the former returns
tree expressions in which a node is either a descriptor, a
mathematical function or a coefficient. MGGP can be seen
as a combination of GA and GP as MGGP returns strings
of genes, each gene having a tree structure [40]. We have

Table 3. Parameter values for the GFA model presented in equation (4), determined using each fold as external data
(Test set). <> stands for the average of parameter values taken over the nine folds.

Fold-01 Fold-02 Fold-03 Fold-04 Fold-05 Fold-06 Fold-07 Fold-08 Fold-09 <>

k0 13.761 14.508 13.312 13.270 13.765 14.007 13.033 12.127 13.371 13.462
k1 �0.120 �0.133 �0.124 �0.120 �0.129 �0.132 �0.121 �0.116 �0.122 �0.124
k2 0.141 0.140 0.148 0.149 0.146 0.141 0.160 0.175 0.147 0.150
k3 0.112 0.056 0.162 0.140 0.129 0.154 0.146 0.180 0.146 0.136

Table 4. Performance characteristics for the GFA based
model. Values taken by some statistical indicators when
applied to predictions of equation (4) for crude oils in Test
sets (Pred.). <> stands for the average of parameter
values taken over the nine folds.

Pred. <>

MAE 1.32 1.25
RMSE 1.90 1.80
R2 0.702 0.732
CCC 0.827 0.846
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Fig. 3. Scatterplots of experimental EACNdo values versus
predicted EACNdo values using equation (4). Circles stand for
pure predictions using GFA based models while plus symbols
denote the use of average parameters.
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used MGGP to develop correlations able to catch possible
non-linearity effects in EACNdo modelling. In MGGP as
implemented in the GPTIPS, important settings should
be parameterized, for instance numbers of runs, genera-
tions, genes, nodes. To our knowledge there is no methodol-
ogy to parameterize GPTIPS and it often results from trials
and errors. Mohamadi-Baghmolaei et al. indicated that
some of MGGP parameters are commonly randomly set
[41], and Garg et al. proposed to adjust MGGP parameters
according to the nature of the regression problem [40, 42].
For our problem, the maximum number of genes has been
chosen according to the statistical criteria n � 4k, where k
and n are the number of variables (i.e. genes) in the model
and the number of data points in the Training set, respec-
tively. Considering both the database content and the
Training/Test splitting, a reasonable value for the maxi-
mum number of genes is 6. Regarding settings dedicated
to tree’s structure, the maximum number of nodes per tree
and the maximum depth of tree have been set to 12 and 4,
respectively. For settings related to convergence of calcula-
tions, the maximum number of generations and the maxi-
mum number of runs have been set to 2000 and 40,
respectively. In order to allow a great possibility in nonlin-
ear models, we have chosen a large number of mathematical
operators such as addition, subtraction, multiplication,
division, square root, exponential, logarithm. We propose
an approach to optimize the numbers of runs, generations,
genes, and nodes that will further be used to develop a
model. The convergence matter was first addressed, and
the trade-off between convergence, computational time,
and accuracy was treated as follows:

(i) The numbers of genes and nodes were set to their
respective maximum possible value in order to gener-
ate models with the highest complexity. We then
compared model’s performances exploring the space
formed by the number of generations discretized as
follows: 100, 500, 1000, and 2000, and by the number
of runs discretized as follows: 1, 5, 10, 15, 20, 25, 30,
and 40, as indicated in Table 2. Performances were
evaluated using the RMSE statistical indicator calcu-
lated over all samples in the dataset. No Training
and Test sets division was considered in this step as
the idea is to roughly select appropriate numbers of
runs and generations, leading to reasonable accuracy
and computational time. Figure 4 presents the power
law evolution of model’s performance as a function of
numbers of runs and generations. Clearly, models
poorly perform when optimized with only 100 gener-
ations. Considering 500, 1000 or 2000 generations
leads roughly to similar performances after 20 runs.
However, the deviation between raw data and the
corresponding power law is in the case of 2000 gener-
ations twice that obtained for 500 or 1000 genera-
tions (not shown here). Contour plots on Figure 4
indicate that for a similar computational cost, equiv-
alent performances are obtained with 500 or 1000
generations. The consideration of 30 runs seemed rel-
evant to ensure the convergence of calculations, and

in order to limit the computational time we selected
500 generations.

(ii) Numbers of generations and runs were respectively
set to 500 and 30, and models were developed all
along the space formed by the number of genes dis-
cretized as follows: 1, 2, 3, 4, 5, and 6, and by the
number of nodes discretized as follows: 2, 4, 6, 8,
10, and 12, as indicated in Table 2. Contrary to step
(i), Training and Test sets were considered here using
the nine folds previously generated for the GFA
based model development. For each point of the
space, sum of squared errors were calculated for Test
sets, and the optimum numbers of genes and nodes
were determined minimizing the total sum of squared
errors on Test sets. The optimization procedure led
to a number of nodes of 8 and a number of genes of 4.

The proposed optimization procedure applied to our
regressionproblemledtonumbersof runs, generations, genes,
and nodes of 30, 500, 4, and 8, respectively. Nine GPTIPS
based models were optimized following a 9-fold cross-
validation procedure, noting that the nine folds generated
for the GFA based model development have been reused.
Performances of models are presented in Table 5. All models
outperformGFA basedmodels, and exhibit RMSE values in
between 0.97 and 1.40. The model that best generalizes the
database has been developed using Fold-08 as Test set.
Details about this latter model such as the four weighted
genes and the intercept are presented in equation (5).

k0 ¼ Intercept ¼ �44:28;

k1G1 ¼ �0:39 Aro:
Asp: ;

k2G2 ¼ 0:30 exp Sat:
API�Aro:

� �
;

k3G3 ¼ 4:67� 10�5 API3 þ Sat:3 þ Res:3
� �

;

k4G4 ¼ 55:12 exp � exp Aro:ð Þð Þ:

ð5Þ
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Number of runs

0.8
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Fig. 4. Power law evolution of model’s performance (on the basis
of RMSE values) as a function of the number of runs, for number
of generations in between 100 and 2000. Contour plots (thin grey
lines) show lines that share the same computational cost.
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Clearly, each gene non-linearly contributes to the pre-
dicted EACNdo value, and the model involves all descrip-
tors excepted the C20� fraction. Figure 5 presents the
scatterplot of experimental EACNdo versus predicted
EANCdo values using equation (5). All data points are less
scattered from both sides of the bisector (predicted
EACNdo equals experimental EACNdo) as compared to
observations performed on Figure 3. Contrary to the
GFA based model, equation (5) well predicts crude oil
#01 with a value of 18.2. Although crude oil #02 has been
sensed as an outlier in terms of EACN value and composi-
tion, its EACN is well estimated using both GFA and
GPTIPS based models. The largest deviation between
experimental and predicted EACNdo values (2.5 EACN
points) is measured for crude oil #21, noting that none of
GPTIPS based models developed on each fold succeeds in
predicting this value and that the GFA based model also
failed in predicting this EACNdo value.

We investigated the sensitivity of equation (5) regarding
uncertainties associated to input data. Indeed, due to
filtration operations, evaporation losses and/or incomplete
solvent removal during SARA analysis, fractions of satu-
rates, aromatics, resins, and asphaltenes are determined
with associated uncertainties of about 2%wt [24]. API is cal-
culated from the density of the crude oil and using equation
(2). The uncertainty associated to density measurements is
0.1%. Although the fraction of aromatics is involved in
genes G1, G2, and G4, a 2%wt deviation applied on Aro.
fractions in Table 1 only slightly deteriorates predictions
withMAE and RMSE of 0.87 and 1.00, respectively. Perfor-
mances of equation (5) only falls to MAE = 0.96 and
RMSE = 1.12, considering a 0.1% deviation on density val-
ues and a 2%wt deviation on each SARA fraction (Tab. 1).

3.2 Application to the prediction of live crude oil EACN

Live oils are oils containing dissolved gases at specific tem-
perature and pressure conditions. Creton and Mougin pro-
posed a model based on thermodynamics to predict the
EACN of a live oil (EACNlo) knowing the EACN of the
dead oil (stock tank oil), reservoir pressure (P) and temper-
ature (T) conditions, as well as the gas to oil ratio (Rsi) [14].
This model is based on a volumetric mixing law applied to
EACNdo and EACN of gas (EACNg), as follows:

EACNlo ¼ ð1� /gÞEACNdoþ /gEACNg; ð6Þ

where, EACNg equals the sum of n-alkane carbon atom
numbers (ACN, alkane carbon number) weighted by their

respective volumetric fraction, i.e. when solely methane is
used as representative gas: EACNg equals 1. Molar vol-
umes were calculated using the SRK [15] Equation of
State (EoS) applied with the volume correction proposed
by Péneloux et al. [16]. Creton and Mougin validated their
model for several crude oils covering broad ranges of reser-
voir characteristics, and studied impact of pressure, tem-
perature, and gas composition on predicted live oil
EACNs [14]. These latter crude oils are part of our data-
base (Tab. 1), and we propose hereafter to feed the model
proposed by Creton and Mougin with EACNdo values
obtained using equation (5). Table 6 presents for crude
oils in common between reference [14] and this work, some
oil properties and their original reservoir characteristics.
Figure 6 presents scatterplots of experimental EACNlo
values versus predicted EACNlo values. Using the full
predictive approach – the model proposed by Creton
and Mougin together with equation (5) – a MAE of 1.5
EACN point is observed on EACNlo predictions as com-
pared to a MAE of 1.1 EACN point when experimental
EACNdo are used to feed the model by Creton and
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Fig. 5. Scatterplots of experimental EACNdo values versus
predicted EACNdo values using equation (5).

Table 5. Performance characteristics (statistical indicators) GPTIPS based models applied to crude oils in the
database. Fold-0i means that the fold is external to the learning procedure.

Fold-01 Fold-02 Fold-03 Fold-04 Fold-05 Fold-06 Fold-07 Fold-08 Fold-09

MAE 0.80 0.83 0.94 1.04 0.93 0.89 0.88 0.81 0.96
RMSE 1.02 1.30 1.27 1.40 1.18 1.08 1.07 0.97 1.38
R2 0.915 0.861 0.868 0.838 0.886 0.903 0.905 0.922 0.843
CCC 0.954 0.925 0.934 0.919 0.940 0.951 0.950 0.960 0.921
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Mougin [14]. Therefore, the proposed combining of the
two models appears as a relevant tool to estimate EACN
of live crude oils.

3.3 Conclusions and perspectives

In the context of EOR, some chemical EOR techniques
involve surfactant formulations to mobilize oil trapped by
capillary forces. In order to assist and speed up experiments
necessary for the formulation design, we recently proposed a

model based on thermodynamics to predict EACN of live
crude oil. This model consists in a linear mixing rule based
on volumetric fractions of the EACN of the dead crude oil
and the EACN of the representative gas. The objective of
the present work was to use data mining based approaches
to investigate and develop relations between the EACN and
the composition of dead crude oils.

We collected 29 crude oil samples originating from
around the world and performed analysis to obtained com-
positional information. Each sample has been described in
terms of EACNdo, API gravity, and fractions of C20� , sat-
urates, aromatics, resins, and asphaltenes. The database
covers a broad range of API gravity with values ranging
from 11 to 50 denoting heavy and light crude oils, respec-
tively. Machine learning methods based on EA have been
applied to our database in order to generate QPPR to pre-
dict EACNdo. In the case of MGGP, we proposed an
approach to parameterize GPTIPS. Obtained QPPR mod-
els were compared to each other in terms of capacity to gen-
eralizing the database. Note that this work could be done
using any SARA analysis but fractions of C20� , saturates,
aromatics, resins, and asphaltenes within the database must
be consistent. The best QPPR model was then used to feed
a thermodynamics based model to predict EACNlo for
crude oils. Comparisons carried out demonstrate that the
proposed combining of the two models appears as a relevant
tool for fast and accurate estimates of live crude oil EACNs.

To the best of our knowledge, this work represents the
first attempt to predict EACN of crude oils using data min-
ing. When new samples of crude oils will be available, API
gravity, and fractions of C20� , saturates, aromatics, resins,
and asphaltenes will be experimentally determined. The
new samples will be used to supplement our database.
The QPPR model (Eq. (5)) developed in this work will be
applied to predict EACNdo values for the new crude oils.
According to the accuracy of the property predictions and
as the QPPR model is more statistical than a physical
law, the QPPR model may necessitate an update using
MGGP.

Acknowledgments. Authors wish to thank the EOR Alliance
team for their technical assistance and all relevant discussions.

Table 6. Summary of live crude oil properties. For each case study, the predicted EACNdo using equation (5), reservoir
temperature and pressure, the gas to oil ratio, the solution gas composition, and experimental and predicted EACNlo
values are indicated [14].

Crude oil #04 #08 #10 #11 #12 #13 #14 #15 #20 #23 #24 #25 #26

EACNdo pred. 7.9 13.9 11.4 13.4 13.4 12.3 12.8 16.7 15.8 14.1 15.8 16.9 14.3
T (�C) 120 95 82 110 110 100 102 95 65 108 75 85 40
P (bar) 180 143 190 215 155 186 90 125 83 82 140 108 125
Rsi (Sm

3/m3) 214 137 84 52 40 48 53 69 54 35 75 77 51
xmethane 0.339 0.418 0.446 0.348 0.291 0.345 0.216 0.294 0.400 0.261 0.290 0.289 0.359
xethane 0.256 0.099 – – – – 0.067 0.082 – – 0.107 0.092 –

xpropane – 0.097 – – – – 0.054 0.069 – – 0.069 0.106 –

xn-pentane 0.022 – – – – – – – – 0.016 – – –

EACNlo exp. 6.5 9.0 12.0 13.0 13.0 14.0 10.0 11.5 13.5 13.0 11.0 11.5 12.0
EACNlo pred. 5.1 10.0 9.5 11.8 12.1 11.0 11.1 13.9 13.8 12.7 13.1 13.8 12.8
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Fig. 6. Scatterplots of experimental EACNlo values versus
predicted EACNlo values. Circles stand for the full predictive
approach (the model proposed by Creton and Mougin together
with Eq. (5)) while plus symbols denote the use of the model
proposed by Creton and Mougin together with experimental
EACNdo.
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