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ANALYSE DE VITESSE PAR CORRECTION
NON HYPERBOLIQUE DES INDICATRICES
DANS LES MILIEUX ANISOTROPES DE SYM�TRIE
ARBITRAIRE : �TUDE SUR DES DONN�ES
SYNTH�TIQUES ET R�ELLES.

Une m�thode fiable, permettant dÕestimer les param�tres dÕinter-
valle (i.e. la vitesse de Ç normal move-out È VNMO et le param�tre
dÕanisotropie h) dans les milieux tabulaires transversalement iso-
tropes � partir des ondes P r�fl�chies, a �t� propos�e r�cemment
par Alkhalifah (1997). Elle est bas�e sur lÕ�quation du temps de
trajet r�fl�chi d�velopp�e par Tsvankin et Thomsen (1994). Cette
m�thode, test�e sur des donn�es synth�tiques et exp�rimentales,
consiste en une analyse de coh�rence le long dÕindicatrices non
hyperboliques (i.e. comprenant les longs d�ports source-r�cepteur)
permettant dÕ�valuer les param�tres effectifs suivis dÕun processus
de Dix pour lÕestimation des param�tres dÕintervalle. DÕautre part,
Sayers et Ebrom (1997) ont propos� de leur c�t� une autre
expression non hyperbolique du temps de trajet ainsi que les
expressions de Dix correspondantes valables pour les milieux
tabulaires pr�sentant des anisotropies azimutales. La m�thode a
�t� test�e sur des mod�les synth�tiques homog�nes pr�sentant
des anisotropies vari�es.

Nous proposons ici une g�n�ralisation de la m�thode pr�sent�e
par Alkhalifah, applicable � des milieux tabulaires dÕanisotropie
quelconque mais mod�r�e (i.e. avec des degr�s dÕanisotropie pou-
vant aller jusqu'� environ 20 %). La param�trisation de la vitesse
est une extension naturelle de celle utilis�e par lÕauteur pr�c�dent.
Elle sÕexprime � lÕaide des param�tres g�n�ralis�s de Thomsen
(1986) d�velopp�s par Mensch et Rasolofosaon (1997).

Dans un premier temps, la m�thode est appliqu�e sur des donn�es
synth�tiques obtenues � partir dÕun mod�le � 6 couches pr�sentant
des anisotropies vari�es (� la fois le type et le degr�). La robustesse
de la m�thode y est d�montr�e. En effet, tous les param�tres dÕin-
tervalle (ici VNMO et la vitesse horizontale VH) sont estim�s de fa�on
satisfaisante (erreur < 2 %, � comparer aux degr�s dÕanisotropie qui
varient de 15 � 20 %) et ce pour tous les azimuts. La m�thode est
ensuite appliqu�e sur des donn�es r�elles de mer du Nord compre-
nant trois profils sismiques se croisant au niveau dÕun puits.
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VELOCITY ANALYSIS USING NONHYPERBOLIC
MOVEÐOUT IN ANISOTROPIC MEDIA
OF ARBITRARY SYMMETRY:
SYNTHETIC AND FIELD DATA STUDIES

A robust method for estimating the interval parameters (i.e. the
normal move-out velocity VNMO and the anisotropy parameter h)
of horizontally layered transversely isotropic media from reflected
PÐwaves data has been recently proposed by Alkhalifah (1997)
based on move-out equation from Tsvankin and Thomsen (1994).
The method, tested on synthetic and field data, is based first on
semblance analysis on nonhyberbolic (i.e. long spread) move-out
for the estimation of the effective parameters, and then on a layer
stripping process. Sayers and Ebrom (1997) recently proposed
another nonhyperbolic traveltime equation and a corresponding
interval velocity analysis which can be used for azimuthally
anisotropic layered media. The method was tested on synthetic
and physical model data in homogeneous anisotropic media of
various symmetry.

Here we propose a generalization of the method proposed by
Alkhalifah, which can deal with arbitrary, but moderately (i.e.
anisotropy strength of roughly 20%), anisotropic layered media.
The parametrization is a natural extension of the parametrization
used by the previous author and based on generalized Thomsen's
parameters (Thomsen, 1986) proposed by Mensch and
Rasolofosaon (1997).

The method is first applied to synthetic data on a six layer model
of contrasted anisotropy (type and magnitude). The robustness of
the method is demonstrated. All the interval parameters (here
VNMO and the horizontal velocity VH) are estimated with
reasonable errors (typically < 2%, to be compared with the
considered anisotropies of about 15 to 20%) at all azimuths. The
method is also tested on field data from the North Sea including
three 2D seismic lines intersecting at a well location.

ANçLISIS DE VELOCIDAD UTILIZANDO
MUDANZA NO HIPERBîLICA EN MEDIOS
ANISOTRîPICOS DE SIMETRêA ARBITRARIA :
ESTUDIOS DE DATOS SINT�TICOS Y DE TERRENO

Un s�lido m�todo para estimar los par�metros del intervalo (es
decir, la velocidad normal de mudanza VNMO y el par�metro
anisotr�pico h) en medios transversalmente isotr�picos de capas
horizontales a partir de datos de ondas P reflejas ha sido
propuesto recientemente por Alkhalifah (1997) en base a la
ecuaci�n de desplazamiento de Tsvankin y Thomsen (1994). El
m�todo, estudiado en datos sint�ticos y de terreno, se basa en
primer lugar en el an�lisis de similitud de la mudanza no
hiperb�lica (es decir, de larga difusi�n) a partir de la estimaci�n de
los par�metros efectivos, y posteriormente en un proceso de
remoci�n de capas. Sayers y Ebrom (1997) propusieron
recientemente otra ecuaci�n para el tiempo de recorrido no
hiperb�lico y un an�lisis correspondiente de velocidad del intervalo
que puede utilizarse en medios estratificados azimutalmente
anisotr�picos. El m�todo fue probado sobre datos de modelos
sint�ticos y f�sicos de medios anisotr�picos homog�neos de
simetr�a variada.

Proponemos aqu� una generalizaci�n del m�todo antes propuesto

por Alkhalifah que puede tratar medios estratificados arbitraria

pero moderadamente anisotr�picos (es decir, con potencia

anisotr�pica de aproximadamente 20 %). La parametrizaci�n es

una extensi�n natural de la parametrizaci�n utilizada por el autor

antes mencionado y se basa en par�metros de Thomsen

generalizados (Thomsen 1986) propuestos por Mensch y

Rasolofosaon (1997).

El m�todo es aplicado en primer lugar a datos sint�ticos de un

modelo de seis capas con anisotrop�a contrastada (tipo y

magnitud). Queda demostrada la solidez del m�todo. Todos los

par�metros del intervalo (aqu� VNMO y la velocidad horizontal VH)

son estimados con errores razonables (error t ipo < 2 %,

comparado con las anisotrop�as consideradas, de 15 a 20 %) a

todos los azimut. El m�todo es probado tambi�n con datos de

terreno del Mar del Norte, que incluyen tres l�neas s�smicas

bidimensionales que intersectan en la ubicaci�n de un pozo.
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INTRODUCTION

Many field and laboratory measurements have
proved the existence of elastic anisotropy in
sedimentary rocks. These observations, together with
the need of a better exploitation of seismic data records,
make it necessary now to take into account the effects
of anisotropy on seismic data analyses. The theoretical
complexity of the description of the anisotropic wave
propagation, due to the large number of elastic
parameters required in anisotropic media, prevented the
use of anisotropy in the conventional processing tools,
despite some evidence of its existence (Helbig, 1994;
Backus, 1962).

With the work of Thomsen (1986), under the weak
anisotropy approximation in transversely isotropic
media with a vertical axis of symmetry (TIV), a notable
simplification to the problem was provided and a great
step was passed towards the understanding of the
influence of anisotropy on the seismic signatures of
body waves. Since then many authors used this
simplification to introduce transverse isotropy in the
conventional processing tools, especially in the velocity
analysis process (Byun et al., 1989; Sena, 1991;
Tsvankin and Thomsen, 1994). Such an approach has
been recently extended to TI media with non vertical
symmetry axis and to orthorhombic media (Grechka
and Tsvankin, 1996; Tsvankin, 1997). It remains,
however, that the symmetry of geologic media is
generally unknown. Furthermore, in the coordinate
system associated to the seismic acquisition geometry,
which is not necessarily aligned with the
“crystallographic” axes of the prospected formations,
the media may apparently be triclinic (Helbig, 1994).
Thus, we address the following question: Is it possible
to generalize the above approaches and deal with media
of arbitrary symmetry type? The starting point is to
provide a relevant parametrization of the medium. This
was achieved by Mensch and Rasolofosaon (1997)
which, under the weak anisotropy assumption,
developed simple analytic expressions of the velocities
of the three bulk waves by introducing a generalization
of Thomsen's formulation to the general case of
anisotropy. The coefficients of perturbation are
dimensionless parameters which are the natural
generalization of Thomsen's transversely isotropic
parameters e, d and g.

In this work, we use this velocity parametrization to
develop a long spread (i.e. nonhyperbolic) move-out

analysis (using semblance analysis) for reflected
qP–waves valid in horizontally layered media of
arbitrary symmetry. It will be shown, in particular, that
in the weak anisotropy limit (a common case in
practice), for each fixed azimuth the kinematic problem
reduces to a TIV equivalent one. This is a very
important result since it implies that most of the
developments which were achieved for the TIV case
can also be used in the most general case of anisotropy
(i.e. triclinic) with an acceptable numerical accuracy.
This fact is demonstrated here at least for the
nonhyperbolic move-out analysis.

In the following, we first present a brief review of the
qP-wave velocity parametrization developed by
Mensch and Rasolofosaon (1997) in the general case of
anisotropy. We then derive the time-distance equation
and the generalized Dix formulation used in this work.
After a description of the “anisotropic” semblance
analysis process, we will show a test of the method on a
synthetic model in order to demonstrate the robustness
of the algorithm. Finally, we present the results of an
application on real data from the North Sea.

1 THEORETICAL BACKGROUND

The main difficulty in the general case of anisotropy
is the complexity of the velocity and the polarizations
expressions since they include a large number of
independent parameters. Yet, the weak anisotropy
assumption allows us to overcome this difficulty as we
will see below.

Consider a homogeneous anisotropic medium where
space is referenced by a right handed coordinate system
xyz with the z-axis vertical, downwards (Fig. 1).

Figure 1

System of coordinate axes. n is the unit propagation vector
referenced by the declination angle q and the azimuthal angle l.
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For a plane wave propagating in the direction n,
characterized by two polar angles (i.e. the declination q
and the azimuth l), the velocity expression, in
transversely isotropic media, is given, under the weak
anisotropy assumption, by the first order equation
(Thomsen, 1986):

(1)

VP0 is the vertical velocity, Sq = sin(q), Cq = cos(q)
and e and d are the well known dimensionless
anisotropy parameters which are combinations of the
elastic stiffness coefficients of the TIV material. 

Unlike the conventional exact formulation (that
involves the CIJ coefficients, see Auld (1973)), the
previous linearized formulation (Eq. (1)) is particularly
useful in understanding the behaviour of wave
propagation in TIV media. This fact is well stressed by
different authors (e.g. Tsvankin, 1996). For our
purpose, we need to recall that the parameter e
expresses the relative difference between the horizontal
velocity and the vertical velocity, that is to say:

which is commonly called the “P-wave anisotropy”.
Note from Equation (1) that e controls the propagation
at large angles q (near horizontal directions). 

The parameter d has a simple physical interpretation
in a reflection experiment. Consider a homogeneous
TIV layer on which a reflection experiment is
performed. If   X is the source-receiver distance and T
the traveltime of the reflected qP-wave, the initial slope
of the T2-X2 curve is 1/V2

NMO, where VNMO is the normal
move-out (NMO) velocity. In this context, the parameter
d represents the relative difference between the normal
move-out velocity and the vertical velocity, i.e. 

(Thomsen, 1986)

It is clear, from Equation (1) and from the above
interpretation, that the parameter d dominates the
propagation at near vertical directions.

A natural continuation of the work of Thomsen was
achieved by Mensch and Rasolofosaon (1997). In their
work, these authors generalized the velocity

parametrization to weakly anisotropic media of
arbitrary symmetry (triclinic). With the geometry given
in Figure 1, the qP-wave velocity in the direction n, in
media of arbitrary symmetry, now depends on both the
declination q and the azimuth l and is given by:

(2a)
where

(2b)
and

(2c)

The notations of Equation (2) are similar to those of
Equation (1), that is to say Sl = sin(l) and Cl = cos(l).
The odd terms in q are not explicitly developed for
reasons which will be discussed later. The weighting
factors dx, dy, dz, ex and ey appearing in Equations (2b) and
(2c) are dimensionless anisotropic parameters which are
the generalization to arbitrary symmetry of the Thomsen's
TIV parameters d and e. As for the TIV case, they are
simply a combination of the elastic stiffness coefficients
of the medium (see Appendix). The subscripts x, y and z
indicate that these parameters are relative to the plane
normal to the x-, y- and z-axis respectively. Furthermore,
except for dz, these parameters have exactly the same
physical interpretation in the correponding coordinate
planes as the Thomsen's TIV coefficients, i.e.:

, ,

, 

(Mensch and Rasolofosaon, 1997), where 

and are respectively the P-wave NMO
velocity and the P-wave horizontal velocity in the plane
p (p = xz or yz).

The remaining weighting factors cz, e16 and e26 are
new dimensionless anisotropic parameters which are
also combinations of the elastic coefficients of the
medium (see Appendix). They are closely related to
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eigendirections in the azimuthal variations of the
anisotropic functions dl and el given in Equations (2b)
and (2c) respectively. In this connection, as we will see
below, the normal move-out velocity VNMO for a given
azimuth l is given in the general case of anisotropy by:

VNMO(l)Å VP0 (1+dl) (Tabti et al., 1997)

We can show that the azimuthal variation of the
normal move-out velocity is elliptical. This result is
valid for arbitrary heterogeneous anisotropic media as
demonstrated by Grechka and Tsvankin (1996). In a
homogeneous medium the azimuth j of one of the axes
of this ellipse is simply defined by:

(Rasolofosaon, 1997)

In TIV media we have:

cz = e16 = e26 = 0 , ex = ey = e ; dz = 2e and dx = dy = d'

The parameter d' is equivalent to the Thomsen's
parameter d in the weak anisotropy limit, the difference
being notable only for strong amounts of anisotropy
(Sayers, 1994; Mensch and Rasolofosaon, 1997).
Hence, Thomsen's Equation (1) can be considered as a
particular case of the more general Equation (2). 

More interesting is the form of the generalized
Equation (2). It is clear that, if we except the odd terms
in q, Equation (2) is formally identical to the TIV
Equation (1) provided that d is replaced by dl and e
by el.

The reason for which the odd terms in q are not used
here is that, for the geometry of propagation that interests
us here (reflection surveys), these odd terms cancel each
other along the symmetric raypath. More precisely, if we
consider the raypath of a reflected qP-wave in horizontaly
layered medium of arbitrary symmetry, we suppose that
in each layer the up going ray always propagates with an
opposite q angle with respect to the downgoing ray. This
is rigorously true for all the symmetry types down to
monoclinic (with a horizontal symmetry plane). For the
triclinic case we can show that for kinematic problems
this assumption remains numerically accurate in the weak
anisotropy limit since the deviation of the rays from the
previous raypaths is of the second order in the
perturbation (i.e. the anisotropic parameters).

Moreover, we can make an other simplification by
considering that in horizontally layered media of

arbitrary but weak anisotropy, the overall raypaths in a
reflection experiment are confined to the vertical plane
containing the source and the receivers. Although this is
not rigorously true except for TIV media, we can also
show that the deviation of the rays from the vertical
plane is of the second order in perturbation and thus
negligible. This fact was largely verified on numerous
models (Tabti et al., 1997) and was already emphasized
by Chapman and Pratt (1992).

The previous statements lead to a very interesting
conclusion. If we consider a reflection survey in a
horizontally layered medium of arbitrary symmetry, for
each azimuth l, the kinematic problem can be treated as
a TIV equivalent problem with d = dl and e = el. It
is clear that in the general case of anisotropy the
parameter el represents, for each azimuth l, the
fractional difference between the horizontal velocity

and the vertical velocity in the vertical
plane of azimuth l, i.e:

namely the P-wave anisotropy in that plane. Likewise,
the parameter dl represents the fractional difference
between the normal move-out velocity VNMO(l) and the
vertical velocity in the vertical plane of azimuth l, i.e.:

It is straightforward from the above conclusion that
any analytical development achieved in the case of
horizontally layered TIV medium, that deals with
P-waves reflection surveys and which uses Thomsen's
formulation, can be directly applied to media of arbitrary
symmetry only by replacing d by dl and e by el.

Hence, using the results in TIV media from Tsvankin
and Thomsen (1994), Alkhalifah and Tsvankin (1995)
and Alkhalifah (1997), the long spread time-distance
curve of the reflected qP-wave in a horizontally layered
medium of arbitrary symmetry is given, for a profile
lying along an arbitrary azimuth l (Fig. 2), by:

(3)
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where T(X, l) is the traveltime for the offset X and for
the azimuth l, T0 is the zero offset traveltime and
VNMO (l) is the average normal move-out velocity for
azimuth l. The parameter h(l), introduced in TIV
media by Alkhalifah and Tsvankin (1995) and refined
by Alkhalifah (1997), is the effective anisotropic
parameter which is in our case azimuth dependent. 

Figure 2

Reflection geometry in a weakly anisotropic horizontally
layered medium. The raypath is contained in the vertical
palne of azimuth l.

The equations for the average quantities VNMO and
h(l) in the general case of anisotropy are formally
identical to the corresponding equations in TIV media
(Alkhalifah, 1997) but are all azimuth dependent. The
normal move-out velocity is given by:

(4)

where:  

is the interval normal moveout velocity in the vertical
plane of azimuth l, VP0(t) is the interval vertical
velocity and dl(t) is the interval move-out parameter
for azimuth l given by Equation (2b).

The effective anisotropic parameter is expressed as:

(5)

where: 

is the interval anisotropic parameter, el(t) and dl(t)
being given by Equations (2b) and (2c). We introduce at
this stage the average horizontal velocity corresponding
to the azimuth l. It is given by:

(6)

The very good fit, even at large offsets, between the
predicted traveltime (Equations (3), (4) and (5)) and the
corresponding exact traveltime was clearly
demonstrated by Alkhalifah (1997) in TIV media. Our
tests (not presented here) also show that, in weakly
anisotropic (anisotropy strength of roughly 20%) media
of arbitrary symmetry, these equations predicts, at all
azimuths, the exact traveltimes with the same very good
fitness as in TIV media.

In order to compute the interval quantities appearing
in the above equations, namely VNMO(t, l) and hl(t),
from the average quantities (i.e. in the inverse problem)
one can deduce the generalized Dix formulae by simple
manipulations of Equations (4) and (5). 

Furthermore, if the depths of the reflectors are known
from additional experiments (VSP or logs) and provided
that a sufficient number of azimuth profiles are
available, one can compute the generalized anisotropic
parameters appearing in Equations (2b) and (2c). The
depth is necessary to first compute the left arguments of
Equations (2b) and (2c). As pointed out by many
authors, it is in fact impossible to estimate the depths of
geologic interfaces only from reflections surveys in
anisotropic media. Note from Equations (2b) and (2c)
that at least 5 independent azimuths are necessary to
make a full inversion of the anisotropic parameters in
the general case of anisotropy. Only 3 independent
azimuths are necessary to invert for orthorhombic
media. Three is also the minimum number of
independent azimuths necessary to estimate eigen

V Vh NMO( ) ( ) ( )l l h l= +1 2

h t
e t d t

d tl
l l

l

( )
( ) ( )

( )
=

-

+1 2

h l
l

t l h t t
l

( )
( )

( , ) ( )= +[ ] -

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

ò
1

8

1
1 8 1

0

4
4

0

0

T V
v d

NMO
NMO

T
×

vNMO(t,l) = VP0 (t) 1+ 2dl (t)

V
T

vNMO NMO

T
2

0

2

0

1 0

( ) ( , )l t l t= ò d

x

z

S

X

0
y

l
g



VELOCITY ANALYSIS USING NONHYPERBOLIC MOVEOUT IN ANISOTROPIC MEDIA OF ARBITRARY SYMMETRY:
SYNTHETIC AND FIELD DATA STUDIES

REVUE DE L’INSTITUT FRANÇAIS DU PÉTROLE
VOL. 53, N° 5, SEPTEMBRE-OCTOBRE1998

561

directions of the normal move-out velocity which can be
related to dominant vertical fractures for instance
(Grechka and Tsvankin, 1996; Tabti et al., 1997). In
orthorhombic media the eigen directions of the normal
move-out velocity coincide with the eigen directions of
the medium. 

To close this section, it is worth noting that, in
horizontally layered weakly anisotropic media of
arbitrary symmetry, one can not distinguish between a
triclinic layer and its equivalent monoclinic layer with a
horizontal symmetry plane (i.e. obtained by vanishing
all the odd terms in Equation (2a)) with only a
reflection survey. However the important thing to bear
in mind is that we are still able to investigate triclinic
layers and determine some of their characteristics
without loss of accuracy for other more symmetric
layers situated below it (see inversion of complex
synthetic model in Tabti et al., 1997).

2 SEMBLANCE ANALYSIS USING
NONHYPERBOLIC MOVE-OUT

The advantage of Equation (3) is that, for a given
azimuth l, even in media of arbitrary symmetry only
two parameters (for instance VNMO(t, l) and hl(t), in
Equation (3)) are necessary to describe the long spread
time-offset curves, provided that the zero offset time is
given. On the other side, as demonstrated in the
previous section, the kinematics as given by Equation
(3) is “totally” decoupled azimuth by azimuth. As we
will see below, this is a great simplification to the
problem of velocity analysis when using the semblance
approach in the inversion process.

Figure 3 illustrates the way the semblance analysis is
conducted in the general case of anisotropy. 

First of all, as suggested by Figure 3, we will use in
our analysis the average horizontal velocity VH(l) given
by Equation (6) instead of the effective anisotropic
parameter h(l) of Equation (5). This choice is more
suitable for the numerical calculations as it allows us to
deal with quantities of the same dimension and of the
same order of magnitude. 

Thus, in our case, for a given reflector and for each
azimuth, the traveltime depends upon the offset X, the
zero offset traveltime T0 and the two average velocities
VNMO and VH. The offset X is known and the zero offset
traveltime can be determined prior to the anisotropic
semblance analysis, for instance by doing an isotropic 

Figure 3

Anisotropic semblance analysis: measure of signal coherency
along different time-lag trajectories caracterized by a fixed T0
and different pairs of (VNMO, Vh). The cross correlations are
evaluated over a “time gate” around each of the time-lag
trajectories.

velocity analysis using only short offsets. This way of
determining T0 allows us at the same time to fix the
velocity windows within which the two average
velocities are scanned on during the semblance process.
In fact, since the anisotropy is assumed to be weak, the
widths of the scanning windows can be reduced around
the value of the isotropic normal move-out velocity.
Furthermore, this procedure leads to a significant
reduction in the computation time. Naturally, the
scanning windows can be extended in the case the
anisotropy is stronger than expected.

Once T0 is determined, VNMO and VH are scanned
within the velocity windows and different time-offset
curves are obtained (Fig. 3). Using the notations
indicated in the Figure 3, the semblance function is
computed for each couple of VNMO and VH (therefore
for each of the time-lag trajectories (Fig. 3)) as follows
(Taner and Koehler, 1969):

(7)S

f t

M f t
i

i
it

i i
it

( )

( )

( )
t

t

t
=

+
é

ë
ê

ù

û
ú

+

åå

åå

i

2

2

... 1                      2                 3   ......          i     .... M  Traces 

Lag trajectories

of signal

(T = F[T0, X, Vnmo, Vh])

ti

T
im

e 
 t

T0

Offset   X

Time
gate



where fi(t + ti) is the sample value (amplitude) of the ith
trace at time t + ti, ti is the move-out time for the ith
trace and M the number of traces. The semblance
function is a measure of the signal coherency among
the different traces along a given time-lag trajectory.
Thus, the maximum of the semblance function, which
corresponds to the maximum of the reflected signal
coherency, gives us the desired VNMO and VH velocities.

With the semblance analysis described above, the
average (i.e. cumulative) normal move-out and
horizontal velocities are estimated for each reflector and
for each azimuth. Afterwards, using these average
quantities and the zero offset traveltimes, the interval
NMO and horizontal velocities for each layer and for
each azimuth can be computed using the generalized
Dix formulae (deduced from Equations (4), (5) and (6)).
Finally, the azimuthal variations of the interval velocities
can be used to estimate symmetry directions in each
layer.

3 APPLICATION TO A SYNTHETIC MODEL

The method described above is applied to synthetic
data from a 6 layers model with a variety of symmetry
directions (Fig. 4). The first layer is isotropic, the
second is TI with a vertical axis of symmetry, the third
layer is TI with an horizontal axis of symmetry parallel
to the x direction, the fourth layer is TI with an
horizontal axis of symmetry lying at 60 degres from the
x-axis, the fifth layer is isotropic, the sixth layer is TI
with an horizontal axis of symmetry parallel to the y
axis and finally an isotropic layer which represents the
basement. Since the coordinate system xyz do not
necessarily coincide with the “crystallographic” axes of
each layer, the third, the fourth and the sixth layers
appears respectively as orthorhombic, monoclinic and 
again orthorhombic. The generalized anisotropic

parameters (see Appendix) and the vertical velocities of
each layer are given in the Table 1.

The synthetic seimograms of the reflected qP-waves
for 7 different azimuths were computed with the ray
tracing code ANRAY developed by Gajewski and
Psencik (1987). Figure 5 shows the synthetic
seismogram for the azimuth 0° (i.e. in the xz-plane) 

Figure 4

Six layers synthetic model. The layers are from top to bottom:
(ISO) isotropic, (TIz) TI with a vertical axis of symmetry,
(TIx) TI with a horizontal axis of symmetry parallel de the
x-axis, (TIx 60°) TI with horizontal axis of symmetry lying at
60° from the x-axis, (ISO) isotropic, (TIy) TI with horizontal
axis of symmetry parallel to the y-axis (ISO), isotropic
basement. The model parameters are given in the table above.
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TABLE 1

Model parameters

Layer VP0 (km/s) ex ey dx dy dz e16 e26 cz

1 1.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

2 2.0 0.15 0.15 0.3 0.05 0.05 0.0 0.0 0.0

3 2.8 0.0 0.1 0.0 -0.09 -0.09 0.0 0.0 0.0

4 3.6 0.13 0.04 0.11 0.04 0.18 0.07 0.08 0.06

5 3.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

6 4.0 0.2 0.0 0.12 0.0 0.12 0.0 0.0 0.0
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Figure 5

Synthetic seismogram from the previous model,
corresponding to the azimuth 0°.

with the six reflection events. Figure 6 shows an
example of the result of the semblance analysis on one
of the six events for the previous azimuth. The desired
VNMO and VH are obtained by picking the maximum of
the semblance function as indicated on Figure 6.

Figure 6

Semblance spectrum showing the maximum of the semblance
function.

Here we will show only the results of the third and
the sixth interfaces for the average velocities and those
of the third and the sixth layers for the interval
velocities. Although only these two results are
presented, the conclusions are very similar for all the
remaining layers. For all the events the average offset X
to depth D ratio used is X/D Å 1.5.

At first, the average velocities obtained by the
semblance analysis are plotted on Figure 7 for the third
interface and on Figure 8 for the sixth interface. In
these two figures the exact velocities and the inverted
velocities as function of the azimuth are in dashed and
solid lines, respectively. The top part of these figures
corresponds to the average normal move-out velocities
and the bottom part to the average horizontal
velocities.

Figure 7

Exact and inverted average normal move-out velocities (top)
and average horizontal velocities (bottom) as a function of
azimuth at the third interface (i.e. bottom of the third layer).
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We can note the good fit between the exact velocities
and the inverted velocities. The error made on the
estimation of the average velocities is less than 1% for
the normal move-out velocities and less than 2.5% on
the horizontal velocities which can be considered as
satisfactory as explained below. It has to be noted that
the offset to depth ratio used limits the precision on the
horizontal velocity inversion since this parameter
controls essentially the far offsets propagation. Hence,
the inversion of the horizontal velocity is generally less
accurate than the normal move-out velocity.

Figure 8

Exact and inverted average normal move-out velocities (top)
and average horizontal velocities (bottom) as a function of
azimuth at the sixth interface (i.e. bottom of the sixth layer).

The results of the interval velocities obtained from
the generalized Dix formulae are presented on Figure 9
for the third layer and on Figure 10 for the sixth layer.
As for the previous two figures, figures 9 and 10 show
the exact velocities (in dashed lines) and the inverted

velocities (in solid lines) as a function of azimuth. The
top part of these Figures corresponds to the interval
NMO velocities and the bottom part to the interval
horizontal velocities.

Figure 9

Exact and inverted interval normal move-out velocities (top)
and interval horizontal velocities (bottom) as a function of
azimuth in the third layer.

Again a good fit can be observed between the exact
and the inverted velocities. The error made is less than
2% for the interval normal move-out velocities and less
than 3% on the interval horizontal velocities which can
be considered as satisfactory as explained a little further. 

To give an idea on the amounts of anisotropy present
in the model, the values of the interval parameters el and
dl (defined by Equations (2b) and (2c)) for the two
previous layers are plotted on Figures 11 (third layer)
and 12 (sixth layer) as function of the azimuth l. These
amounts of anisotropy can also serve as a basis of
comparison to the errors made on the inverted velocities.
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Since el and dl quantify the relative difference
between the horizontal velocity, respectively the NMO
velocity, and the vertical velocity, as previously
mentioned, the azimuthal variations of the parameters
el and dl evidently represents the P-wave azimuthal
anisotropy of each layer which is of the order of 8% to
10% for the third layer and of 15% to 20% for the sixth
layer. Thus we clearly see that the errors made on the
inverted parameters, i.e. error on NMO velocity (<2%)
and on horizontal velocity (<3%), are small compared
to the variation of the parameters el and dl, i.e. the
azimuthal anisotropy. This is why we conclude that the
inversion algorithm is satisfactory.

Finally, note that the gradients of the various
parameters ploted in Figures 7-12 are not continuous at
the wrap-around points (i.e. 0° and 180°). This is due to
the interpolation applied between the discrete points
(i.e. the 7 azimuths).

4 RESULTS ON REAL DATA

In order to test its feasibility on real data, the method
was also applied to three 2D surface seismic lines A,
B and C intersecting at a well location (Fig. 13). Three
CMPs around the well position are taken on each of the
three lines. Seven seismic targets (horizons) were
selected for the inversion process. Among the
7 inverted layers, the first layer is water.

A time-depth relation from the well data was used to
estimate the depths of the reflectors and thus we could
compute directly the interval parameters el and dl for
each layer and for each of the 3 azimuths.

Figures 14 and 15 shows respectively one of the
3 CMPs used on line A (on which are reported the
target horizons) and the corresponding semblance
spectrum for the fourth event. The offset to depth ratio
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Figure 10

Exact and inverted interval normal moveout velocities (top)
and interval horizontal velocities (bottom) as a function of
azimuth in the sixth layer.
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Figure 11

Interval parameters: dl (top) and el (bottom) as functions of
azimuth l in the third layer.
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Interval parameters: dl (top) and el (bottom) as functions of
azimuth l in the sixth layer.
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Field position of the three 2-D seismic lines A, B and C
intersecting at a well location.

Figure 14

CMP gather used on line A. The target horizons are indicated
by the arrows and the bold lines.

Figure 15

Semblance spectrum for the fourth event on line A (see
Fig. 14).
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used for this event is roughly equal to 1, which implies
more uncertainties on the horizontal velocity as can be
seen on Figure 15.

Note that, since we dispose only of 3 azimuths, the
lowest symmetry level that we can consider is the
orthorhombic symmetry. Without entering details, we shall
note that, as the orientation of the horizontal orthorhombic
axes are not a priori known, the method of inversion of the
interval anisotropic parameters (i.e. the weighting factors in
the right hand side of Equations (2b) and (2c)) consists in
two steps. First the symmetry directions of the equivalent
Orthorhombic layer are estimated from the values of the
interval NMO velocities in each layer. Basicaly this consists
in fitting the azimuthal variation of the NMO velocities to
the best ellipse of which the principal axes are used as the

new horizontal coordinate axes for the next step. Second
the interval parameters of the equivalent orthorhombic
medium are computed in the new coordinate system
previously defined.

The results are summarized on the Figures 16 and
17. Figure 16 represents in color code the interval
parameter dl (in percent) for each of the 3 azimuths (i.e.
the 3 lines A, B and C). On the right side of the figure
are reported the symmetry directions of the equivalent
orthorhombic layer and the maximum variations of the
azimuthal anisotropy of the P-wave NMO velocity in
each layer.

Likewise, Figure 17 represents in color code the
other interval parameter el (in percent) for each of the
three lines A, B and C.
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Figure 16

Results from the inversion of real data. Azimuthal dependence of the parameter d(l). On the right side are reported the
symmetry directions and the retrieved maximum azimuthal anisotropy of the NMO velocity.
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One can note from the two previous figures that
almost all the layers exibits azimuthal variations of the
parameters dl and el which indicates the existence of
symmetries lower than TIV However, because of the
presence of noise in real data, it is wiser to fix a lower
limit beyond which one can really speak of azimuthal
anisotropy. In our case, the second, the fourth and the
sixth layers exibit only little variations of the parameter
around zero (+/– 3%) which are of the same magnitude
as the errors observed on synthetic data. It is reasonable 
to considere such observation as noise. Hence, only the
third, the fifth and the seventh layer are considered to
have an azimuthal anisotropy. 

Figure 17

Results from the inversion of real data. Azimuthal dependence
of the parameter e(l).

The fact that the orientation of the symmetry
directions of these layers are not randomly oriented but
clustered around an azimuthal direction of roughly
N105°W to N125°W can be considered as a consistent
result which probably has some geological explanation
of which we are not aware.

We did not consider in the previous remark the
parameters el because we did not dispose in our
inversion process of sufficient offsets to have
confidence in the values obtained for this parameter. In
fact, in the best case (i.e. the first layers) the offset was
roughly equal to the depth of the reflector which is not
enough to stabilise the inversion of this parameter.

Finally we mention that these results have not yet
been compared with other information from well data
because at the time of this draft, except the depths of
the reflectors, such data was unavailable.

5 DISCUSSION AND CONCLUSIONS

Starting from the velocity parametrization in weakly
anisotropic media of arbitrary symmetry developed by
Mensch and Rasolofosaon (1997), we came up with a
simple method for nonhyperbolic move-out analysis
valid in media of arbitrary symmetry. We show that in
the general case of anisotropy, the weak anisotropy
assumption (a common case in the field, see Thomsen,
1986) allows us to decouple the kinematics azimuth by
azimuth. As a consequence, the kinematic problem of
reflected qP-waves in horizontally layered media is
notably simplified since one can deal with arbitrary
symmetries in any azimuth as if the layers were
transversely isotropic with a vertical axis of symmetry.
In other words, whatever is the symmetry type of the
geologic layers in the investigated area, and whatever is
the orientation of the seismic profile(s) in the field, it is
always possible to make a nonhyperbolic normal move-
out velocity analysis and to determine the interval
parameters as in TIV media following the procedure
described in recent publications (Alkhalifah, 1997).
However, in the case we dispose only of one profile
(one azimuth), the interval parameters must be
considered as the el and dl (the generalized anisotropy
parameters) for this particular azimuth.

The application of the method to a synthetic model
with various symmetries demonstrated these facts. The
analysis was conducted independently for each azimuth.
Apart from the satisfactory errors made on the estimation
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of the average and the interval velocities, one can note
that these errors are totally uncorrelated with the
azimuthal variations of these velocities which confirms
that the kinematics of the problem is decoupled azimuth
by azimuth in the weak anisotropy limit.

Finally, the method was applied to real data to check
its actual feasibility. Interval parameters and symmetry
directions could be estimated and seem to lead to
consistent results.

Weak anisotropy is the main assumption in this
paper. A natural question arises: How weak is weak
anisotropy for our particular problem? More precisely,
up to which strength of anisotropy the proposed method
remains robust?

The numerous numerical applications on contrasted
models (i.e. symmetry types, anisotropy strength, etc.)
have shown that the robustness of the proposed method
is preserved for anisotropy strength up to 20%.
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APPENDIX 

Generalized anisotropy parameters

The expressions of all the generalized anisotropy
parameters used in this work and introduced by
Mensch and Rasolofosaon (1997) are reported here for
convenience.

The coefficients CIJ are the conventional elastic stiff-
ness of the considered anisotropic medium expressed in
Voigt notation with contracted indices (Helbig, 1994).
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