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CARACT�RISATION, RECONSTRUCTION ET PROPRI�-
T�S DE TRANSPORT DES GRéS DES VOSGES

Dans cet article, nous pr�sentons une �tude approfondie dÕ�chan-
tillons de gr�s des Vosges. La g�om�trie de ces milieux est analys�e
en utilisant des coupes s�ri�es. Puis des �chantillons al�atoires sont
reconstruits en accord avec les propri�t�s g�om�triques statistiques
mesur�es. Enfin, les propri�t�s macroscopiques de transport sont
d�duites des solutions num�riques dans les �chantillons reconstruits
des �quations locales qui r�gissent les transports correspondants, et
elles sont compar�es aux mesures disponibles. La p�n�tration de
mercure dans les �chantillons est mod�lis�e et les r�sultats relatifs
aux distributions de pores sont compar�s � ceux obtenus sur les
coupes s�ri�es.

CHARACTERIZATION, RECONSTRUCTION AND
TRANSPORT PROPERTIES OF VOSGES SANDSTONES

A thorough study of Vosges sandstone samples is presented in this
work. First, the geometry of these porous media is analyzed using
serial thin sections. Then, random numerical samples are recon-
structed according to the measured statistical geometrical param-
eters. Finally, the macroscopic transport properties are determined
from the numerical solutions in the reconstructed samples of the
local equations governing the corresponding transport phenomena
and compared to available experimental data. Mercury intrusion in
the simulated media is modelled and pore size distribution results
are compared with those obtained from serial tomography.

CARACTERIZACIîN, RECONSTRUCCIîN Y PROPIE-
DADES DE TRANSPORTE DE GRES DE LOS VOSGOS 

Se presenta en este art�culo un estudio detallado de muestras de
gres de los Vosgos.  La geometr�a de estos medios se analiza utili-
zando para ello secciones seriadas. Acto seguido, las muestras
aleatorias se reconstruyen en concordancia con las propiedades
geom�tricas estad�sticas objeto de las medidas. Finalmente, las
propiedades macrosc�picas de transporte se deducen de solu-
ciones digitales en las muestras reconstruidas de las ecuaciones
locales que gobiernan los transportes correspondientes y, asi-
mismo se comparan con las mediciones disponibles. La penetra-
ci�n de mercurio en las muestras se modeliza y los resultados
relativos a las distribuciones de poro se comparan a su vez con
aquellos obtenidos en las secciones seriadas.
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INTRODUCTION

The study of structural and transport properties of oil
reservoir rocks is of critical importance for the efficient
design of enhanced recovery processes. The geometrical
and topological analysis of the pore structure of Vosges
sanstones as well as the prediction of their most
significant transport coefficients, such as perme-
ability, diffusivity, and dispersivity, are the main goals of
the present work and are implemented through a com-
bination of simulation and experimental techniques.

The measurement of the relevant geometrical pa-
rameters on the experimental samples is described in
Section 1. Two sets of serial thin sections were ana-
lyzed, composed of 6 (3A1) and 45 (2A1) sections
from two plugs of Vosges sandstone. Two statistical
properties of the pore space are measured, namely
porosity and autocorrelation function. For each data
set, the various sections are shown to be isotropic and
to possess very similar autocorrelation functions,
whereas their porosities vary slightly. 

The reconstruction procedure is presented in
Sections 2 and 3. It is shown how to generate a three-
dimensional random porous medium with a given
porosity and a given correlation function. The medium
is made of elementary cubes which are filled by solid
or liquid. It can be generated in two steps starting from
independent Gaussian variables X(x). Linear combina-
tions of these variables yield a population Y(x) which is
still Gaussian but correlated; the correlation depends
upon the set of coefficients aÐ of the linear combina-
tions. This population is then transformed into a
discrete population Z(x) which takes only two values, 0
and 1; this transformation is such that the average value
of Z(x) is automatically equal to the porosity.

In order to generate a given porous medium, one can
first solve an inverse problem which consists of a two-
step determination of the coefficients aÐ. Once these
coefficients have been determined, artificial media can
be generated at will starting from an arbitrary seed; one
can also make use of an alternative and numerically
more efficient method. Then, the coefficients aÐ are not
obtained explicitly and the field Y(x) is built by
operating in the Fourier space. 

The results of the reconstruction are presented and
discussed in Section 4. Average values of the correla-
tion function and of the porosity were used as input
data. Two- and three-dimensional visualizations of
several reconstructed samples are presented. Then, the

macroscopic transport properties of these reconstructed
media are derived by solving numerically the differential
equations governing the transport at the micro-
scale. For instance, the permeability is derived from the
velocity field obtained by solving the continuity and
Stokes equations with the no-slip condition at the solid
wall. This approach is applied to various transport pro-
cesses for both sets of data.

The local problems to be solved are presented in
Section 5, along with the methods of solution. The
results of the simulations are presented and discussed
in Section 6. The permeability and conductivity tensors
have been computed and averaged over several recon-
structed samples for each set of data. One set yields
significantly larger than average transport coefficients,
owing to its larger porosity and correlation length. The
dispersion has been studied with the second set of data,
by deriving the longitudinal dispersion coefficient as a
function of the Peclet number Pe, for several recon-
structed media with different sizes. A power-law with
an exponent a < 1.7 is obtained in every case.

Finally, Section 7 is devoted to the simulation of a
mercury porosimetry experiment. The numerical
method is briefly described and an application to a
reconstructed sample is presented. The result is typical
of the experimental curves for sandstones. 

1 MEASUREMENTS

Measurements of the experimental porosity and cor-
relation function were performed on two sets of serial
cross-sections from two plugs of Vosges sandstone,
obtained in the following fashion. A double-pore cast-
ing technique is used prior to serial tomography. This
technique is a variance of similar techniques reported
in the literature (see, for instance, Straley and Minnis,
1983; Lin and Hamasaki, 1983, Yadav et al., 1987).
The trapped fluids are first removed from the samples
using an organic solvent. The porous medium is then
dried, heated with WoodÕs metal, pressurized at 70 atm,
and then cooled slowly to room temperature. The
single-pore cast thus obtained is pelletised and
the solid phase is dissolved using hydrofluoric acid.
Following removal of trapped fluids and sample drying
once again, a 4-component epoxy resin is injected
into the WoodÕs metal matrix. The sample is pressur-
ized at 50 atm and heated slightly (below 50¡) to
achieve controlled resin polymerisation. Cooling down
to room temperature yields the final double-pore cast.
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Subsequently, a number of serial sections were ob-
tained (60 for sample 2A1, 10 for sample 3A1) using a
special microtome. The setup is equipped with a
section alignment device which uses a fixed frame of
reference. Image grabbing and digitisation of each serial
section were carried out in a highly automated manner.
Each section is described by a 500 3 482 matrix of
binary pixels, which take the values 0 or 1 in the solid
or pore phases, respectively. The physical dimension of
these pixels is 2.04 mm in both directions. This repre-
sentation is a discrete definition of the phase function

1   if x belongs to the pore space
Z(x) 5 h (1)

0   otherwise

where x is the position vector with respect to an arbi-
trary origin. 

The six sections of set (3A1) are regularly spaced by
10 mm. They are displayed in Figure 1. Visual
examination of the superposition of the images of
Figure 1 reveals that there is a strong correlation
between two successive frames, but that they are
slightly shifted. A significant part of this shift is caused
by the fact that the pore walls are not normal to the
plane of the sections. The rest is caused by minute
random errors in positioning the sample. The absolute
value of this shift is generally very small (<100 mm),
but still represents a significant part of the overall
frame size (< 1 mm). The shift of the sixth image with
respect to the fifth one is somewhat larger (< 200 mm).
However, the orientation of the x and y axes seems
identical in all cases. 

The porosity e and the correlation Rz(u) can be de-
fined by the statistical averages (which are denoted by
brackets , á .)

e 5 7Z(x)8 (2a)

Rz(u) 5 7(Z(x) ] 7Z8)(Z(x 1 u) ] 7Z8)8 / (e ] e2) (2b)

where u 5 ZZu ZZ. Notice that (e ] e2) in (2b) equals
var (Z) since Z2(x) 5 Z(x).

These two quantities were measured for each section
with image analysis. The porosity is obtained with a
simple summation. The results are listed in Table 1.
Despite the proximity of the successive cross-sections,
and the strong correlation resulting from it, the porosity
values observed on the various sections are somewhat
scattered, in the range 0.20 Z 0.27 around the average
value 0.231. In order to check the homogeneity of the
experimental sample, the porosity of each half-image

was also measured. We denote by e1 (resp. e2) the
porosity of the left (resp. right) half of the frames. The
data in Table 1 reveal a definite trend, with a 0.075 dif-
ference between the averages of e1 and e2, larger than
the standard deviation of e, e1 or e2 . The overall poros-
ity of the sample had also been measured previously
and found equal to e 5 0.21. 

The correlation function (2b) was evaluated for each
section of set (3A1) by using standard translation and
intersection routines. The increment u was varied by
steps of one pixel; in order to check the isotropy of the
medium, the direction of u was set along the x and y
axes successively. The results are shown in Figure 2.
The correlation functions of the six frames are shown
in (a) for the x direction, in (b) for the y direction, and
the averages over both directions for each frame are
shown in (c). Clearly, the various sections yield very
similar and isotropic correlation functions. This is in
agreement with the statement made in previous works
(Adler et al., 1990; Sall�s et al., 1993a) that for a given
type of material the correlation is not a sensitive func-
tion of the porosity. Note that the correlation function
(2b) is defined for a statistically stationary medium.
Inhomogeneities at the sample scale, like the difference
between e1 and e2, result often in a noisy function Rz.
Such problems do not arise here, and the various
sections yield very similar correlation functions,
whatever the value of e1 ] e2.

The second set of experimental data consists of 45
successive sections, numbered from 1 to 45, from the
same plug of Vosges sandstone (2A1). Each image
consists of 500 3 482 binary pixels, whose dimensions
are px 5 py 5 2.04 mm. The successive sections are
regularly separated by a spacing pz 5 7.3 mm. Only
five of these 45 images, namely those with numbers
(1, 10, 20, 30, 40) are shown in Figure 3. In the fol-
lowing, we refer to these as the subset of data for
(2A1). They span most of the complete set, and owing
to their wide separation (73 mm) they appear visually
uncorrelated. The same processing as that followed for
the first sample (3A1) was applied.

The porosity was measured on each image and half-
image, yielding the values of Table 2. The average poros-
ity e 5 0.164 is somewhat lower than that for sample 3A1
(e 5 0.21), but the standard deviation of the measure-
ments on each image is comparable (< 10% in both
cases). Again, the porosity e1 on the left-hand half-
images is generally slightly larger than e2 measured on
the right-hand halves, but less so than for sample
(3A1). The average difference amounts to 0.022.
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Figure 1

Visualization of the six binary images of the serial cross-sections in set (3A1). 
A pixel is equal to 2.04 mm.
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Figure 2

Correlation functions for the six images along the x direction
(a), along the y direction (b), and average over both
directions (c). 
Each axis is graduated in pixels of 2.04 mm.
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1 0.223 0.262 0.184 0.078

2 0.229 0.279 0.179 0.100

3 0.273 0.329 0.217 0.112

4 0.240 0.301 0.179 0.122

5 0.203 0.235 0.171 0.064

6 0.215 0.205 0.225 ] 0.020

Average 0.231 0.268 0.193 0.075

Standard deviation 0.025 0.046 0.023

Plug 0.210

TABLE 1

Porosity of the images (e) and of the half-images (e1, e2)  for the sample (3A1)

Section e e1 e2 e1 Ð e2
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Figure 3

Visualization of the five binary images of the initial subset of
cross-sections 2A1. 
A pixel is equal to 2.04 mm.
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The statistics of the subset are typical of the complete
sample. 

The correlation function was measured on all of the
45 images, along the x- and y-axes. Again, it was found
to be almost identical in both directions and for all the
images. In particular, the curves for the images of the
subset (Figure 4) are representative of the complete
sample. Therefore, we used the average porosity e and
the average x- or y-correlation function evaluated on
the subset as input data for the reconstruction. Again,
the correlation function is not affected by the inhomo-
geneity of the porosity. 

So far, the three-dimensional aspect of the experi-
mental data has not been taken into account. This is
done in Figure 5-a, where the correlation function Rz
along the direction normal to the serial sections is com-
pared to the correlations Rx and Ry within their planes
for the data-set (3A1). Rz shows kinks which are not
typical of the usual correlations for geological mate-
rials. In addition, the initial decrease of the correlation
is much steeper for Rz than for Rx or Ry. 

It has already been mentioned that the successive
frames are not perfectly aligned in the z direction, but
are slightly shifted with respect to one another. Despite
the use of a frame of reference for edge detection,
some slight shift appears to be inevitable. We at-
tempted to compensate this artifact by realigning the
45 frames. This was done by maximising the pointwise
covariance of the successive frames k and k 1 1

S
i  

S
j   

Zk(i, j) Zk 11(i1u, j1v) (3)

and the result was in good agreement (within about
1 pixel) with the subjective guess resulting from a
visual superposition of the successive images. The
dimension of the largest parallelepiped entirely covered
by the 45 frames after realignment is 466 3 472 3 45
(vs. 500 3 482 3 45 for the raw data). The correlation
function Rz evaluated on this modified data set is dis-
played on Figure 5b. It appears that this procedure fil-
ters out the kinks of the curve on Figure 5a, and that
the short-range correlations are now identical along the
three axes. However, the correlation Rz is definitely
stronger than Rx or Ry for intermediate distances in a
10 to 100 mm range. This can be quantified by the cor-
relation length L, defined as the integral of the
correlation function,

L 5 e
`

0
R(u)du (4)
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1 0.188 0.222 0.154 0.068

2 0.164 0.188 0.139 0.048

3 0.167 0.188 0.144 0.044

4 0.169 0.190 0.148 0.042

5 0.201 0.210 0.193 0.017

6 0.183 0.197 0.170 0.027

7 0.177 0.193 0.161 0.032

8 0.171 0.191 0.151 0.041

9 0.173 0.188 0.158 0.030

10 0.166 0.177 0.156 0.020

11 0.171 0.184 0.157 0.027

12 0.157 0.167 0.147 0.020

13 0.187 0.209 0.166 0.043

14 0.191 0.215 0.168 0.047

15 0.181 0.204 0.158 0.046

16 0.163 0.171 0.155 0.016

17 0.162 0.162 0.162 - 0.000

18 0.155 0.158 0.152 0.005

19 0.131 0.143 0.118 0.025

20 0.160 0.159 0.162 - 0.003

21 0.131 0.127 0.135 - 0.008

22 0.132 0.128 0.136 - 0.008

23 0.150 0.144 0.157 - 0.013

24 0.180 0.178 0.182 - 0.004

25 0.167 0.165 0.169 - 0.003

26 0.166 0.159 0.173 - 0.014

27 0.170 0.169 0.172 - 0.002

28 0.162 0.149 0.175 - 0.026

29 0.173 0.183 0.164 0.019

30 0.171 0.184 0.159 0.026

31 0.156 0.165 0.147 0.019

32 0.150 0.150 0.149 0.001

33 0.161 0.157 0.165 - 0.008

34 0.170 0.171 0.169 0.001

35 0.151 0.151 0.151 - 0.000

36 0.158 0.150 0.167 - 0.017

37 0.157 0.153 0.161 - 0.008

38 0.153 0.168 0.137 0.031

39 0.153 0.173 0.133 0.040

40 0.139 0.161 0.117 0.044

41 0.155 0.184 0.125 0.059

42 0.151 0.183 0.119 0.064

43 0.151 0.185 0.118 0.066

44 0.165 0.200 0.130 0.070

45 0.171 0.206 0.136 0.070

Average 0.164 0.175 0.153 0.022

(subset) 0.165 0.181 0.150 0.031

Standard deviation 0.015 0.022 0.018

(subset) 0.016 0.023 0.016

TABLE 2

Porosity of the images (e) and of the half-images (e1, e2) for the sample

(2A1). The lines corresponding to the initial subset of five images are

printed boldface, and their statistics are given separately

Section e e1 e2 e1 Ð e2
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Figure 4

Correlation functions for the five images of the subset (2A1) along the x direction (a), along the y direction (b), and averaged over both
directions (c).
The average curves along the x direction for the subset and the complete sample are compared in (d). The axes are graduated in pixels of 2.04 mm.

Figure 5 

Correlation functions for set (2A1) along the x-(solid line), y-(dash line), and z-direction (dot-dash), before (a) and after (b) realignment of
the successive sections.
Distances are measured in microns.
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This length, evaluated along the three axes before
and after the realignment, is given in Table 3. Part of
the difference between Lz and Lx or Ly might result
from the realignment procedure, though Lz is larger
than Lx or Ly even in the raw data. If real, this differ-
ence suggests that the material is anisotropic, for
example with a slight stratification parallel to the cross-
sections. Since its existence is not firmly established,
this anisotropy is ignored in the rest of this work. Only
the correlations along directions within the serial sec-
tions are retained.

2 GENERATION OF RANDOM DISCRETE
VARIABLES WITH GIVEN AVERAGE AND
CORRELATION FUNCTION

Let us now briefly sketch the reconstruction of
three-dimensional random media which is fully de-
scribed in Adler et al. (1990). We want to generate a
three-dimensional random porous medium with a
given porosity e and a given correlation function; the
medium is homogeneous and virtually isotropic. It
should be emphasized that the correlation function of
isotropic media depends only on the norm u of the vec-
tor u (see R.J. Adler, 1981).

Similarly, we want to generate a random function of
space Z(x) which is equal to 0 in the solid phase and to
1 in the liquid phase. Z(x) has to reproduce the two
average properties (2a) and (2b) accurately (Quiblier,
1984). It should be emphasized that the point of view is
quite different here; e is a given positive number
, 1; Rz(u) is a given function of u which satisfies the
general properties of a correlation (see Adler, 1981) but
is otherwise arbitrary.

For practical purposes only, the porous medium is
constructed in a discrete manner. It is considered to be

composed of N 3
c small cubes, each of the same size a.

These elementary cubes are filled either with liquid, or
with solid. Examples of such porous media have
already been given elsewhere (Lema�tre and Adler,
1990; Adler, 1992). Hence the position vector x and the
translation vector u will only take discrete values; the
corresponding trios of integers are denoted by

x' 5 x/a 5 (i, j, k) (5a)

u' 5 u/a 5 (r,  s, t) (5b)

An additional condition is imposed by the fact that
the sample of the generated porous medium has a finite
size equal to aNc. This is equivalent to covering of the
whole porous medium with an infinite number of
identical unit cells. Since the medium is assumed to be
uniformly correlated, the random field Z(x) has to
satisfy the relation

e 5 , Z(x) . (6a)

Rz(u) 5 Rz(u) 5 , ( Z(x) ] e ) ( Z(xt) ] e ) ./(e ] e2) 

(6b)

where the translated vector xt is defined mod (aNc) for
each of its components:

xt 5 x 1 u (mod aNc) (7a)

This equality means that, for instance,

it 5 i 1 r (mod Nc) (7b)

Because of this spatial periodicity, all the physical
quantities are independent of the choice of origin and
faces of unit cells.

There are several methods to generate discrete
random variables which satisfy (6a) and (6b). Here we
adapt to isotropic media an algorithm due to Quiblier
(1984), for general three-dimensional porous media.
This algorithm is itself an extension of the two-
dimensional scheme devised by Joshi (1974).

For the sake of clarity, we briefly present this
algorithm in the present section and recall the major
properties of the corresponding random functions. It
can be shown that a random and discrete field Z(x) can
be constructed from a Gaussian field X(x) when the
latter is successively passed through a linear and a
nonlinear filter. Let us summarize the influence of
these filters and relate their properties to the statistical
properties of the resulting fields. A detailed present-
ation can be found in Adler et al. (1990).
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Lx 17.8 17.8

Ly 17.5 17.5

Lz 20.6 26.7

TABLE 3

Correlation length for data-set (2A1) in microns

Raw data After realignement



Consider, first, the initial random field X(i, j, k); the
random variables X(i, j, k) are assumed to be normally
distributed with a mean equal to 0 and a variance equal
to 1; these variables are independent.

A linear operator can be defined by an array of coef-
ficients aÐ(u') where u' belongs to a finite cube f0, Lcg3

in Z 3. Outside this cube, it is equal to 0. A new random
field Y(x') can be expressed as a linear combination of
the random variables X(x'):

Y(x') 5   S     aÐ(u') á X(x't) (8)
u'[ f0, Lcg3

where the translated vector x't is defined mod Nc for
each of its components.

The definition (8) is identical to the definition used
by Joshi (1974) and Quiblier (1984), except for the pe-
riodic character introduced by the condition mod Nc.
Without any further requirements on the coefficients
aÐ(u') of the linear filter, it can be shown that the random
variables Y(x') are standard Gaussian if Nc . 2Lc. Let us
further assume that the variance of Y(x') is equal to 1,

E hY2(x)j 5 1 (9)

Hence the random variables Y(x') have a standard
normal distribution, although they are no longer statis-
tically independent. Their correlation function Ry(u) is
easily seen to be 

Ry(u) 5 S     aÐu 1, u 2, u 3
á aÐu 1 1 r, u 2 1 s, u 3 1 t (10)

r, s, t [ f0, Lcg

where (u1 1 r), (u2 1 s), (u3 1 t) are determined
mod Nc and u 5 (u2

1 1 u 2
2 1 u 3

2)
1/2. The random field

Y(x') is correlated, but still not satisfactory since
it takes its values in R, while the porous medium has
to be represented by a discrete-valued field Z(x') (cf.
Joshi, 1974). In order to extract such a field from Y(x'),
one applies a nonlinear filter G, i.e. the random
variable Z is a deterministic function of Y,

Z 5 G(Y) (11)

When G is known, the statistical properties of the
random field Z can be derived from those of Y. For the
sake of completeness, this derivation, which can be
found in Joshi (1974), is briefly repeated here.

Since the random variable Y(x') has a standard nor-
mal distribution (i.e. with a zero mean and a variance
equal to 1), its distribution function P(y) is given by:

P(y) 5 (2p)]1/2 e
y

]`
e(]y 2/2)dy (12)

The deterministic function G is defined by the fol-
lowing condition: when the random variable Y is equal
to y, Z takes the value z

z 5 1   if   P(y) < e (13a)

z 5 0   otherwise (13b)

It is, thus, fairly obvious that the average value of
Z(x') is equal to e, and its variance to e ] e2.

The most difficult point is the determination of the
correlation function Rz(u) of Z(x') as a function of
Ry(u). One can start from the fact that the random
variable (Y(x'), Y(x'1 u')) is a bivariate Gaussian
whose probability density is known (see e.g. R.J.
Adler, 1981); this density can be expanded in terms of
Hermite polynomials. After some tedious manipula-
tions using classical identities (Gradshteyn and Ryshik,
1965), Rz(u) can be expressed as a series in terms of
Ry(u)

Ry(u) 5 S
`

m 5 0
C2

m á Rm
y (14)

where the coefficients Cm are given by

Cm 5 (2pm!)]1/2 e
`

]` 
c(y)e]y 2/2Hm(y)dy (15a)

together with 

c(y) 5 (e ] 1)@fe (1 ] e)g1/2 if  P(y) < e (15b)

c(y) 5 e@fe (1 ] e)]1/2 if  P(y) . e (15c)

and

dm
Hm(y) 5 (]1)m ey 2/2 Ñ e]y 2/2 (15d)

dym

3 SIMULATION OF REAL POROUS MEDIA

When the aim is to simulate a given porous
medium, the first problem is the determination of the
correlation function Ry(u) and of the set of coefficients
aÐ: this is what we shall call the inverse problem. Once
these coefficients have been calculated, porous media
can be simulated and their general properties critically
examined.
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Let us first briefly sketch a direct method to address
the inverse problem. When the porosity is given, the
correlation function Ry(u) is easily derived from Rz(u);
this simply corresponds to the numerical inversion of
(14) and (15) by any standard method such as a
Newton iterative scheme.

When Ry(u) is known, one has to determine the
coefficients  aÐ by solving the set of quadratic equations
(10). This step can only be performed numerically by
using standard optimization routines; it should be noted
that the solution is not unique and that it was
sometimes difficult to determine aÐ. Again, further
details on the inverse problem can be found in Adler et
al. (1990).

Once the coefficients aÐ are obtained, arbitrary
samples of porous media can be reconstructed. One
starts from an arbitrary seed and then generates a set of
independent Gaussian variables X(i, j, k); then, this set
is successively passed through the linear filter (8) and
the nonlinear filter (11), (12) and (13).

From the numerical point of view, the most demand-
ing step of the previous procedure is the solution of the
set of nonlinear equations (10) for the coefficients aÐ.
For this reason, an alternative algorithm was used in
this study, in which the aÐ's are not derived explicitly.
Once the Ry(u) function has been evaluated as stated
above, the Y(x') field is deduced from the X field by the
inverse Fourier transform

Y(x') 5 N3/2
c   S

m
(R
^

Ym)1/2 X
^

me]2ipkm · x' (16)

where R
^

Ym and X
^

m are the coefficients of the discrete
Fourier transform of Ry and X respectively. The non-
linear filter G is then applied to Y as in the former case.
Further details on this new method of solution can be
found in Adler (1992). In particular, it is shown there
that equation (16) yields a Y field which is indeed a
linear combination of the X variables similar to (8).

It should be noted that when Gaussian variables
are used, all the moments of the phase functions are
determined when the two first moments (i.e. porosity
and correlation function) are given. Hence, one may
wonder whether the moments of order n

R(u1, u2, É, un ] 1) 

5 (e Ð e2)]n/2 K(Z(x) Ð e) P
n]1

a 5 1
(Z(x 1 ua) Ð e)L (17)

are the same in the real and in the reconstructed
materials. Yao et al. (1992) recently showed that this is
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indeed the case on three-dimensional samples at least
up to the fourth order moment of the phase function.
This is a very important result which gives additional
confidence in the reconstruction method.

4 RESULTS AND DISCUSSION

Since the original material has been shown to be iso-
tropic, with no significant difference between the corre-
lation functions of the various cross-sections, we made
use of the average RZ function (i.e. the average of the
curves of Figure 2a, 2b or 4a, 4b) for the reconstruction.
However, in view of the dispersion of the porosities in
the various sections, the global porosity e 5 0.210 of
the plug for (3A1), and the average over the 45 sec-
tions e 5 0.164 for (2A1) were used as input data. 

For the sample (3A1), the correlation function was
discretized over 10 points, including the origin
Rz(0) 5 1, with a 6 pixels < 12.2 mm spacing, which is
the linear dimension of the elementary cubes of the
reconstructed samples.

Figure 6 presents a three-dimensional visualization
of a reconstructed medium with Nc 5 64, which corre-
sponds to (783 mm)3 in physical dimensions. Its poros-
ity is 0.209. Only the pore space is displayed, within a
cubic wireframe which corresponds to the boundaries
of the unit cell of the infinite periodic medium. 

Samples of this size are somewhat too large to allow
an extensive study of their transport properties. Recall
that a sample with Nc 5 64 contains 262 144 elemen-
tary cubes and that the determination of the permeabil-
ity, for example, involves the solution of the Stokes
equation for the velocity and pressure fields, i.e. four
unknowns at each liquid node. For an average porosity
of 0.21, 220 000 (resp. 1 760 000) unknowns have to
be determined when the elementary cube is discretized
in 1 (resp. 23 5 8) mesh points. Therefore, smaller
samples have also been reconstructed with Nc 5 33,
which corresponds to (404 mm)3 in physical
dimensions. Note that this dimension is still much
larger than the correlation length (4) of the medium
(L < 27 mm).

For the data set (2A1),the correlation function was
discretized over 17 points, including the origin, with a
5 pixels 10.2 mm spacing. Five samples with Nc 5 33,
i.e. (337 mm)3, were reconstructed. Their porosities
ranged from 0.135 to 0.227, with an average 0.180.
Smaller (Nc 5 20) or larger (Nc 5 55) samples were



no fluid can flow through this edge. The diffusion prob-
lem is solved via a second-order finite-difference for-
mulation (Thovert et al., 1990). A conjugate-gradient
method turned out to be very effective for the problem
at hand, primarily because it is better suited to vectorial
programming than implicit relaxation schemes. The
computations were run on various vectorial computers,
with an acceleration factor ranging from 4 to 6 with
respect to an optimized scalar execution. The disper-
sivity can be calculated by solving the convection-
diffusion equation or through Monte Carlo simulation
of the displacement of a large number of particles inside
the fluid (Salles et al., 1993 a, b).

6 TRANSPORT PROCESSES: RESULTS
AND DISCUSSION

The computed values of the permeabilities and
formation factors for the various reconstructed samples
are listed in Table 4 (for 3A1) and Table 5 (for 2A1).
For both transport processes and for every sample the
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also reconstructed for specific studies (Taylor disper-
sion and mercury porosimetry). They are presented
below when they are used.

5 TRANSPORT PROCESSES: METHODS OF
SOLUTION

The permeability, the formation factor and the disper-
sivity of these reconstructed media can be calculated
numerically by solving the local equations with the
appropriate boundary conditions (Adler, 1992). The flow
problem is solved here using an improved version of the
method proposed by Lema�tre and Adler (1990). In
order to cope with the continuity equation, the so-called
artificial compressibility method was applied with a
staggered marker-and-cell (MAC) mesh (Peyret and
Taylor, 1985). In essence, the problem is replaced by an
unsteady compressible one which is assumed to
converge towards the steady incompressible situation of
interest. Additional details can be found in Adler et al.
(1990). Note that our formulation is consistent; for in-
stance, if two solid cubes have only one edge in common,

Figure 6 

Pore space of a reconstructed sample for (3A1) with Nc 5 64 (783 mm)3.
The porosity is 0.209.



integral of the correlation function (4), which is a
characteristic length scale of the microstructure. It is
equal to 27 mm in (3A1), and only to 18 mm in (2A1).
This difference suggests that the quartz grains of the
solid matrices might be somewhat larger in (3A1). The
ratio K@(sÐ L2), which eliminates part of the influence
of the scale of the microstructure and in some respects
of the porosity and tortuosity, is comparable for (3A1)
and (2A1) (0.033 and 0.054 respectively). 

The average computed values of the permeability
and formation factor are compared in Figure 7 to pre-
vious experimental and numerical data relative to
Fontainebleau sandstones (Adler et al., 1990).
Comparable results are obtained for (3A1), which is
not surprising since the Fontainebleau sandstones have
also a correlation length L of roughly 25 microns in a
porosity range around 0.20. The sample (2A1) yields a
lower permeability and a higher formation factor, due
in part to its finer microstructure. 

6.1 Experimental permeability-porosity
correlation

The results found concerning the values of the per-
meability versus porosity are summarized here.
¥ From two plugs of Vosges sandstone cut in the block

in the vicinity of the long cores, the results are:

plug 3A1 e 5 0.22 K 5 92 mD 

plug 2A1    e 5 0.236    K 5 145 mD

in this case, K is the air permeability.

¥ The long core 3B (Length 5 35 cm, with a square
cross-section having 4 cm in side ) has been CT-scanned
resulting:
Ð in a density profile expressed in Hounsfield units

(Fig. 8);
Ð in a porosity profile: along the whole core and

along 11 slices every 3 cm with 8 mm in thickness
in the center part of the core, showing a good
homogeneity:

0.196 , e , 0.204 

On the other hand, the absolute permeability with
brine has been measured and again a good macroscopic
homogeneity has been found:

Ka 5 73 mD in the 35 cm core;
Ka 5 72 mD in the central part of the core.
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complete macroscopic tensor K (permeability) or s–

(conductivity) was determined by computing the fluxes  
v– or q– with a unit driving gradient =p

—
or =T

Ñ
set along

the x-, y- and z-axes successively. Then a scalar pa-
rameter K or sÐ  was obtained by taking the average of
the diagonal terms of the tensors

K 5 (K11 1 K22 1 K33) /3 (18a)

sÐ  5 (sÐ 
11 1 sÐ 

22 1 sÐ 
33) /3 (18b)

F 5 1/ sÐ (18c)

The porosity e and the open porosity e0 of the
reconstructed media are also reported in the tables. 

The permeability and conductivity are significantly
larger for the sample (3A1) than for (2A1). This results
from at least two facts. First, (3A1) has a higher poros-
ity (0.21) than (2A1) (0.164). Second, (3A1) shows
correlations over larger distances. This can be
quantified by the correlation length L, defined as the

1 0.208 0.194 169 0.0107 93.5

2 0.211 0.183 217 0.0128 78.1

3 0.247 0.242 1 086 0.0348 28.7

4 0.264 0.255 831 0.0376 26.6

5 0.181 0.165 141 0.0090 111.1

Average 0.222 0.208 489 0.0210 67.6

TABLE 4

Permeability and conductivity computed for the reconstructed samples

for set (3A1)

Sample e e0 K s
Ð F

(mD)

1 0.170 0.132 7.6 0.0009 1045

2 0.170 0.141 30.1 0.0034 298

3 0.200 0.182 117 0.0107 946

4 0.227 0.210 134 0.0117 85.8

5 0.135 0 0 0 -

Average 0.180 0.133 57.7 0.0034 294

TABLE 5

Permeability and conductivity computed for the reconstructed samples

for set (2A1)

Sample e e0 K s
Ð F

(mD)
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Figure 7

(a) Semi-log plot of permeability versus porosity for Fontainebleau
sandstones (experimental data (d, Jacquin, 1964), numerical
simulations (1, Adler et al., 1990) and for Vosges sandstones (3,
present numerical simulations). 

(b) Log-log plot of the formation factor versus porosity. Same
conventions as above.

a

b
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Figure 8

Plot of experimental porosity and CT profiles for Vosges sandstones.
Semi-log plot of permeability versus porosity: comparison between numerical simulation and measured values.
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¥ The long core 2A, exhibits a mean porosity value of
e 5 0.17 with a permeability to the brine used,
K 5 56 mD.

¥ The long core A3 has been cut into several parts.
The measurements on only two parts of this sample
(see Figure 8) show porosity values around 0.2 for
one part and 0.236 for the other one, corresponding
to the CT profile found earlier.

¥ Measurements performed with air on the small
samples cored in the top part of the blocks for the
mercury intrusion study give the following results:
Ð  Block 2 e 5 0.204 Ka 5 111 mD
Ð  Block 3 e 5 0.202 Ka 5 118 mD 
The results of these measurements are displayed in

Figure 8, together with the results found after the
reconstruction. It can be seen from the experimental
results that the porosity displays values between 0.17
and 0.236. However, the correlation with the
permeability values is quite good, that is, without
significant dispersion, and seems to follow the same
trend for the two blocks studied (2) and (3). One value
found by the reconstruction (3A1) is very close to the
experimental values, but the permeability for the
reconstructed sample 2A1 seems to be too high. This
shows that for the sandstone studied, an increase in the
porosity value is not always followed by an increase of
the permeability as is the case with the homogeneous
Fontainebleau sandstone.

6.2 Taylor dispersion

Taylor dispersion has been studied for several
reconstructed media of sample 2A1. Their
characteristics are summarized in Table 6. In all cases,
the unit cell of the periodic medium is cubic, with size
L. The samples have similar open porosities e0. The
reduced longitudinal dispersivity D

Ð
@@
*/D has been

computed for various values of the Peclet number,
based on the correlation length L 5 18 mm (4). The
results are shown in Figure 9. Similar results are
obtained for all samples, though the dispersion
coefficient may vary over about one order of magnitude
for large Peclet numbers. The transition between
convection and diffusion occurs between Pe < 10]2 and
Pe < 10]1. The dependence of D

Ð
@@
*/D upon Pe tends to a

power-law in all cases, although a slight positive
inflection remains in this range of Peclet numbers. The
exponent a evaluated from the two last points in Figure
9 ranges from 1.5 to 1.8. There is no obvious correlation
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Figure 9

Reduced longitudinal dispersivity D
–*

@@/D as a function of the
Peclet number Pe 5 L vÐ*/D. The symbols refer to the
reconstructed samples of Vosges sandstone of Table 6 (d, s,
., h and j for samples 1, 2, 3, 4 and 5 respectively) and the
vertical bars to the envelop of the data of Sall�s et al.
(1993b) for Fontainebleau sandstone.
Comparison with the experimental values found by
displacement of a tracer (+).

Nc e0 L K sÐ a
(mm) (mD)

1 20 0.182 204 213 0.0198 1.61

2 20 0.196 204 207 0.0192 1.47

3 20 0.145 204 280 0.0192 1.68

4 20 0.183 204 72 0.0147 1.80

5 33 0.182 337 163 0.0148 1.71

TABLE 6

Reconstructed samples for data set (2A1) used for computing

the dispersivity



between the relative positions of the curves of Figure 9
and the porosity, permeability or conductivity of the
corresponding samples.

Again, the present data are compared to corresponding
results for Fontainebleau sandstones (Sall�s et al.,
1993b). The longitudinal dispersivities depicted in Figure
9 were obtained on numerical samples reconstructed with
Nc 5 20, according to various real samples with a wide
range of porosities 0.09 to 0.30. They show no obvious
sensitivity to the porosity and tend to a power-law of
the Peclet number with a < 1.6. The dispersivity of the
present Vosges sandstone is very similar. 

It should be kept in mind that owing to the periodic-
ity of the models, these results hold under the
assumption that the material is homogeneous at the
macroscale. The longitudinal dispersion results in part
from the coexistence of low (dead-ends, low permeabil-
ity zones) and high (main channels) velocity regions in
the pore space; hence, part of the solute may be
delayed while another part is convected with the largest
interstitial velocities. Thus, if the real medium has
heterogeneities (such as permeability variations) at a
scale larger than the size of the samples used to
determine the parameters of the reconstruction, they
are not accounted for and dispersion may be
underestimated. Physical measurements present the
same difficulty. If the dispersivity is measured on
blocks too small to encompass a statistically repre-
sentative sampling of the heterogeneities at the various
scales, the same kind of underestimation can arise and
the dispersion might even be unable to reach the
Gaussian behavior crucial to the description by the
dispersion tensor D

–*. Sall�s et al. (1993b) gave a rough
estimate for the minimum size L of a typical sandstone
required to establish this Gaussian regime

L . Pe/10 (meters) (19)

This feature is also ignored by the present simula-
tions, valid for macroscopically homogeneous media
and asymptotically long times, but it could be adressed
by the Monte Carlo simulations mentioned in Section
5, provided that sufficient geometrical information is
available (Sall�s et al., 1993b).

6.3 Experimental measurement of
dispersion

The longitudinal dispersion has been measured in the
lab with the use of a pair of fluids: water containing
30 g/l NaCl and KI as a tracer with the concentration

Co 5 25 ppm. The two fluids are injected the one after the
other with different flowrates: from 2 to 180 cm3/h. The
concentration C of the effluent is measured versus time.

The dispersion coefficient has been calculated using:

D*
@@ 5 1/2 s2 L v*

The curves of the relative concentration C/Co vs
time are drawn on a galtonian scale and the quantity s
directly calculated in the central linear parts of the
curves. The curves exhibit a good symmetry; the mean
value C/Co 5 0.5 corresponds to the time needed for
the injection of one pore volume. The Peclet numbers
corresponding to the experimental conditions have also
been calculated using:

Pe 5 v* dp/D

v* is the interstitial velocity, dp a dimension of the
porous medium, and D the molecular diffusivity:
1.865 3 10]5 cm2s]1.

A problem arises concerning the value of dp. In the
case of an unconsolidated porous medium, dp is the
grain diameter; however it is more difficult to quantify
it in the case of a consolidated sandstone. It is even
more difficult when the medium is somewhat heteroge-
neous.

The calculation of Pe has been performed with dp as
the correlation length used in the theoretical part of the
paper, that is dp 5 18 mm. The values corresponding to
the experimental rates and the points D*

@@ /D 5 f(Pe) are
shown in Figure 9. The comparison with the theoretical
results shows that the experimental values are ten times
larger than the values found by reconstruction.

The parameters able to shift our curves contained in
D*

@@ and in Pe are only s and dp. For example, if we use
a value of dp ten times higher than the one used pre-
viously, that is in the range of 200 microns, the curves
fit well. This dimension corresponds to the dimension
of a reconstructed sample. It can be seen on the same
figure that the experimental results are not too far from
those obtained by reconstruction if in this last case the
dispersion curve starts, as usual, from a value in the
range of 0.7 for low Peclet numbers.

7 SIMULATION OF MERCURY
POROSIMETRY EXPERIMENTS

Mercury porosimetry relies on the property of
mercury not to wet the materials that constitute most of
the natural porous media. Consequently, a pressure P
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has to be applied to this fluid to force it to enter a
cavity whose throat has a radius R

P 5 2 g cosu/R (20)

where g is the surface tension of the mercury and u is
the contact angle. Thus, a throat size distribution
spectrum can be obtained by measuring the volume of
injected fluid as a function of an imposed pressure. We
have developed a numerical algorithm simulating this
invasion (Yao, 1994), based on the fact that the domain
V(P) reachable by the fluid is supposed to be identical
to the one reachable by spherical particles with radius
R, related to P by (20).

Again, the medium is represented numerically by a
three-dimensional binary array of 0 or 1. We define in
the pore space a function ds(r), equal to the distance
from r to the closest solid wall. A sphere with radius R
smaller or equal to ds can be inserted at r. This does
not mean however that it is actually able to migrate to
this location, owing to possible smaller restrictions
upstream from r. The volume V(R) is built by using a
pseudo-diffusion algorithm, allowing the propagation
of a discrete quantity (0/1), starting from one face of
the sample, restricted to the domain where ds is larger
than R. Note that the simulations do not refer to the
interfacial properties s and u of the mercury. Only geo-
metrical quantities are handled, and the throat size
distribution spectrum is obtained directly, whereas the
interpretation of the experimental curves V(P) resorts,
generally, to relations like (20), which implicitly
consider the medium as a bundle of capillary tubes. 

For large R, corresponding via (20) to small
pressures, the particle (or the mercury) can possibly
penetrate into the sample, but cannot cross it entirely.
In this case, a penetration depth H(R) can be defined by
dividing the injected volume by the outer area of the
sample exposed to the fluid

injected volume
H(R) 5 ÑÑÑÑÑ

outer surface (21)

When the pressure increases, the depth H increases
as well until it becomes infinite at a threshold Pc, cor-
responding to a radius Rc, meaning that the particle is
able to cross the whole medium. However, the pore
space is not yet totally invaded, and small cavities
remain empty. We define the volume fraction of the
injected domain e(R)

injected volume
e(R) 5 ÑÑÑÑÑ

total volume (22)

When pressure grows, e(R) of course tends toward
the porosity e 5 e(0) of the sample. 

For a given size and shape of the porous sample, it is
possible to define e(R) in the form (22) on the whole
range of radii, although this quantity is not intrinsic to
the material since it depends for large R on the ratio
surface/volume of the sample. 

Simulations have been conducted on a periodic
reconstructed sample with Nc 5 55; the size of the ele-
mentary cubes is a 5 6.12 mm. The dimension of the
unit cell of the sample is (337 mm)3, and its porosity is
e 5 0.162. The penetration depth H(R) (21) and the
volume fraction e(R) (22) are presented in Figures 10a
and 10b. Percolation occurs for a critical radius
Rc < 6 mm. At this stage, the volume fraction of the
invaded domain is e(Rc) < 0.10. The whole pore space
is injected for R < 3.06 mm, which corresponds to the
spatial resolution of the discrete representation of the
geometry. In order to facilitate comparisons with experi-
mental data, we have built a complete curve e(R) on the
whole range of R, by assuming that the experimental
sample is cubic with a volume of 1 cm3 (Figure 10c).
The highest point in Figure 10a might not be totally
reliable since, then, the fluid reaches a depth of the
order of the dimension of the unit cell and, thus, finite-
size effects are likely to occur. Consequently, the
dashed line in Figure 10c is probably closer to reality.
This curve is typical of the experimental spectra
obtained for sandstones, with a very sharp transition
between 3 and 7 mm. 

CONCLUSIONS

A combination of simulation and experimental tech-
niques has been used for the study of Vosges sandstone
samples. A serial tomography technique has been
applied to double pore casts of the samples, and offered
a large number of physical sections that were digitized
and analyzed geometrically. Random numerical
samples were reconstructed using the porosity and
autocorrelation function of the thin sections. Stokes
flow, ordinary diffusion, dispersion, and mercury intru-
sion in the simulated structures were studied and
permeability, formation factor and dispersivity were
calculated and compared to various experimental data.
A small degree of anisotropy was revealed from the
calculation of the correlation length in the three direc-
tions. It was found that the computed values for the
permeability and the formation factor are comparable
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Figure 10

Throat size distribution spectrum computed on a
reconstructed sample with Nc 5 55 and a 5 6.12 mm. The
penetration depth H(R) (21) in mm and the volume fraction
e(R) (22) are presented in (a) and (b) versus the throat radius
R in mm. The complete curve e(R) in c assumes that the
experimental sample is cubic with a volume 1 cm3.

a

b

c

to the corresponding values for Fontainebleau
sandstone samples analyzed in a similar fashion.

ACKNOWLEDGMENTS

The authors gratefully acknowledge the support of a
Brite Euram Contract BRE2CT92-0191.

REFERENCES

Adler P.M. (1992), Porous Media: Geometry and Transports,
Butterworth/ Heinemann, London. 

Adler P.M., C.G. Jacquin and J.A. Quiblier (1990), Flow in
simulated porous media. Int. J. Multiphase Fow, 16, pp. 691-712.

Adler R.J. (1981), The Geometry of Random Fields, Wiley, New
York.

Gradshteyn J.P. and I.M. Ryshik (1965), Table of Integrals Series
and Products, Academic Press, New York.

Joshi M. (1974), A class of stochastic models for porous media.
PhD. Thesis, University of Kansas, Lawrence, Kansas.

Lema�tre R. and P.M. Adler (1990), Fractal porous media. IV-
three-dimensional stokes flow through random media and regular
fractals. Transp. Porous Media, 5, pp. 325-340.

Lin C. and J. Hamasaki (1983), Pore geometry: a new system for
quantitative analysis and 3-D display. J. Sed. Petrol., 53, pp. 670-
672.

Peyret R. and T.D. Taylor (1985), Computational Methods for
Fluid Flow, Springer-Verlag, Berlin.

Quiblier J.A. (1984), A new three-dimensional modeling
technique for studying porous media. J. Colloid Interf. Sci., 98,
pp. 84-102.

Sall�s J., J.F. Thovert and P.M. Adler (1993a), Reconstructed
porous media and their application to fluid flow and solute
transport. J. Contaminant Hydrology, 13, pp. 3-22.

Sall�s J., J.F. Thovert, R. Delannay, L. Pr�vors, J.L. Auriault and
P.M. Adler (1993b), Taylor dispersion in porous media.
Determination of the dispersion tensor. Phys. Fluids A, 5,
pp. 2348-2376.

Straley C. and M.M. Minnis (1983), Epoxy rock replicas for
microtoming. J. Sed. Petrol., 53, pp. 667-669.

Thovert J.F., F. Wary and P.M. Adler (1990), Thermal conductiv-
ity of random media and regular fractals. J. Appl. Phys., 68,
pp. 3872-3883.

Yadav G.D., F.A.L. Dullien, I. Chatzis and I.F. Macdonald
(1987), Microscopic distribution of wetting and nonwetting
phases in sandstones during immiscible displacements. SPE
Reservoir Engineering, pp. 137-147.

Yao J., P. Frykman, F. Kalaydjian, J.F. Thovert and P.M. Adler
(1993), High order moments of the phase function in
reconstructed porous media. J. Colloid Interface Sci., 156,
pp. 478-490.

Final manuscript received in September 1996




