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Abstract

Random packed beds of cylindrical, trilobic and quadrilobic particles in cylindrical

and bi-periodic containers are numerically studied using Grains 3D, a code based on

the Discrete Element Method (DEM) that resolves all inelastic collisions and simulates

dynamically the loading of packed beds. To mimic industrial or laboratory packing
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procedures, particles initial position and orientation are random so that the same sim-

ulation repeated again yields a different packed bed structure and thus a different aver-

age void fraction. These "in silico" experiments aim at being able to optimize particle

shape in heterogeneous catalysis, in particular with respect to the corresponding bed

void fraction that is a critical parameter for pressure drop prediction. These "in silico"

experiments are deterministic and accurate but with differences due to the loading pro-

cedure. In this paper, we first present our assessment of the uncertainty on average void

fraction induced by (i) the initial random position and orientation of inserted particles

and (ii) the insertion zone size. Next we investigate the effect of particle shape, namely

cylindrical, trilobic and quadrilobic on the average void fraction as a function of particle

length and diameter, and of the container type. Simple correlations are proposed that

describe very well the simulations within the aforementioned uncertainty related to the

packing procedure. While the beds made with cylindrical particles are markedly denser,

the beds made of the trilobic and quadrilobic particles have statistically an identical

void fraction.

Introduction

Numerous chemical reactions are industrially performed using heterogeneous catalysis. Cat-

alysts pellets can be shaped as spheres or extruded shapes (extrudates) or molded shapes.1–5

Due to the use of extrusion machines, extrudates are cheaper to produce in high quan-

tities. They can have various shapes: cylinders, trilobes, and more recently quadrilobes.

Molded shapes often include holes to improve internal transport. The best catalyst shape

is a compromise between catalyst cost, catalyst efficiency, pressure drop, attrition, and bed

plugging.1–5 Thus, it is application dependent. The challenge to design a better shape is to

be able to predict the gains based only on the shape knowledge.

Catalyst effectiveness is a measure of internal mass transfer limitation. It is defined as

the actual reaction rate (in mol/s) divided by the reaction rate that would be achieved if
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the concentration inside the pellet was homogeneous and equal to that of the surface. If the

reaction is fast enough, reactants may be consumed faster than they diffuse in the pellet so

that they have a lower concentration at the pellet center than at its boundary. The active

(expensive) catalytic phase located at the pellet center is not used as efficiently as the one at

the surface. The engineering pathways to improve effectiveness are: (i) improving effective

diffusion in the pellet by changing the pore size distribution and (ii) changing the shape

and/or size, and introducing holes, to reduce the volume to external surface ratio. For a

given shape, the catalyst effectiveness can be numerically predicted by solving the diffusion

equation in the grains assuming a known kinetic scheme like in Mariani et al.6 With a little

less accuracy, it can be reasonably predicted for any particle shape without holes using the

generalized Thiele modulus as proposed by Aris,7 that can be written for a 1st order reaction:

Φ =
Vp
Sp

√
k

Deff

(1)

η =
1

Φ

I1(2Φ)

I0(2Φ)
(2)

where Vp, Sp, k and Deff denote particle volume, particle surface, intrinsic kinetic constant

and effective diffusion coefficient, respectively. In is the modified Bessel function of order n.

Reducing the particle diameter results in an improvement of the catalyst efficiency due to a

lower Vp/Sp, unfortunately at the cost of a higher pressure drop.

Gas-Liquid pressure drop prediction in reactors has been the subject of many publica-

tions. Pressure drop estimations are always performed using at some point the single phase

predictions, so that for our purpose, optimizing trickle bed pressure drop is the same as opti-

mizing single phase pressure drop (see for example Attou et al.8). Pressure drop predictions

are usually performed using correlations with a form following the Ergun’s equation:9
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∆P

H
= α

µ(1− ε)2u
ε3d2p

+ β
ρ(1− ε)u2

ε3dp
(3)

In the formulation of equation 3, the pressure drop is the combination of a frictional

viscous term proportional to the velocity and a term proportional to the velocity square ac-

counting for flow direction and section changes.10 Many publications give values or formulas

for the constants α and β depending on the particle shape, mostly based on experimental

results9,11,12 and more recently numerical results.13 Nevertheless, there is so far no universal

method to precisely predict the Ergun’s equation coefficients based on particle shape only.

As it can be noticed in equation 3, the pressure drop presents a very strong dependency

on the void fraction. The void fraction depends strongly on the loading procedure as well

as on extrudates length distribution, leading to some discrepancies between operators and

catalyst batches. As the differences between most efficient shapes are small, it is difficult

to experimentally decouple shape and length effects when measuring the packed bed void

fraction. Repetition effects are barely quantified and are usually neglected, although we have

no information on their magnitude compared to differences between shapes. It would be very

helpful to be able to predict the void fraction with confidence intervals for new shapes.

In hydrotreatment applications, industrial extruded catalyst pellets are typically 1 to 2

mm in diameter by 2-8 mm in length. Their shape is cylindrical, trilobic or quadrilobic with

various lobe shapes. This rather small aspect ratio guarantee a good mechanical strength of

the particles. The void fraction of packed beds depends on many particle features such as,

e.g., elongation, angularity, slenderness, polydispersity and non-convexity. The effect of each

parameter on the bed porosity is not easy to isolate experimentally or numerically. For this

reason only simple shapes have been studied in detail in the literature. It has been shown

for example that ellipsoids can be packed more densely than spheres.14 In the case of simple

spherocylindrical rods (a cylinder with a hemisphere at each end) nematic transition (self
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alignment of particles) is observed for different packing conditions.15 Theoretical models

only exist for particles of aspect ratio close to one16,17 or for fibers corresponding to the

asymptotic case of very large aspect ratio18 but no practical correlations are available for

the lobed shapes and aspect ratio (2-4) of hydrotreatment extruded catalyst pellets.

Catalysts can be packed in two types of reactors: large industrial reactors and "tubes"

reactors, differing only in their size, with significant differences though. Large industrial

reactors are a few meters wide so that particles arrangement and void fraction hardly depend

on wall-particle interactions. This case can be simulated in a bi-periodic geometry. Tubes

reactors are much smaller with typical inner diameter less than 100 mm for multi-tubular

industrial plants and even smaller for laboratory / pilot reactors. We will here focus on

laboratory reactors whose diameters are most often in the range of 10 to 25 mm. Some

reactors of diameter 2 mm are now commercialized by companies like Avantium (Flowrence

technology). In this case, the local void fraction is strongly affected by the presence of walls

and the void fraction radial profile and average value of course depend on the reactor inner

diameter as well as on the particles shape. The presence of walls make the particles organize

in circles with an orientation that tend to be perpendicular to the radius and more horizontal

than vertical.19

To summarize, it is not yet possible to predict the void fraction (and the pressure drop)

accurately enough to rank innovative catalyst shapes. Experiments do not allow to control

all parameters so that drawing definite conclusions about the effect of catalyst shape is

difficult. New and advanced numerical tools are required to optimize the particle shape “in

silico” that allows a perfect control of all parameters. In this paper, we use DEM to estimate

the void fraction for trilobic and quadrilobic shapes, as well as analyze our computed results

to establish trends in void fraction dependence to particle shape, loading procedure and

container type.
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Methods and material

DEM with non-convex particles

Several numerical methods to produce a packing of spheres have been published. Thanks

to its flexibility, the Discrete Element Method (DEM) can be extended to more complex

shapes and thus will be utilized in this work. Other methods than DEM can be used (see

for example20,21). The DEM method5,22–26 is a Lagrangian particle tracking method which

computes the velocity, trajectory and orientation of each individual particle in the system. A

key feature of any DEM tool is its ability to detect collisions, determine the contact point(s)

and compute the resulting contact forces. Recent developments of DEM allow the use of

non-spherical particles, such as the glued spheres model which is a loose approximation of

a complex shape,27 or by an accurate description of arbitrary convex particles.24,26 Recent

developments by our group5,28 allows the simulation of non-convex particles modelled as a

collection of convex particles. This method, called “glued convex”, is an extension of the

glued sphere method of Nolan et al.27 It allows the use of the existing methods, models

and algorithms already implemented in our DEM code Grains3D24 such as the equations

of motion, contact forces, time integration, collision resolution and particularly the Gilbert-

Johnson-Keerthi algorithm29,30 for collision detection. Detailed information about our code

Grains3D, its DEM and parallel computing features and the extension to non-convex shapes

can be found in other publications by Wachs et al. and Rakotonirina et al.5,24,25,28 , including

the contact force model. The relevant parameters are:

• the stiffness coefficient kn that controls the maximum amount of artificial overlap

between 2 rigid bodies,

• the coefficient of restitution en,

• the Coulomb friction coefficient µc.
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Simulation principle

Fixed beds of non-convex particles are computed using Grains3D. An insertion volume (also

called insertion zone or window) is defined at the top of the domain as illustrated in figure

1. The insertion window can be a box, a flat surface or a single point. The particles are

inserted in the simulation in the following sequence:

• the code attempts to insert a single particle per discrete time,

• for the next particle to be inserted in the system, the code selects randomly its center’s

position in the insertion volume and its orientation,

• the next particle is actually inserted if it does not collide with any other already inserted

particles; if it does, the insertion is unsuccessful,

• when an insertion is unsuccessful, the code tries to insert the same particle again over

the next discrete times until the insertion is successful; at each discrete time, a new

random position and orientation is selected,

• all particles are subjected to the gravity force and progressively leave the insertion

volume.

A large insertion zone results in more particles inserted over a short period of time as the

time step magnitude is very small in DEM simulations. During their free fall, the particles

experience inelastic collisions with walls and other particles. The total kinetic energy of the

system decreases exponentially with time once all particles have reached their pseudo-final

position in the bed. Simulations are completed when the maximum of the particle velocity

norm decays below a tolerance criterion chosen here as 10−5 m/s. Simulation outputs of

interest here are the final position and the final orientation of each particle. In the horizontal

direction, the domain geometry can be either constrained with rigid walls or semi-infinite

using bi-periodic conditions.
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Figure 1: Illustration of a box-like insertion window in DEM simulations.

Void fraction analysis

The average void fraction (porosity) is computed from the Grains3D output file by two

methods: (i) performing a 3D discretization of the space and counting the number of cells

occupied by particles. Provided sufficiently small grid cells, this method is very accurate but

computationally expensive.28 (ii) a simplified method that we will present now.

In a given control volume of diameter equal to that of the reactor, the volume occupied

by the particles is equal to the number of particles in the volume times the volume of a single

particle. Assuming all particles are fully included in the volume, void fraction is given by :

ε = 1− N

∆z

Vp
S

(4)

where N,∆z, Vp and S denote total number of particles, height of the bed, particle volume

and reactor cross-section respectively.
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Our simplified method consists in substituting ∆z in equation 4 by the difference of the

vertical positions of the center of mass of the highest and lowest particles in the volume.

This approximation is valid when the number of the particles cropped at the extremities of

the volume is small compared to the number of particles inside the volume, in other words

when the control volume is long enough. Equation 4 then becomes :

ε = 1− Vp
S

1

s
(5)

where s denote the slope of vertical position vs. particle rank line. So our method consists

in sorting all the particles according to their center of mass vertical position z, plotting that

vertical position against the particle ranking as illustrated in figure 2 and measuring the

average slope. For a random packing, the ranking plot is almost a straight line. Non-linear

trends in the ranking plot bring information about the structure: steps indicate “structured

packing”; a changing slope indicates a change in the average void fraction. This method is

as accurate as the discretization method when the control volume is large enough. In all

simulations, the trend was linear indicating that the average void fraction is not sensitive to

the falling distance that reduces as the bed is being constructed.

0 100 200 300 400 500
Particle

0.000

0.005

0.010

0.015

Z 
[m

]

Figure 2: Example of plots resulting from the method (ii) of the void fraction analysis.

A correct estimation of void fraction requires to discard a few layers (2-4) at the top

and bottom of packing,19 avoiding end effects (flat bottom influence at the bottom and free

surface at the top).
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Cases description

A first set of simulations is performed using bi-periodic boundary conditions as shown in

figure 3(b). This simulates a semi-infinite container, and models the packing in a large

reactor. The container size is set to 18mm after checking that this parameter has no effect

on the void fraction. Another set of simulation is ran in small size cylindrical reactors using

solid walls as shown in figure 3(a). The vessel diameters are 14mm, 16mm and 19mm.

(a) (b)

Figure 3: Type of domains considered in this study: a) Packing of TL in cylindrical domain;
b) Packing of TL in bi-periodic domain.

Simulations are performed with the following shapes:

• cylinders with a circular cross-section, named cylinders and denoted CYL,

• cylinders with a trilobic cross-section, named trilobes and denoted TL. In our glued

convex DEM, the trilobes are modelled by numerically gluing 3 cylinders and a prism

of equilateral triangular cross-section,

• cylinders with a quadrilobic cross-section, named quadrilobes and denoted QL. In our

glued convex DEM, the quadrilobes are modelled by numerically gluing 4 cylinders
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and a prism of square cross-section.

The cylinders, trilobes and quadrilobes are illustrated in figure 4. The cross-sectional diam-

eter of trilobes and quadrilobes is defined as that of the circumscribed circular cylinder (see

figure 4(d)). For identical diameter and length, TL and QL occupy a volume of respectively

69% and 74% of the cylinder. The particles length is set to 3mm, 4mm or 5mm and their

diameter is varying in the range of 1.0 to 2.5 mm.

 

 

 

 

 

 

 

 

 

(a) Cylinder (CYL) (b) Trilobe (TL)

(c) Quadralobe (QL) (d) Circumscribed diameter.

Figure 4: Particle shapes in this study.

In each simulation at least 1000 particles are inserted. The parameters of all numerical
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simulations are listed in table 1. The restitution coefficient en has been computed from the

rebound height of spherical particles made of the same material as the extrudates (porous

alumina). The surface of the particle is very rough which explains the high value of the

friction coefficient µc set to 0.55. Please note that this value is not universal and depends

on the nature of the material of the two bodies that experience frictional contact. We set it

to 0.55 as a result of crude friction experiments conducted in our lab designed to determine

the onset of sliding of an extrudate set on a rough inclined metal plane. Critical angles for

onset of sliding were recorded between 26o and 32o, giving µc between tan(26o) and tan(32o)

and an average value of about 0.55. This value is in line with measurements of 0.5-0.7 by

Sliney et al.31 Extrudates manufactured differently would give a different value. Based on

a conservative v0 = 2m s−1 maximum collision velocity, the stiffness coefficient kn is chosen

such that the theoretical maximum overlap of 2 rigid bodies is less than 0.5% of the radius of

the sphere of equivalent volume. The overlap value is chosen as a trade-off between volume

loses due to overlap and computing time. The value of 0.5% was chosen as the highest

value with an effect of void fraction less than 0.0001. With this value, the sharp angles

of the selected particles are very well accounted for. Similarly, the time step magnitude is

set about 20 times smaller than the theoretical collision duration (see Wachs et al.24 for

more details about how to estimate DEM simulation parameters). An example of a packing

sequence is shown in figure 5 for 3 mm and 1.6 mm diameter TL packed in a 14 mm diameter

container.

Simulations with random insertion and data analysis

As mentioned earlier, the particles are inserted in the simulation with a random position and

orientation. Afterwards, the simulations and measurements are deterministic. Every packed

bed thus present a different void fraction due to different (random) initial conditions. As we

are interested in comparing the effects of shape on void fraction, we must be able to quantify
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Table 1: Contact force model parameters and estimate of contact features at v0 = 2 m s−1.
δmax denotes the theoretical maximum overlap of 2 rigid bodies and Re denotes the radius
of a sphere of same volume as the particle.

Parameter Value
kn (N m−1) 1× 105

en 0.7
µc 0.55
δmax (m) , δmax/Re 1.5× 10−5 , 0.005
TC (s) 2.01× 10−5

∆t (s) 1× 10−6

Figure 5: Packing sequence for 3 mm long x 1.6 mm diameter TL particles in a 14 mm
diameter container at time t = 0.2, 0.5, 1 and 4.4 s. Colored by translation velocity norm.
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which part of the differences between two simulations are due to the shape or to the random

insertion at the top of the domain.

Repeating the packing

Several packings with the same set of 1000 particles are repeated for the 3 shapes (table

2). As the particle shape and dimension differ from one case to another, the average void

fractions should not be compared for the moment but the reader should focus on the void

fraction standard deviation (σ < 0.0053) which reads:

σ =

√√√√ 1

N − 1

N∑
i=1

(εi − µ)2, where µ =
1

N

N∑
i=1

εi (6)

where N and εi stand for total number of simulations and void fraction of the simulation i

respectively.

Void fraction standard deviation accounts for both shape effects and packing repeatibility.

To estimate only the repeatibility, we remove from all void fraction the average of each sub-

set (shape effect) and compute the standard deviation of the whole ensemble (18 elements

with an average of 0). We find the repeatibility: σ1 = 0.0042. At this point, it is worth

reminding that once the particles are inserted in the simulation, the solver is deterministic:

σ1 is a measure of the effect of the random initial conditions.

Table 2: Repetition of random packing with identical particles.

Shape Length Diameter Number of Void fraction
[mm] [mm] repetition Average Std dev. Min. Max.

CYL 3 1.6 7 0.3829 0.0053 0.3752 0.3921
TL 3 2.2 5 0.4127 0.0007 0.4118 0.4136
QL 3 2.2 6 0.4085 0.0050 0.4026 0.4150
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Effect of insertion window size

We estimate the effects of the insertion window size for various geometric configurations of

the container (cylindrical / bi-periodic and its size), and various particle shapes and sizes.

In this work, we only use planar (2D) square insertion windows and an insertion point for

reference (see figure 6). For 13 selected cases, we compare the void fraction computed using

two insertion windows with different side length (see table 3). Simulations are not repeated.

Table 3: Effect of insertion window size on void fraction. Insertion window is 2D square of
the length (0 mm to 10 mm). 0 indicates point insertion.

Case Window 1 Window 2 Void fraction
size [mm] size [mm] difference (×10−3)

D14-CYL-L4, dp = 1.8 4 6 0.3
D14-CYL-L3, dp = 1.6 0 4 14.8
D14-CYL-L3, dp = 1.6 0 6 6.9
D14-CYL-L3, dp = 1.6 4 6 7.9
D14-CYL-L3, dp = 1.6 4 6 7.4
D16-CYL-L3, dp = 1.8 4 6 3.4
D16-CYL-L3, dp = 1.6 4 6 0.7
D16-CYL-L3, dp = 1.8 4 6 1.8
BIP16-CYL-L3, dp = 1.6 4 10 5.8
BIP18-CYL-L3, dp = 1.4 4 10 6.6
BIP16-CYL-L3, dp = 1 4 10 16.3
BIP18-QL-L3, dp = 1.9 7 10 1.9
BIP18-QL-L3, dp = 2.2 6 10 6.9

Average 6.2
Std dev. 4.9

According to an analysis of variance (ANOVA), the void fraction difference is statistically

non zero. In average, a larger window results in a higher void fraction. We propose the

following mechanism: a larger window results in more particles inserted simultaneously,

leaving less time for a particle at the top of the stack to reach the most stable position

before the arrival of the subsequent ones. The standard deviation on the void fraction

difference is 0.0049. This value is rather small simply because the insertion window size

variation is rather limited. In fact, this geometry has been chosen not to be too influential

on the packing results.
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(a) An insertion window of 4 mm length
in a cylindrical vessel of 14 mm diameter.

(b) An insertion window of 6 mm length
in a cylindrical vessel of 14 mm diame-
ter.

Figure 6: Top view of two simulation domains with their corresponding insertion windows.

Choosing the proper insertion geometry is a matter of compromise for several reasons.

First, none of the methods is more realistic than another: in the laboratories, reactor loading

is not standardized and is often manual. A change in particle size while keeping the same

insertion window size results in a change in the number of particles that are inserted simul-

taneously, which yields more or less compact beds (the extreme being described as loose

and dense packing in the literature). An obvious geometrical constraint is that the insertion

window must be smaller than the reactor: smaller reactors need smaller insertion windows

which leads to denser beds. This is similar to the reduction of the funnel diameter during an

experimental loading. Last, a small insertion window requires a longer loading time, whereas

a larger one permits a faster loading. In order to decrease the computing time and compute

more cases, the simulations are performed with a medium size planar square insertion win-

dow (4mm and 6mm wide) that fits in all geometries. This choice will overestimate the void

fraction compared to a point insertion and underestimate the void fraction for large parti-

cles. When looking at all the simulation data set, not only the cases in table 3, void fraction

could not be correlated with, nor ranked against a ratio of box size to particle size. The

insertion window size effect is a complex function of particle, reactor and box dimensions.

16



This effect is not random but appears so and we decided to model it as a Gaussian random

variable. Its standard deviation σ2 is equal to 1/
√

2 of the standard deviation of the “void

fraction difference” (see Appendix for details): σ2 = 0.00346 = 0.0049/
√

2. σ2 measures the

unknown bias on the simulation induced by the choice of the insertion window size.

Simulated values for cylinders are on the dense side of the experimental values validating

both the DEM simulation and our choices for insertion procedure. For an aspect ratio of 2,

Zou and Yu’s measurements32 can be extrapolated to 0.31 (dense) and 0.42 (loose) for large

containers, to be compared with our simulation of 0.35 in the biperiodic domain. Similarly

in packing of cylinders with an aspect ratio of 2 in tubes, they found void fraction range

of 0.35-0.38 (dense) and 0.48-0.53 (loose) to compare with our simulations that give a void

fraction near 0.39-0.40 for the same particle to tube diameter ratios.

Overall uncertainty

An overall uncertainty on a single void fraction simulation result can now be estimated from

σ1 (random initial conditions) and σ2 (bias induced by insertion window size). As both

uncertainties are independent, a classical measurement statistic theory gives an estimate of

the overall standard deviation: σ =
√
σ2
1 + σ2

2 = 0.0054. An estimation of the overall uncer-

tainty on a single measurement I is I = 2σ = 0.011 (see Appendix for details). According to

this analysis, there is a 95% probability that, given the output ε of a single experiment, the

average void fraction of a large number of simulations falls in the interval ε ± 0.011 (with

ε = 0.42, this gives an estimate of 0.409 and 0.431). In other words, this corresponds to a

relative uncertainty on the void fraction of less than 2.5%.
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Results

Bi-periodic container

The average void fraction for various shapes, lengths and diameters simulated in a bi-periodic

container is presented in figure 7. This case corresponds to large containers similar to

industrial reactors. The void fraction is linearly correlated with particle aspect ratio Lp/dp.

Shorter, rounder particles pack more densely. Cylindrical particles present a lower void

fraction and lower dependence on the aspect ratio than poly-lobed shapes. Surprisingly, the

void fraction of trilobes and quadrilobes can not be distinguished.

1.0 1.5 2.0 2.5 3.0 3.5 4.0
Particle aspect ratio (L/dp )

0.30

0.35

0.40

0.45

0.50

0.55

ε

CYL-L3

CYL-L4

CYL-L5

CYL
±I
QL-L3

QL-L4

TL-L3

TL-L4

TL/QL

Figure 7: Average void fraction in a bi-periodic container for particles of various shape,
length and diameter. Dashed lines correspond to the incertitude computed earlier.

Two correlations are proposed to predict the void fractions in large containers with an

accuracy better than the overall uncertainty:

CYL: ε = 0.289 + 0.033
Lp

dp
(7)

TL & QL: ε = 0.314 + 0.049
Lp

dp
(8)
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In figure 7 the slope for the poly-lobed particles is much larger than that of the cylindrical

particles. We suggest that during the packing, the lobes hinder rotation and result in a quick

dampening of the vibrations induced by impacts. This results in less compact beds for poly-

lobed particles.

Extending the trends to near spherical shape (Lp/dp = 1) leads to a void fraction of 0.32

(CYL) and 0.36 (TL/QL) which are values close to dense packings of spheres. The ratio of

the corresponding "asymptotic" solid volume fractions 1− 0.32 = 0.68 and 1− 0.36 = 0.64,

respectively, is 0.64/0.68 ' 0.94, i.e. 94%. As expected, this ratio is higher than the ratio of

volumes between cylinder and TL/QL equal to ∼ 70%, for the same diameter, as the lobes

of one TL/QL particle can enter the "cylindrical envelop" of another TL/QL particle.

Cylindrical container

Cylindrical particles

The void fraction of a packed bed of cylindrical particles in a cylindrical reactor is in line with

experimental measurements by Leva et al.33 (our values are in the range of dp/D < 0.3). The

void fraction increases with the particle aspect ratio and seems to decrease with increasing

reactor diameter D. However in the range studied, the effect of D is barely larger than the

repeatability. Following Leva et al.,33 whose results suggest a proportional relationship to

the inverse of vessel diameter, we propose the correlation in equation 9. It describes the

whole data set with a maximum absolute error of 0.014 and a standard deviation of 0.006,

which is about half of the uncertainty. Data points and equation 9 are plotted in figure 8(a).

The correlation is as follows:

CYL: ε = 0.315 + 0.0244
Lp

dp
+ 0.141

Lp

D
(9)

14 < D[mm] < 19, 1 < Lp/dp < 5, 3 < Lp[mm] < 4
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(a) Equation 9 vs. simulations. Dashed lines are
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Figure 8: Void fraction for packed beds of cylindrical particles in a cylindrical reactor for
various reactor diameters, particle lengths and aspect ratios.

In our limited diameter range, a simplified correlation that does not take into account

the reactor diameter D predicts the void fraction with only a slightly higher error and reads

as follows:

CYL: ε = 0.327 + 0.033
Lp

dp
(10)

14 < D[mm] < 19, 1.67 <
Lp

dp
< 2.86, 3 < Lp[mm] < 4

The maximum absolute error and standard deviation of equation 10 are 0.02 and 0.0077,

respectively.

Poly-lobed particles

The following linear correlation (equation 11) predicts the simulated void fraction with a

lower accuracy than cylinders but equal to the overall uncertainty (see figure 9):
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QL: ε = 0.33 + 0.0328
Lp

dp
+ 0.212

Lp

D
(11)

14 < D[mm] < 19, 1.2 <
Lp

dp
< 3.33, 3 < Lp[mm] < 4
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Figure 9: Void fraction for packed beds of quadralobal particles in a cylindrical reactor for
various reactor diameters, particle lengths and aspect ratios: equation 11 vs. simulations.
Dashed lines are parity ±I.

The results for TL particles are presented in figure 10. The following linear correlation

(equation 12) also describes the data with an accuracy equal to the uncertainty:

TL: ε = 0.345 + 0.0289
Lp

dp
+ 0.15

Lp

D
(12)

14 < D[mm] < 19, 1.2 <
Lp

dp
< 3.3, 3 < Lp[mm] < 4

A unified correlation predicting the void fraction for TL and QL regardless of the shape

has the same accuracy as that of the TL (see figure 11). It is defined as follows (equation

13):
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Figure 10: Void fraction for TL packed beds for various reactor diameters, particle lengths
(not shown) and aspect ratio: equation 12 vs. simulations. Dashed lines are parity ±I.

QL & TL: ε = 0.329 + 0.0289
Lp

dp
+ 0.15

Lp

D
(13)

14 < D[mm] < 19, 1.2 <
Lp

dp
< 3.33,

2 < Lp[mm] < 4, 1.2 < dp[mm] < 2.48

Discussion

Effect of domain size in bi-periodic directions?

The bi-periodic simulation results presented so far have been obtained with a domain with

a transverse size of 18mm. 4 simulations have been repeated using smaller domains (8mm

and 10mm) with CYL and QL with a particle aspect ratio of 3. The void fraction in smaller

domains are within the repeatability of that in the large domain (transverse size of 18mm).

We have so far no indication of an effect of bi-periodic domain size in the range 8 mm to
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Figure 11: Comparison of a unified correlation (equation 13) with numerical simulations for
TL and QL in small cylindrical reactors.

18mm, although it would seem logical that packing structure and average void fraction will

be affected at some point when decreasing the bi-periodic domain size. In presence of a

stochastic injection process, it appears that performing simulations in the chosen domains

does not impose any particular structure in the bed with a wavelength correlated to the

transverse domain size. Simulation results would tend to indicate that even a transverse size

of 8 mm is large enough to represent an infinitely large domain in the transverse direction.

A more comprehensive study is required to conclude on this topic for example by studying

the asymptotic convergence of void fraction when increasing bi-periodic domain size and

compare it with the variability induced by the injection process.

Remark on the effect of container size

For all three particle shapes (CYL, TL and QL), the void fraction is higher in small reactors

than in semi-infinite vessels as expected. When the reactor diameter increases, none of

the correlations presented in this work for cylindrical reactors converges to the correlation

proposed for infinite vessels. This is not surprising as our cylindrical reactors are not larged
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compared to the particle length. In fact, the minimum Lp/D in our simulations is 3/19 =

0.158, which is still high. To get asymptotically vanishing wall effects in a reactor, Lp/D is

probably required to be at least as small as 0.05. More simulations at larger reactor diameters

and probably non-linear relationships would be necessary to propose a unified correlation.

Effect of contact force parameters

Another important remark is that our data set is obtained for a single set of contact force pa-

rameters, and in particular for single values of the restitution coefficient en and the Coulomb

friction force µc. In beds of spheres, it is well documented that the void fraction increases

with decreasing en and increasing µc. While the contact point and force chain network is

undoubtedly different in a bed of cylinders, trilobic and quadrilobic particles compared to

that in a bed of spheres, we anticipate the same qualitative trend. However, we have not

performed any DEM simulations with varying en and µc and cannot confirm this presumable

qualitative trend for cylinders, trilobic and quadrilobic particles. At the very least, if this

trend is indeed confirmed by DEM simulations, changing the value of en and µc will change

the value of the coefficients in the suggested correlations presented in equations 7, 8, 9, 10,

11, 12 and 13.

Conclusion

DEM has been used to investigate packed beds of poly-lobed particles. Although our simu-

lations are deterministic (and accurate), random input parameters (location and orientation

of particles) as well as simulation parameters (insertion window) lead to an overall uncer-

tainty on void fraction that has been estimated to be about ±0.011. A subsequent analysis

of the void fraction and its dependence on the particle shape and reactor size showed that

TL and QL present statistically identical void fractions. The effects of random insertion,

i.e., filling procedure, in packed beds may mask the shape induced effect on void fraction
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for optimized particles. We propose simple linear correlations to predict the void fraction

for cylinders, trilobes and quadralobes in semi-infinite and small size cylindrical reactor that

showed a good accuracy in the limited range of reactor diameter explored. More simulations

and probably non-linear regressions are necessary to unify these correlations.

DEM simulations yield a rich set of information in the bulk of the bed. We have not

yet exploited all these data. An extended analysis of the microstructure of the simulated

bed would include extracting radial void fraction profiles in the case of cylindrical containers

and orientation probability density functions for both bi-periodic domain and cylindrical

containers, as in, e.g., Partopour et al.34 and Dorai et al.19 The ability for 2 TL/QL static

particles to exhibit multiple contact points due to their non-convex shape should also affect

the force chain in the bed and may have an effect on the breakage of the catalyst particles.

This is postponed to future work.

Ranking TL and QL and their chemical efficiency is not possible based only on void frac-

tion. A precise knowledge of the relationship between shape and pressure drop is necessary

to conclude. In this direction, another ongoing work in our group is to use particle resolved

simulation (PRS) to compute the pressure drop in beds of poly-lobed particles. This is an

extension of the work presented in Dorai et al.13 PRS has been shown to be easily extended

to heat and mass transfer as the technique used to solve the momentum equations with solid

obstacles, as, e.g., Immersed Boundary, Distributed Lagrange Multiplier/Fictitious Domain

or lattice-Boltzmann, can be similarly used to solve other conservation equations.34–37 An

integrated framework based on DEM and PRS for reactive flows, as demonstrated by Par-

topour et al.34 and other groups, is currently at the final stage of development in our group5

and will enable us to assess the chemical efficiency uncertainty induced by the multiple

input parameters: loading procedure, particle shape, contact force parameters, dimension-

less momentum transfer numbers (Reynolds number), dimensionless mass transfer numbers

(fluid/solid diffusivity ratio, Schmidt number, Damkohler number) and kinetic models.
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Appendix S1: standard deviation calculation
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