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Appendix S1: Standard Deviation Calculation

In this work, the simulations and measurements are deterministic and accurate. The resulting

void fraction is different each time the same simulation is performed again as the particles

are inserted with different (random) orientations and positions. The average void fraction

thus ought to be treated as a random variable. In this work we are interested in comparing

the effects of shape on the void fraction. Thus we must be able to quantify how much of

the differences between two simulations with different shapes are due to the shape or to the

loading procedure.

By definition, the uncertainty is the value I so that 95% of the random values of the void

fraction will be within ±I of the average . With a Gaussian probability law, this definition

is equivalent to I = 1.96σ which is classically simplified to I = 2σ. In mathematical terms,

95% of the area under the Gaussian probability curve is within average ±I . In our study,

the effect of particle position and orientation is estimated by repeating the simulations and

estimating the standard deviation.

The standard deviation of the sum or difference of two independent Gaussian random

variables is given by σX−Y = σX+Y =
√
σ2
1 + σ2

2 , yielding σX−Y = σX+Y = σX
√
2 when

X1 and X2 follow a Gaussian probability law with standard deviation σX . The effect of

insertion window size is estimated using the difference between two simulations, hence the

introduction of a
√
2 in the calculations.
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