I.	General considerations	1
II.	Complex syntheses	1
	[Ni(COD) ₂]	1
	$[Ni(PCy_3)((H_2C=CHSiMe_2)_2O)]$ (2a)	2
	$[Ni(PPh_3)((H_2C=CHSiMe_2)_2O)] (2b).$	2
	$[Ni(PiPr_3)((H_2C=CHSiMe_2)_2O)] (2c)$	3
	$[Ni(P(tBu)(iPr)_2)((H_2C=CHSiMe_2)_2O)]$ (2d)	3
	$[Ni(PCy_3)(C_2H_4)_2]$ (3)	4
	[Ni(NHCIPr)(CH ₂ =CHPh) ₂] (4)	4
	[Ni(dcpp)Cl] ₂ (5)	4
III.	Reduction mechanism investigations	5
IV.	Crystal data	6
1)	Crystal data for complex 2d	6
2)	Crystal data for complex 3	12
I.	References	17

I. General considerations

All manipulations were carried out using standard Schlenk techniques under inert atmosphere. Toluene, THF and pentane were dried by a solvent purification system (SPS-M-Braun). Commercial starting materials were purchased from Sigma-Aldrich, Strem and Alfa Aesar and used without further purification. NHC^{IPr 1}, [Ni(DME)Cl₂]², [Ni(dcpp)Cl₂]³ and 1⁴ were synthesized following published procedures. Deuterated solvents were purchased from Sigma-Aldrich or Eurisotop, freeze-pumped and stored over 4Å molecular sieves under argon. The ¹H, ³¹P{¹H}, and ¹³C{¹H} NMR spectra were recorded on a Bruker AC 300 MHz instrument at 293 K unless otherwise stated. All chemical shifts are reported in ppm vs SiMe₄ and were determined with reference to residual solvent peaks. All coupling constants are given in Hertz. RPE spectra were recorded on a Bruker Elexsys E500. Elemental analyses were performed by Stephen Boyer (London Metropolitan University).

II. Complex syntheses

[Ni(COD)₂]

A solution containing COD (5mL, 40.77 mmol, 60eq) and reducing agent 1 (385 mg, 1.36 mmol, 2 eq) in 10 mL THF is cannulated into $[Ni(DME)Cl_2]$ (150 mg, 0.68 mmol) in 5 mL THF at -20°C. The media is stirred until the temperature get to -10°C (3h). The suspension is then filtered and volatiles are evaporated. The orange oily solid is triturated 2 times with 2 mL of pentane and the yellow solid is dissolved in 2 mL of toluene and let overnight at -34°C to allow the formation of yellow crystals that were finally washed twice with cold pentane (101.7 mg, 54%).

¹H-NMR (300 MHz, C₆D₆) δ ppm 4.30 (s, 8H, CH=CH), 2.08 (s, 16H, CH₂).

¹³C-NMR (75 MHz, C₆D₆) δ ppm 89.73 (CH=CH), 30.86 (CH₂).

[Ni(PCy₃)((H₂C=CHSiMe₂)₂O)] (2a)

A solution containing PCy₃ (192 mg, 0.68 mmol, 1eq), reducing agent **1** (386 mg, 1.36 mmol, 2eq) and dvtms (254 mg, 1.36 mmol, 2eq) in 10 mL THF is cannulated into a solution of $[Ni(DME)Cl_2]$ (150 mg, 0.68 mmol) in 5mL THF. The media is stirred 1h at 20°C. The clear yellow solution is the filtered and the volatiles are evaporated. The adding of 2mL of pentane led to the precipitation of the complex. The solid is finally washed with cold pentane (3x2mL). The complex **2a** is obtained as a yellow powder (278 mg, 77%). ¹H, ³¹P, ¹³C NMR spectra are in accordance with those reported elsewhere.⁵

¹H-NMR (300 MHz, C₆D₆) δ ppm 2.97 (m, 2H, CH₂=CH), 2.63 (m, 4H, CH₂=CH), 2.07 (m, 3H, CH(Cy)), 1.47 (m, 30H, CH₂(Cy)), 0.61 (s, 6H, Me), 0.09 (s, 6H, Me).

³¹P-NMR (121 MHz, C₆D₆) δ ppm 38.0.

¹³C-NMR (75 MHz, C_6D_6) δ ppm 58.9 (CH, dvtms, $J_{C-P}=7.1Hz$), 55.7 (CH₂, dvtms, $J_{C-P}=4.9Hz$), 36.6 (CH, PCy, $J_{C-P}=15.6Hz$), 30.9 (CH2, PCy), 28.2 (CH₂, PCy $J_{C-P}=9.7Hz$), 27.1 (CH₂, PCy), 2.4 (Me, dvtms $J_{C-P}=1.8Hz$), -0.1 (Me, dvtms).

 $[Ni(PPh_3)((H_2C=CHSiMe_2)_2O)]$ (2b)

A solution containing PPh₃ (179 mg, 0.68 mmol, 1eq), reducing agent (1) (386 mg, 1.36 mmol, 2eq) and dvtms (254 mg, 1.36 mmol, 2eq) in 10 mL THF is cannulated into a solution

of [Ni(DME)Cl₂] (150 mg, 0.68 mmol) in 5 mL de THF. The media is stirred 1h at 20°C. The clear yellow solution is the filtered and the volatiles are evaporated. The adding of 2mL of pentane led to the precipitation of the complex. The solid is finally washed with cold pentane (3x2mL). The complex **2b** is obtained as a yellow powder (161 mg, 43%). ¹H, ³¹P, ¹³C NMR spectra are in accordance with those reported elsewhere.⁵

¹H-NMR (300 MHz, C_6D_6) δ ppm 7,4 (m, 6H, aromatics), 7.01 (m, 9H, aromatics), 3.11 (m, 2H, CH₂=CH), 2.94 (m, 2H, CH₂=CH), 2.77 (m, 2H, CH₂=CH), 0.50 (s, 6H, Me), 0.01 (s, 6H, Me).

³¹P-NMR (121 MHz, C₆D₆) δ ppm 40.5.

¹³C-NMR (75 MHz, C_6D_6) δ ppm 136.5 (C PPh, $J_{C-P}=35.5Hz$), 133.8 (CH PPh, $J_{C-P}=11.7Hz$), 129.5 (CH PPh, $J_{C-P}=1.75Hz$), 128.5 (C PPh, $J_{C-P}=9.0Hz$), 63.8 (CH, dvtms, $J_{C-P}=2.40Hz$), 62.6 (CH₂, dvtms, $J_{C-P}=7.3Hz$), 2.1(CH₃, dvtms $J_{C-P}=1.8Hz$), -0.4 (CH₃, dvtms).

EA: Expected %C : 61.55 %H : 6.56 Obtained %C : 61.48 %H : 6.44

 $[Ni(PiPr_3)((H_2C=CHSiMe_2)_2O)]$ (2c)

A solution containing PiPr₃ (109 mg, 0.68 mmol, 1eq), reducing agent (1) (386 mg, 1.36 mmol, 2 eq) and dvtms (254 mg, 0.68 mmol, 2 eq) in 10 mL THF is cannulated into a solution of [Ni(DME)Cl₂] (150 mg, 0.68 mmol) in 5mL THF. The media is stirred 1h at 20°C. The clear yellow solution is the filtered and the volatiles are evaporated. The adding of 2mL of pentane at -20°C led to the precipitation of the complex. The solid is finally washed with cold pentane (3x2mL). The complex **2c** is obtained as a yellow powder (65.6 mg, 24%).

¹H-NMR (300 MHz, C_6D_6) δ ppm 2.93 (m, 2H, CH=CH₂), 2.61 (m, 2H, CH=CH₂), 2.03 (sept, J=7.5Hz, 3H, CH(iPr)), 0.97 (dd, J=6.64, 11.77, 18H, CH₃(iPr)) 0.50 (s, 6H, Me), 0.01 (s, 6H, Me).

³¹P-NMR (121 MHz, C₆D₆) δ ppm 50.5.

¹³C-NMR (75 MHz, C_6D_6) δ ppm 58.5 (CH, dvtms, $J_{C-P}=6.9Hz$), 55.1 (CH₂, dvtms, $J_{C-P}=4.4Hz$), 26.3 (CH, PiPr, $J_{C-P}=16.2Hz$), 20.1 (CH₃, PiPr, $J_{C-P}=1.9Hz$), 2.4 (Me, dvtms $J_{C-P}=1.8Hz$), 0.0 (Me, dvtms).

 $[Ni(P(tBu)(iPr)_2)((H_2C=CHSiMe_2)_2O)] (2d)$

A solution containing $P(tBu)(iPr)_2$ (119 mg, 0.68mmol, 1eq), reducing agent (1) (386 mg, 1.36 mmol, 2 eq) and dvtms (254 mg, 0.68 mmol, 2 eq) in 10 mL THF is cannulated into a solution of $[Ni(DME)Cl_2]$ (150 mg, 0.68 mmol) in 5mL THF. The media is stirred 1h at 20°C. The clear yellow solution is the filtered and the volatiles are evaporated. The adding of 2mL of pentane at -20°C led to the precipitation of the complex. The solid is finally washed with cold pentane (3x2mL). The complex 2d is obtained as a yellow powder (124 mg, 43%). Crystals suitable for XRD analysis were obtained by slow diffusion of pentane into a solution of 2d in THF at room temperature.

¹H-NMR (300 MHz, C₆D₆) δ ppm 2.68 (m, 6H, CH=CH₂), 2.20 (sept, 2H, CH(iPr)), 1.04 (m, 21H, CH₃(iPr+tBu)) 0.58 (s, 6H, Si-Me), 0.05 (s, 6H, Si-Me).

³¹P-NMR (121 MHz, C₆D₆) δ ppm 50.5.

¹³C-NMR (75 MHz, C_6D_6) δ ppm 58.2 (CH, dvtms), 53.9 (CH₂, dvtms), 33.6 (C, tBu, J_C-P=13.2Hz), 30.6 (CH3, tBu, J_{C-P}=4.9Hz), 25.5 (CH, iPr, J_{C-P}=12.7Hz), 22.4 (CH3, iPr, J_{C-P}=6.4Hz), 19.2 (CH3, iPr), 2.9(Me, dvtms J_{C-P}=1.8Hz), 0.4 (Me, dvtms).

[Ni(PCy₃)(C₂H₄)₂] (3)

A solution containing PCy₃ (191 mg, 0.68 mmol, 1eq) and reducing agent **1** (386 mg, 1.34 mmol, 2eq) in 10 mL THF is cannulated into a suspension of $[Ni(DME)Cl_2]$ (150 mg, 0.68 mmol) in 5 mL THF under 1 atm of C₂H₄ (bubling into the solution). The reaction mixture is stirred during 1h at RT. A clear yellow solution is obtained and analyzed by ³¹P NMR (no lock). The complex **3** was observed as unique product in the crude. THF was then evaporated and the oily residue was dissolved in 3mL of pentane. Placing the solution at -34°C led to the formation crystals suitable for XRD analysis.

³¹P-NMR (121 MHz, no lock) δ ppm 39.1.

 $[Ni(NHCIPr)(CH_2=CHPh)_2]$ (4)

A solution of NHCIPr (319 mg, 0.82 mmol, 1.2eq) in 5mL THF is cannulated in a suspension of $[Ni(DME)Cl_2]$ (150 mg, 0.68 mmol, 1eq), reducing agent **1** (386 mg, 1.36 mmol, 2eq) and

styrene (1 mL, 8.73 mmol, 12.8eq) in 10 mL THF à -20°C. The media is stirred 1h à -20°C and then 1h at 20°C. The solution is filtered and volatiles are evaporated. Adding of 2mL of pentane led to the precipitation of the complex. The suspension is placed 18h at -34°C and then filtered. Finally the complex is washed 3 times with 2 mL pentane at -20°C. The complex **4** is obtained as a yellow solid (198.1 mg, 44%). ¹H, ¹³C NMR spectra are in accordance with those reported elsewhere.⁶

¹H-NMR (300 MHz, C_6D_6) δ ppm 0.98 (d(6.8Hz), 3H, CH₃, iPr), 1.00 (d(6.8Hz), 3H, CH₃, iPr), 1.11 (d(6.8Hz), 3H, CH₃, iPr), 1.37 (d(6.8Hz), 3H, CH₃, iPr), 2.67 (d(9.4 Hz), 2H, CHolef), 2.75 (d(12.7 Hz), 2H, CHolef), 2.88 (hept(6.8Hz), 2H, CH, iPr), 3.26 (dd(9.4Hz, 12.7 Hz), 2H, CHolef), 3.38 (hept(6.8Hz), 2H, CH, iPr), 6.12 (d(7.7Hz), 4H, CHarom), 6.69 (s, 2H, CHimid), 6.9-7.5 (m, 12H, CHarom).

¹³C-NMR (75 MHz, C₆D₆) δ ppm 22.13, 22.80, 25.45, 27.06, 28.42, 29.05 (CH₃, iPr), 49.90, 72.99 (CH, iPr), 123.36, 124.09, 124.26, 124.46, 124.52, 126.58, 128.75, 129.83, 137.74, 146.05, 146.83, 146.89 (CHarom+imid), 204.1 (Ccarb).

A solution containing reducing agent 1 (150 mg, 0.53 mmol 2,4 eq) in 4mL THF is added to a suspension of $[Ni(dcpp)Cl_2]$ (126,0 mg, 0.22 mmol) in 4mL THF. The mixture is stirred 6h at 20°C. The clear yellow solution obtained is filtered and volatiles are evaporated. The pale red solid obtained is then washed 3 times with 4mL pentane (82.8 mg, 70%).

X-Band RPE at 20°C : $g=2,14\mu$ B, $A_{iso}(^{31}P, n=2) = 74$ G.

III. Reduction mechanism investigations

A solution containing PCy₃ (19 mg, 0.068 mmol, 1eq), reducing agent **1** (37 mg, 0.136 mmol, 2eq) and dvtms (25 mg, 0.136 mmol, 2eq) in 0.4 mL toluene is added to $[Ni(DME)Cl_2]$ (15 mg, 0.068 mmol). The mixture is put in a closed and inert NMR tube and ³¹P NMR spectra are recorded after 5 and 30 minutes (Figure 1).

A solution containing PCy₃ (19 mg, 0.068 mmol, 1eq), reducing agent **1** (19 mg, 0.068 mmol, 1eq) and dvtms (25 mg, 0.136 mmol, 2eq) in 0.4 mL toluene is added to $[Ni(DME)Cl_2]$ (15 mg, 0.068 mmol). The mixture is put in a closed and inert NMR tube and ³¹P NMR spectra are recorded after 5 and 30 minutes, 20h and after the adding of a second equivalent of **1**(Figure 2).

A solution containing PCy_3 (13 mg, 0.047mmol, 1eq), reducing agent 1 (13 mg, 0.047 mmol, 1eq) and dvtms (17 mg, 0.094 mmol, 2eq) in 10 mL toluene is added to [Ni(DME)Cl₂] (15 mg, 0.068 mmol). The mixture is stirred at RT during 5h and then analyzed by EPR spectroscopy. EPR spectra at RT with two different simulations are presented in Figure 3.

Figure 3 EPR spectra at RT (Blue: experimental; red: simulated)

IV. Crystal data

1) Crystal data for complex 2d

CCDC Number : 1890834

C ₁₈ H ₄₁ NiOPSi ₂	<i>Z</i> = 2
$M_r = 419.38$	F(000) = 456
Triclinic, P ⁻¹	$D_{\rm x} = 1.232 {\rm ~Mg} {\rm m}^{-3}$
Hall symbol: -P 1	Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å
a = 9.745 (8) Å	Cell parameters from 8798 reflections
b = 11.1357 (11) Å	$\theta = 3.0-29.0^{\circ}$
c = 11.7289 (11) Å	$\mu = 1.04 \text{ mm}^{-1}$
$\alpha = 64.563 \ (9)^{\circ}$	T = 150 K
$\beta = 81.647 \ (7)^{\circ}$	Needle, brown
$\gamma = 80.817 (7)^{\circ}$	$0.39 \times 0.13 \times 0.10 \text{ mm}$
$V = 1130.5 (9) Å^3$	

Data collection

Xcalibur, Atlas, Gemini ultra diffractometer	5695 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source	4505 reflections with $I > 2.0\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.065$

Detector resolution: 10.4685 pixels mm ⁻¹	$\theta_{\text{max}} = 29.3^{\circ}, \ \theta_{\text{min}} = 3.1^{\circ}$
Absorption correction: analytical <i>CrysAlis PRO</i> 1.171.38.46 (Rigaku Oxford Diffraction, 2015) Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by R.C. Clark & J.S. Reid. (Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.	$h = -13 \rightarrow 13$
$T_{\min} = 0.761, \ T_{\max} = 0.915$	$k = -15 \rightarrow 15$
29745 measured reflections	$l = -15 \rightarrow 16$

Refinement

Refinement on F^2	Hydrogen site location: difference Fourier map
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.042$	Method, part 1, Chebychev polynomial, (Watkin, 1994, <i>P</i> rince, 1982) [weight] = $1.0/[A_0^*T_0(x) + A_1^*T_1(x) \cdots + A_{n-1}]^*T_{n-1}(x)]$ where A_i are the Chebychev coefficients listed below and $x = F/F$ max Method = Robust Weighting (<i>P</i> rince, 1982) W = [weight] * [1-(deltaF/6*sigmaF)^2]^2 A_i are: 0.173E + 04 0.171E + 04 958.
$wR(F^2) = 0.075$	$(\Delta/\sigma)_{\rm max} = 0.001$
S = 1.00	$\Delta \rangle_{\text{max}} = 0.89 \text{ e} \text{ Å}^{-3}$
5685 reflections	$\Delta \rangle_{\rm min} = -1.00 \text{ e} \text{ Å}^{-3}$
209 parameters	Extinction correction: Larson (1970), Equation 22
0 restraints	Extinction coefficient: 27 (5)
Primary atom site location: structure-invariant direct methods	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters ($Å^2$) for (I)

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
Ni1	0.69978 (4)	0.54637 (4)	0.31137 (4)	0.0167
P2	0.82021 (8)	0.72306 (7)	0.21557 (7)	0.0163
C3	1.0117 (3)	0.6754 (3)	0.2335 (3)	0.0217
C4	1.0682 (3)	0.5535 (3)	0.2056 (3)	0.0298
H42	1.1477	0.5065	0.2522	0.0453*
H43	0.9992	0.4921	0.2296	0.0445*
H41	1.0963	0.5794	0.1183	0.0450*

C5	1.1086 (3)	0.7855 (3)	0.1648 (3)	0.0328
H51	1.2017	0.7495	0.1883	0.0485*
H52	1.0799	0.8604	0.1873	0.0485*
Н53	1.1092	0.8172	0.0737	0.0486*
H31	1.0186	0.6468	0.3234	0.0259*
C6	0.7684 (3)	0.8487 (3)	0.2892 (3)	0.0200
C7	0.7972 (4)	0.9930 (3)	0.2022 (3)	0.0319
H72	0.7419	1.0265	0.1306	0.0482*
Н73	0.7699	1.0496	0.2472	0.0479*
H71	0.8939	0.9983	0.1735	0.0477*
C8	0.8467 (3)	0.8056 (3)	0.4082 (3)	0.0276
H81	0.8316	0.7132	0.4677	0.0406*
H83	0.8125	0.8639	0.4499	0.0409*
H82	0.9455	0.8101	0.3856	0.0407*
С9	0.6123 (3)	0.8453 (3)	0.3316 (3)	0.0328
H92	0.5923	0.7565	0.3922	0.0485*
H91	0.5817	0.9053	0.3722	0.0485*
Н93	0.5564	0.8699	0.2609	0.0487*
C10	0.8158 (3)	0.8299 (3)	0.0411 (3)	0.0234
C11	0.6723 (3)	0.9016 (3)	-0.0016 (3)	0.0298
H112	0.6848	0.9723	-0.0846	0.0450*
H113	0.6247	0.9404	0.0536	0.0445*
H111	0.6155	0.8424	-0.0068	0.0446*
C12	0.8749 (4)	0.7499 (4)	-0.0365 (3)	0.0338
H121	0.8575	0.8046	-0.1248	0.0504*
H122	0.9744	0.7253	-0.0305	0.0509*
H123	0.8289	0.6694	-0.0066	0.0507*
H101	0.8763	0.8977	0.0230	0.0274*
C13	0.7177 (3)	0.3772 (3)	0.4720 (3)	0.0188
C14	0.8148 (3)	0.4627 (3)	0.4610 (3)	0.0218
H141	0.9132	0.4393	0.4425	0.0260*
H142	0.8026	0.5098	0.5153	0.0264*
Si15	0.75969 (9)	0.22171 (8)	0.44688 (8)	0.0185
O16	0.6372 (2)	0.2119 (2)	0.36887 (19)	0.0210
Si17	0.55800 (9)	0.33529 (8)	0.25199 (8)	0.0191
C18	0.5259 (3)	0.4866 (3)	0.2840 (3)	0.0218
C19	0.5499 (3)	0.6145 (3)	0.1909 (3)	0.0249
H192	0.4898	0.6941	0.1933	0.0310*
H191	0.5808	0.6271	0.1045	0.0305*
H181	0.4529	0.4817	0.3525	0.0263*

C20	0.3922 (3)	0.2764 (3)	0.2447 (3)	0.0299
H201	0.3413	0.3443	0.1768	0.0454*
H202	0.3343	0.2574	0.3226	0.0456*
H203	0.4112	0.1966	0.2301	0.0452*
C21	0.6687 (3)	0.3699 (3)	0.0996 (3)	0.0291
H213	0.6176	0.4316	0.0288	0.0443*
H212	0.7525	0.4055	0.0984	0.0443*
H211	0.6956	0.2881	0.0878	0.0439*
C22	0.9303 (3)	0.2155 (3)	0.3536 (3)	0.0262
H221	0.9527	0.1286	0.3530	0.0395*
H222	1.0038	0.2307	0.3890	0.0390*
H223	0.9276	0.2795	0.2683	0.0386*
C23	0.7607 (3)	0.0723 (3)	0.6020 (3)	0.0254
H233	0.7651	-0.0079	0.5909	0.0387*
H232	0.8376	0.0671	0.6459	0.0381*
H231	0.6772	0.0793	0.6543	0.0384*
H131	0.6343	0.3764	0.5306	0.0227*

Atomic displacement parameters (Å²) for (I)

	U^{11}	U ²²	U^{33}	U^{12}	U^{13}	U^{23}
Ni1	0.01672 (19)	0.01584 (19)	0.0176 (2)	-0.00234 (14)	-0.00095 (15)	-0.00703 (15)
P2	0.0167 (4)	0.0167 (4)	0.0147 (4)	-0.0022 (3)	-0.0008 (3)	-0.0058 (3)
C3	0.0196 (15)	0.0230 (15)	0.0185 (14)	-0.0016 (12)	-0.0018 (11)	-0.0050 (12)
C4	0.0282 (17)	0.0281 (17)	0.0257 (17)	0.0034 (14)	0.0040 (13)	-0.0084 (14)
C5	0.0201 (16)	0.0360 (19)	0.0357 (19)	-0.0088 (14)	0.0022 (14)	-0.0082 (16)
C6	0.0236 (15)	0.0188 (14)	0.0211 (15)	-0.0027 (12)	-0.0006 (12)	-0.0119 (12)
C7	0.049 (2)	0.0186 (16)	0.0284 (17)	-0.0047 (15)	-0.0031 (16)	-0.0101 (14)
C8	0.0338 (18)	0.0302 (17)	0.0229 (16)	-0.0043 (14)	-0.0035 (13)	-0.0143 (14)
С9	0.0278 (18)	0.0365 (19)	0.040 (2)	-0.0021 (14)	0.0048 (15)	-0.0248 (17)
C10	0.0272 (16)	0.0224 (15)	0.0175 (14)	-0.0061 (12)	-0.0003 (12)	-0.0048 (12)
C11	0.0364 (19)	0.0252 (17)	0.0226 (16)	-0.0009 (14)	-0.0098 (14)	-0.0037 (13)
C12	0.0367 (19)	0.046 (2)	0.0197 (16)	-0.0031 (16)	0.0001 (14)	-0.0156 (15)
C13	0.0250 (15)	0.0148 (13)	0.0119 (13)	-0.0025 (11)	-0.0014 (11)	-0.0012 (11)
C14	0.0257 (16)	0.0216 (15)	0.0181 (14)	-0.0016 (12)	-0.0089 (12)	-0.0065 (12)
Si15	0.0205 (4)	0.0167 (4)	0.0177 (4)	-0.0016 (3)	-0.0005 (3)	-0.0070 (3)
016	0.0248 (11)	0.0179 (10)	0.0212 (11)	-0.0035 (8)	-0.0026 (9)	-0.0083 (9)
Si17	0.0199 (4)	0.0181 (4)	0.0200 (4)	-0.0031 (3)	-0.0010 (3)	-0.0082 (3)
C18	0.0160 (14)	0.0227 (15)	0.0286 (16)	-0.0018 (11)	-0.0041 (12)	-0.0119 (13)
C19	0.0233 (15)	0.0207 (15)	0.0318 (17)	0.0021 (12)	-0.0161 (13)	-0.0094 (13)

C20	0.0308 (18)	0.0265 (17)	0.0346 (19)	-0.0079 (14)	-0.0080 (15)	-0.0115 (15)
C21	0.0347 (18)	0.0250 (16)	0.0235 (16)	-0.0004 (14)	0.0023 (14)	-0.0087 (13)
C22	0.0250 (16)	0.0280 (17)	0.0270 (16)	-0.0001 (13)	-0.0015 (13)	-0.0140 (14)
C23	0.0267 (16)	0.0222 (16)	0.0251 (16)	-0.0018 (13)	-0.0043 (13)	-0.0073 (13)

Geometric parameters (Å, °) for (I)

Ni1—P2	2.2284 (10)	C11—H113	0.953
Ni1—C13	2.018 (3)	C11—H111	0.952
Ni1—C14	2.010 (3)	C12—H121	0.974
Ni1—C18	2.030 (3)	C12—H122	0.969
Ni1—C19	2.008 (3)	С12—Н123	0.969
Р2—С3	1.874 (3)	C13—C14	1.402 (4)
Р2—С6	1.908 (3)	C13—Si15	1.852 (3)
P2—C10	1.877 (3)	C13—H131	0.983
C3—C4	1.530 (4)	C14—H141	0.971
C3—C5	1.531 (4)	C14—H142	0.969
С3—Н31	0.971	Si15—O16	1.649 (2)
С4—Н42	0.960	Si15—C22	1.862 (3)
С4—Н43	0.962	Si15—C23	1.865 (3)
C4—H41	0.947	O16—Si17	1.647 (2)
С5—Н51	0.960	Si17—C18	1.849 (3)
С5—Н52	0.968	Si17—C20	1.864 (3)
С5—Н53	0.970	Si17—C21	1.867 (3)
С6—С7	1.535 (4)	C18—C19	1.404 (4)
C6—C8	1.541 (4)	C18—H181	0.981
С6—С9	1.532 (4)	С19—Н192	0.990
С7—Н72	0.966	С19—Н191	0.970
С7—Н73	0.969	C20—H201	0.964
С7—Н71	0.955	C20—H202	0.959
C8—H81	0.984	С20—Н203	0.960
С8—Н83	0.964	C21—H213	0.965
С8—Н82	0.965	C21—H212	0.958
С9—Н92	0.969	C21—H211	0.969
С9—Н91	0.965	C22—H221	0.960
С9—Н93	0.974	С22—Н222	0.949
C10—C11	1.532 (4)	С22—Н223	0.948
C10-C12	1.528 (4)	С23—Н233	0.950
С10—Н101	0.965	C23—H232	0.950
С11—Н112	0.959	C23—H231	0.959

P2—Ni1—C13	133.98 (9)	H113—C11—H111	109.3
P2—Ni1—C14	93.36 (9)	C10—C12—H121	108.6
C13—Ni1—C14	40.75 (11)	С10—С12—Н122	111.2
P2—Ni1—C18	137.27 (9)	H121—C12—H122	109.1
C13—Ni1—C18	88.71 (12)	С10—С12—Н123	110.1
C14—Ni1—C18	129.03 (13)	H121—C12—H123	108.7
P2—Ni1—C19	96.57 (10)	H122—C12—H123	109.1
C13—Ni1—C19	129.30 (12)	Ni1—C13—C14	69.31 (16)
C14—Ni1—C19	167.35 (13)	Ni1—C13—Si15	114.46 (14)
C18—Ni1—C19	40.71 (12)	C14—C13—Si15	125.2 (2)
Ni1—P2—C3	111.96 (11)	Ni1—C13—H131	109.0
Ni1—P2—C6	111.77 (10)	С14—С13—Н131	115.8
C3—P2—C6	104.49 (14)	Si15—C13—H131	113.6
Ni1—P2—C10	120.98 (10)	C13—C14—Ni1	69.94 (16)
C3—P2—C10	102.59 (14)	C13—C14—H141	119.5
C6—P2—C10	103.40 (13)	Ni1—C14—H141	115.8
P2—C3—C4	112.7 (2)	C13—C14—H142	120.4
P2—C3—C5	117.7 (2)	Ni1—C14—H142	115.0
C4—C3—C5	109.7 (3)	H141—C14—H142	110.6
P2—C3—H31	103.8	C13—Si15—O16	108.82 (12)
С4—С3—Н31	105.9	C13—Si15—C22	112.98 (14)
С5—С3—Н31	106.0	O16—Si15—C22	107.91 (14)
С3—С4—Н42	110.2	C13—Si15—C23	110.37 (13)
С3—С4—Н43	111.5	O16—Si15—C23	107.51 (13)
H42—C4—H43	107.9	C22—Si15—C23	109.09 (15)
C3—C4—H41	111.1	Si15—O16—Si17	127.17 (13)
H42—C4—H41	108.0	O16—Si17—C18	109.49 (12)
H43—C4—H41	108.1	O16—Si17—C20	106.19 (14)
С3—С5—Н51	108.9	C18—Si17—C20	111.89 (14)
С3—С5—Н52	111.2	O16—Si17—C21	109.75 (13)
H51—C5—H52	108.9	C18—Si17—C21	109.96 (15)
С3—С5—Н53	110.5	C20—Si17—C21	109.48 (16)
H51—C5—H53	108.4	Si17—C18—Ni1	114.41 (15)
H52—C5—H53	108.8	Si17—C18—C19	122.9 (2)
P2—C6—C7	115.3 (2)	Ni1—C18—C19	68.80 (16)
P2—C6—C8	110.1 (2)	Si17—C18—H181	114.1
C7—C6—C8	107.0 (3)	Ni1—C18—H181	110.2
P2—C6—C9	107.2 (2)	C19—C18—H181	117.2
C7—C6—C9	109.4 (3)	C18—C19—Ni1	70.49 (17)
C8—C6—C9	107.6 (3)	C18—C19—H192	119.7

С6—С7—Н72	109.2	Ni1—C19—H192	113.6
С6—С7—Н73	110.0	C18—C19—H191	120.1
Н72—С7—Н73	107.8	Ni1—C19—H191	115.6
С6—С7—Н71	111.4	Н192—С19—Н191	111.3
Н72—С7—Н71	110.1	Si17—C20—H201	110.2
Н73—С7—Н71	108.3	Si17—C20—H202	110.7
С6—С8—Н81	110.4	H201—C20—H202	108.2
С6—С8—Н83	109.6	Si17—C20—H203	110.5
H81—C8—H83	108.7	H201—C20—H203	108.6
С6—С8—Н82	110.6	H202—C20—H203	108.6
H81—C8—H82	108.6	Si17—C21—H213	110.6
H83—C8—H82	108.9	Si17—C21—H212	111.5
С6—С9—Н92	111.1	H213—C21—H212	109.4
С6—С9—Н91	110.3	Si17—C21—H211	110.2
Н92—С9—Н91	107.5	H213—C21—H211	107.2
С6—С9—Н93	112.0	H212—C21—H211	107.7
Н92—С9—Н93	106.8	Si15—C22—H221	109.5
Н91—С9—Н93	109.0	Si15—C22—H222	111.8
P2-C10-C11	115.2 (2)	H221—C22—H222	107.6
P2-C10-C12	111.4 (2)	Si15—C22—H223	111.6
C11—C10—C12	109.1 (3)	H221—C22—H223	107.7
P2—C10—H101	105.0	Н222—С22—Н223	108.4
С11—С10—Н101	107.4	Si15—C23—H233	111.3
С12—С10—Н101	108.3	Si15—C23—H232	110.7
С10—С11—Н112	108.7	H233—C23—H232	109.1
С10—С11—Н113	111.9	Si15—C23—H231	109.7
H112—C11—H113	107.9	H233—C23—H231	108.4
С10—С11—Н111	111.2	H232—C23—H231	107.4
H112—C11—H111	107.6		

Document origin: publCIF [Westrip, S. P. (2010). J. Apply. Cryst., 43, 920-925].

2) Crystal data for complex 3

CCDC Number : 1880112

Crystal data

 $\begin{array}{l} C_{22}H_{36}\text{NiP} \\ M_r = 390.21 \\ \text{Monoclinic}, P_{21/n} \\ \text{Hall symbol: -P 2yn} \\ a = 9.5546 \ (10) \ \text{\AA} \\ b = 17.1029 \ (15) \ \text{\AA} \\ c = 13.3750 \ (15) \ \text{\AA} \\ \beta = 100.00 \ (1)^{\circ} \\ V = 2152.4 \ (4) \ \text{\AA}^3 \\ Z = 4 \end{array}$

Data collection

Xcalibur, Atlas, Gemini ultra diffractometer Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source Graphite monochromator Detector resolution: 10.4685 pixels mm⁻¹ ω scans

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.059$ $wR(F^2) = 0.138$ S = 1.015461 reflections 217 parameters 0 restraints $\begin{array}{l} F(000) = 844 \\ D_{\rm x} = 1.204 \ {\rm Mg \ m}^{-3} \\ {\rm Mo \ } K\alpha \ {\rm radiation}, \ \lambda = 0.71073 \ {\rm \AA} \\ {\rm Cell \ parameters \ from \ 8714 \ reflections} \\ \theta = 3.7 - 29.4^{\circ} \\ \mu = 0.98 \ {\rm mm}^{-1} \\ T = 150 \ {\rm K} \\ {\rm Needle, \ yellow} \\ 0.37 \times 0.14 \times 0.09 \ {\rm mm} \end{array}$

Absorption correction: analytical CrysAlis PRO 1.171.38.46 (Rigaku Oxford Diffraction, 2015) Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by R.C. Clark & J.S. Reid. (Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. $T_{min} = 0.799, T_{max} = 0.925$ 26929 measured reflections 5472 independent reflections 5472 independent reflections 4351 reflections with $I \ge 2.0\sigma(I)$ $R_{int} = 0.054$ $\theta_{max} = 29.8^{\circ}, \theta_{min} = 2.8^{\circ}$ $h = -13 \rightarrow 13$ $k = -23 \rightarrow 23$ $I = -17 \rightarrow 18$

Primary atom site location: structure-invariant direct methods Hydrogen site location: difference Fourier map H-atom parameters constrained

```
Method, part 1, Chebychev polynomial, (Watkin,

1994, Prince, 1982) [weight] = 1.0/[A<sub>0</sub>*T<sub>0</sub>(x) +

A<sub>1</sub>*T<sub>1</sub>(x) ··· + A<sub>n-1</sub>]*T<sub>n-1</sub>(x)]

where A<sub>i</sub> are the Chebychev coefficients listed below

and x = F /Fmax Method = Robust Weighting (Prince,

1982) W = [weight] * [1-(deltaF/6*sigmaF)<sup>2</sup>]<sup>2</sup> A<sub>i</sub> are:

672, 998, 511, 118.

(\Delta/\sigma)<sub>max</sub> = 0.001

\Delta\rho_{max} = 1.00 \text{ e } \text{Å}^{-3}

\Delta\rho_{min} = -0.98 \text{ e } \text{Å}^{-3}
```

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems open-flow nitrogen cryostat (Cosier & Glazer, 1986) with a nominal stability of 0.1 K.

Cosier, J. & Glazer, A.M., 1986. J. Appl. Cryst. 105-107.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A ⁴)

Ni1 0.59275 (5) 0.38524 (3) 0.59028 (3) 0.0238 P2 0.64091 (9) 0.37330 (5) 0.75551 (6) 0.0188 C3 0.564 (4) 0.4590 (2) 0.7891 (3) 0.0225 C4 0.4029 (4) 0.4590 (2) 0.7891 (3) 0.0255 C5 0.3388 (4) 0.5253 (2) 0.8429 (3) 0.0311 C6 0.4059 (4) 0.6003 (2) 0.8585 (3) 0.0259 C7 0.5670 (4) 0.6003 (2) 0.8585 (3) 0.0259 C8 0.6315 (4) 0.5324 0.8281 0.0318* H81 0.6137 0.5451 0.7310 0.0318* H71 0.5893 0.5920 0.9316 0.0358* H62 0.3677 0.6447 0.8637 0.0388* H51 0.2374 0.5278 0.8165 0.0383* H51 0.2374 0.5278 0.8165 0.0332* H31 0.5855 0.4436 0.8948 0.0266 C9 0.3393	×	x	у	Z	$U_{\rm iso}^{\bullet}/U_{\rm eq}$	
P2 0.64091 (9) 0.37330 (5) 0.75551 (6) 0.0188 C3 0.5646 (4) 0.4548 (2) 0.8218 (3) 0.0221 C4 0.029 (4) 0.4590 (2) 0.7891 (3) 0.0225 C5 0.3388 (4) 0.5253 (2) 0.8429 (3) 0.0311 C6 0.4059 (4) 0.6040 (2) 0.8259 (3) 0.0299 C8 0.315 (4) 0.5324 0.8034 (3) 0.02269 H82 0.7339 0.5324 0.8034 (3) 0.0317* H72 0.6068 0.6496 0.8417 0.0366* H71 0.5893 0.5920 0.9316 0.0338* H61 0.3580 0.6169 0.7539 0.0388* H52 0.3533 0.5141 0.9153 0.038* H51 0.2374 0.5278 0.8165 0.0332* H31 0.8555 0.4436 0.8948 0.0226* C9 0.8339 (3) 0.3781 (2) 0.9113 (3) 0.0211 C10 0.5764 (4) <td>Nil</td> <td>0.59275 (5)</td> <td>0.38524 (3)</td> <td>0.59028 (3)</td> <td>0.0238</td> <td></td>	Nil	0.59275 (5)	0.38524 (3)	0.59028 (3)	0.0238	
C3 0.5646 (4) 0.4548 (2) 0.8218 (3) 0.0221 C4 0.4029 (4) 0.4590 (2) 0.7891 (3) 0.0255 C5 0.3388 (4) 0.5253 (2) 0.8429 (3) 0.0311 C6 0.4059 (4) 0.6003 (2) 0.8585 (3) 0.0299 C8 0.6315 (4) 0.5324 (2) 0.8034 (3) 0.02699 H82 0.7339 0.5324 (2) 0.8034 (3) 0.0317* H71 0.5893 0.5920 0.9316 0.0358* H61 0.3850 0.6169 0.7539 0.0388* H61 0.3850 0.6169 0.7539 0.0388* H51 0.2374 0.5278 0.8165 0.0383* H41 0.3330 0.4260 0.7441 0.0332* H31 0.5855 0.4436 0.8948 0.0266* C9 0.8339 (3) 0.3781 (2) 0.8113 (3) 0.0211 C10 0.8764 (4) 0.3324 (2) 0.9267 (3) 0.03320 C11 1.0	P2	0.64091 (9)	0.37330 (5)	0.75551 (6)	0.0188	
C4 0.4029 (4) 0.4590 (2) 0.7891 (3) 0.0255 C5 0.3388 (4) 0.5253 (2) 0.8429 (3) 0.0311 C6 0.4059 (4) 0.6040 (2) 0.8259 (3) 0.0327 C7 0.5670 (4) 0.6003 (2) 0.8385 (3) 0.0299 C8 0.6315 (4) 0.5344 (2) 0.8034 (3) 0.0269 H81 0.6137 0.5451 0.7310 0.0317* H72 0.6068 0.6496 0.8417 0.0360* H71 0.5893 0.5920 0.9316 0.038* H61 0.3850 0.6169 0.7539 0.038* H52 0.3677 0.6447 0.8637 0.038* H51 0.2374 0.5278 0.8165 0.0383* H51 0.2374 0.5278 0.8165 0.0383* H31 0.5855 0.4436 0.8948 0.0268* C9 0.8339 (3) 0.3781 (2) 0.8113 (3) 0.0211 C10 0.8764 (4) <td< td=""><td>C3</td><td>0.5646 (4)</td><td>0.4548 (2)</td><td>0.8218 (3)</td><td>0.0221</td><td></td></td<>	C3	0.5646 (4)	0.4548 (2)	0.8218 (3)	0.0221	
C5 0.3388 (4) 0.5253 (2) 0.8429 (3) 0.0311 C6 0.4059 (4) 0.6040 (2) 0.8259 (3) 0.0327 C7 0.5670 (4) 0.6003 (2) 0.8585 (3) 0.0269 C8 0.6315 (4) 0.5324 0.8281 0.0318* H81 0.6137 0.5451 0.7310 0.0317* H72 0.6068 0.6496 0.8417 0.0360* H71 0.5893 0.5920 0.9316 0.0358* H62 0.3677 0.6447 0.8637 0.0388* H51 0.2374 0.5278 0.8165 0.0380* H51 0.2374 0.5278 0.8165 0.0382* H31 0.5855 0.4436 0.8948 0.0266* C9 0.839 (3) 0.3781 (2) 0.912 (3) 0.0320 C11 1.0354 (4) 0.4017 (2) 0.9549 (3) 0.0320 C12 1.1261 (4) 0.3142 (2) 0.912 (3) 0.0305 C14 0.9207 (4)	C4	0.4029 (4)	0.4590 (2)	0.7891 (3)	0.0255	
C6 0.4059 (4) 0.6040 (2) 0.8259 (3) 0.0327 C7 0.5670 (4) 0.6003 (2) 0.8585 (3) 0.0299 C8 0.6315 (4) 0.5344 (2) 0.8034 (3) 0.0269 H82 0.7339 0.5324 0.8281 0.0318* H81 0.6137 0.5451 0.7310 0.0317* H72 0.6068 0.6496 0.8417 0.0360* H71 0.5893 0.5920 0.9316 0.0358* H62 0.3677 0.6447 0.8637 0.0388* H51 0.2374 0.5278 0.8165 0.0383* H51 0.2374 0.5278 0.8165 0.0383* H41 0.3530 0.4260 0.7441 0.0322* H31 0.5855 0.4436 0.8948 0.0266* C9 0.8339 (3) 0.3781 (2) 0.9549 (3) 0.0320 C12 1.261 (4) 0.3414 (2) 0.9112 (3) 0.0331 C13 1.0796 (4) 0.3142	C5	0.3388 (4)	0.5253 (2)	0.8429 (3)	0.0311	
C7 0.5670 (4) 0.6003 (2) 0.8585 (3) 0.0299 C8 0.6315 (4) 0.5344 (2) 0.8034 (3) 0.0269 H82 0.7339 0.5324 0.8281 0.0317* H71 0.5893 0.5920 0.9316 0.0358* H61 0.3850 0.6447 0.8637 0.0388* H61 0.3850 0.6169 0.7539 0.0388* H52 0.3533 0.5141 0.9153 0.0388* H51 0.2374 0.5278 0.8165 0.0388* H41 0.3530 0.4466 0.8113 (3) 0.0266* C9 0.8339 (3) 0.3781 (2) 0.8113 (3) 0.0211 C10 0.8764 (4) 0.3824 (2) 0.9267 (3) 0.0266 C11 1.0354 (4) 0.4017 (2) 0.949 (3) 0.0321 C12 1.1261 (4) 0.3142 (2) 0.7699 (3) 0.0236 C14 0.9207 (4) 0.3142 (2) 0.7699 (3) 0.0236 C14 0.9207	C6	0.4059 (4)	0.6040(2)	0.8259 (3)	0.0327	
C8 0.6315 (4) 0.5344 (2) 0.8034 (3) 0.0269 H82 0.7339 0.5324 0.8281 0.0318* H81 0.6137 0.5451 0.7310 0.0317* H72 0.6068 0.6496 0.8417 0.0360* H71 0.5893 0.5920 0.9316 0.0358* H62 0.3677 0.6447 0.8637 0.0388* H51 0.2350 0.6169 0.7539 0.0388* H51 0.2374 0.5278 0.8165 0.0383* H41 0.3530 0.4260 0.7441 0.0332* H31 0.8855 0.4436 0.8948 0.0266* C9 0.8339 (3) 0.3781 (2) 0.8133 (3) 0.0211 C10 0.8764 (4) 0.3834 (2) 0.9267 (3) 0.0326 C11 1.0354 (4) 0.3142 (2) 0.7962 (3) 0.0305 C14 0.9207 (4) 0.3142 (2) 0.7962 (3) 0.02366 C14 0.9207 (4) 0.	C7	0.5670 (4)	0.6003 (2)	0.8585 (3)	0.0299	
H82 0.7339 0.5324 0.8281 0.0318* H81 0.6137 0.5451 0.7310 0.0317* H72 0.6068 0.6496 0.817 0.0360* H71 0.5893 0.5920 0.9316 0.0358* H62 0.3677 0.6447 0.8637 0.0388* H61 0.3850 0.6169 0.7539 0.0388* H52 0.3533 0.5141 0.9153 0.0380* H51 0.2374 0.5278 0.8165 0.0332* H31 0.5855 0.4436 0.8948 0.0268* C9 0.8339 (3) 0.3781 (2) 0.9267 (3) 0.0266 C11 1.0354 (4) 0.3414 (2) 0.9112 (3) 0.0331 C12 1.1261 (4) 0.3142 (2) 0.912 (3) 0.0320 C14 0.9207 (4) 0.3142 (2) 0.7699 (3) 0.0236 C14 0.9207 (4) 0.3142 (2) 0.7699 (3) 0.0236 C14 0.9202 0.2639 </td <td>C8</td> <td>0.6315 (4)</td> <td>0.5344 (2)</td> <td>0.8034 (3)</td> <td>0.0269</td> <td></td>	C8	0.6315 (4)	0.5344 (2)	0.8034 (3)	0.0269	
H81 0.6137 0.5451 0.7310 0.0317* H72 0.6068 0.6496 0.8417 0.0360* H71 0.5893 0.5920 0.9316 0.0358* H62 0.3677 0.6447 0.8637 0.0388* H61 0.3850 0.6169 0.7539 0.0388* H52 0.3533 0.5141 0.9153 0.0380* H51 0.2374 0.5278 0.8165 0.0383* H41 0.3530 0.4260 0.7441 0.0322* H31 0.5855 0.4436 0.8113 (3) 0.02611 C10 0.8764 (4) 0.3834 (2) 0.9267 (3) 0.0320 C11 1.0354 (4) 0.4017 (2) 0.9549 (3) 0.0320 C12 1.1261 (4) 0.3414 (2) 0.9112 (3) 0.0311 C13 1.0796 (4) 0.3322 (2) 0.7693 0.0226 H141 0.8931 0.3115 0.6963 0.0290* H132 1.0793 0.3810	H82	0.7339	0.5324	0.8281	0.0318*	
H72 0.6068 0.6496 0.8417 0.0360* H71 0.5893 0.5920 0.9316 0.0358* H62 0.3677 0.6447 0.8637 0.0388* H61 0.3850 0.6169 0.7539 0.0388* H52 0.3533 0.5141 0.9153 0.0380* H51 0.2374 0.5278 0.8165 0.0383* H41 0.3530 0.4260 0.7441 0.0332* H31 0.5855 0.4436 0.8948 0.0268* C9 0.8339 (3) 0.3781 (2) 0.8113 (3) 0.0211 C10 0.8764 (4) 0.3834 (2) 0.9267 (3) 0.0320 C12 1.1261 (4) 0.414 (2) 0.9112 (3) 0.0331 C13 1.0796 (4) 0.312 (2) 0.7693 (3) 0.0226 C14 0.9207 (4) 0.314 (2) 0.7693 (3) 0.0236 H141 0.8931 0.315 (3) 0.0236 H142 0.9022 0.2639 0.800	H81	0.6137	0.5451	0.7310	0.0317*	
H71 0.5893 0.5920 0.9316 0.0358* H62 0.3677 0.6447 0.8637 0.0388* H61 0.3850 0.6169 0.7539 0.0388* H52 0.3533 0.5141 0.9153 0.0380* H51 0.2374 0.5278 0.8165 0.0383* H41 0.3530 0.4260 0.7441 0.0322* H31 0.5855 0.4436 0.8948 0.0268* C9 0.8339 (3) 0.3781 (2) 0.8113 (3) 0.0211 C10 0.8764 (4) 0.3834 (2) 0.9267 (3) 0.0266 C11 1.0354 (4) 0.4017 (2) 0.912 (3) 0.0331 C12 1.1261 (4) 0.3414 (2) 0.912 (3) 0.0305 C14 0.9207 (4) 0.3122 (2) 0.7699 (3) 0.0236 H141 0.8931 0.3115 0.6963 0.0290* H142 0.9022 0.2639 0.8001 0.0290* H131 1.1331 0.2910 0.7709 0.0366* H132 1.0973 0.3578	H72	0.6068	0.6496	0.8417	0.0360*	
H62 0.3677 0.6447 0.8637 0.0388* H61 0.3850 0.6169 0.7539 0.0388* H52 0.3533 0.5141 0.9153 0.0380* H51 0.2374 0.5278 0.8165 0.0383* H41 0.3550 0.4260 0.7441 0.0322* H31 0.5855 0.4436 0.8948 0.0268* C9 0.839 (3) 0.3781 (2) 0.8113 (3) 0.0211 C10 0.8764 (4) 0.3834 (2) 0.9267 (3) 0.0320 C11 1.0354 (4) 0.4017 (2) 0.9549 (3) 0.0331 C12 1.1261 (4) 0.3414 (2) 0.9112 (3) 0.0305 C14 0.9207 (4) 0.3122 (2) 0.7699 (3) 0.0236 H141 0.8931 0.3115 0.6963 0.0290* H142 0.9022 0.2639 0.8001 0.0290* H142 0.9022 0.2639 0.8001 0.0290* H131 1.1331 0.2916 0.9441 0.0398* H122 1.2258 0.3578	H71	0.5893	0.5920	0.9316	0.0358*	
H61 0.3850 0.6169 0.7539 0.0388* H52 0.3533 0.5141 0.9153 0.0380* H51 0.2374 0.5278 0.8165 0.0383* H41 0.3530 0.4260 0.7441 0.0332* H31 0.5855 0.4436 0.8948 0.0268* C9 0.8339 (3) 0.3781 (2) 0.8113 (3) 0.0266 C11 1.0354 (4) 0.4017 (2) 0.9549 (3) 0.0320 C12 1.1261 (4) 0.3414 (2) 0.9112 (3) 0.0331 C13 1.0796 (4) 0.3322 (2) 0.7669 (3) 0.0236 C14 0.9207 (4) 0.3142 (2) 0.7699 (3) 0.0236 H141 0.8931 0.3115 0.6963 0.0290* H142 0.9020 0.2639 0.8001 0.0290* H131 1.1331 0.2910 0.7709 0.0369* H131 1.1331 0.2916 0.9441 0.0398* H112 1.0626 0.4029 1.0285 0.0387* H111 1.0524 0.4530 <td>H62</td> <td>0.3677</td> <td>0.6447</td> <td>0.8637</td> <td>0.0388*</td> <td></td>	H62	0.3677	0.6447	0.8637	0.0388*	
H52 0.3533 0.5141 0.9153 0.0380* H51 0.2374 0.5278 0.8165 0.0383* H41 0.3530 0.4260 0.7441 0.0332* H31 0.5855 0.4436 0.8948 0.0268* C9 0.8339 (3) 0.3781 (2) 0.8113 (3) 0.0211 C10 0.8764 (4) 0.3834 (2) 0.9267 (3) 0.0266 C11 1.0354 (4) 0.4017 (2) 0.9549 (3) 0.0320 C12 1.1261 (4) 0.3414 (2) 0.9112 (3) 0.0331 C13 1.0796 (4) 0.3322 (2) 0.7962 (3) 0.0305 C14 0.9207 (4) 0.3142 (2) 0.7699 (3) 0.0226 H141 0.8931 0.3115 0.6963 0.0290* H142 0.9022 0.2639 0.8001 0.0290* H131 1.1331 0.2910 0.7709 0.0366* H122 1.2258 0.3578 0.9263 0.401* H121 1.1159 0.2916 0.9441 0.0398* H112 1.0626 <td< td=""><td>H61</td><td>0.3850</td><td>0.6169</td><td>0.7539</td><td>0.0388*</td><td></td></td<>	H61	0.3850	0.6169	0.7539	0.0388*	
H51 0.2374 0.5278 0.8165 0.0383* H41 0.3530 0.4260 0.7441 0.0332* H31 0.5855 0.4436 0.8948 0.0268* C9 0.8339 (3) 0.3781 (2) 0.8113 (3) 0.0211 C10 0.8764 (4) 0.3834 (2) 0.9267 (3) 0.0266 C11 1.0354 (4) 0.4017 (2) 0.9549 (3) 0.0320 C12 1.1261 (4) 0.3414 (2) 0.9112 (3) 0.0311 C13 1.0796 (4) 0.3142 (2) 0.7699 (3) 0.0236 C14 0.9207 (4) 0.3142 (2) 0.7699 (3) 0.0236 H141 0.8931 0.3115 0.6963 0.0290* H132 1.0973 0.3810 0.7641 0.0369* H131 1.1331 0.2910 0.7709 0.0369* H122 1.2258 0.3578 0.9263 0.0401* H121 1.1626 0.4029 1.0285 0.038* H112 1.0626	H52	0.3533	0.5141	0.9153	0.0380*	
H410.35300.42600.74410.0332*H310.58550.44360.89480.0268*C90.8339 (3)0.3781 (2)0.8113 (3)0.0211C100.8764 (4)0.3834 (2)0.9267 (3)0.0266C111.0354 (4)0.4017 (2)0.9549 (3)0.0320C121.1261 (4)0.3414 (2)0.9112 (3)0.0331C131.0796 (4)0.3222 (2)0.7962 (3)0.0305C140.9207 (4)0.3142 (2)0.7699 (3)0.0236H1410.89310.31150.69630.0290*H1420.90220.26390.80010.0290*H1321.09730.38100.76410.0369*H1311.13310.29100.77090.0369*H1221.22580.35780.92630.0401*H1111.05240.45300.92760.0388*H1010.82270.42430.95290.0319*H1020.85710.33370.95740.0321*H910.86530.42690.78520.0256*	H51	0.2374	0.5278	0.8165	0.0383*	
H31 0.5855 0.4436 0.8948 0.0268* C9 0.8339 (3) 0.3781 (2) 0.8113 (3) 0.0211 C10 0.8764 (4) 0.3834 (2) 0.9267 (3) 0.0266 C11 1.0354 (4) 0.4017 (2) 0.9549 (3) 0.0320 C12 1.1261 (4) 0.3414 (2) 0.9112 (3) 0.0331 C13 1.0796 (4) 0.3322 (2) 0.7962 (3) 0.0236 C14 0.9207 (4) 0.3142 (2) 0.7699 (3) 0.0236 H141 0.8931 0.3115 0.6963 0.0290* H142 0.9022 0.2639 0.8001 0.0290* H131 1.1331 0.2910 0.7709 0.0369* H131 1.1331 0.2910 0.7709 0.0369* H122 1.2258 0.3578 0.9263 0.0401* H121 1.1159 0.2916 0.9441 0.0398* H112 1.0626 0.4029 1.0285 0.0387* H111 1.0524	H41	0.3530	0.4260	0.7441	0.0332*	
C9 0.8339 (3) 0.3781 (2) 0.8113 (3) 0.0211 C10 0.8764 (4) 0.3834 (2) 0.9267 (3) 0.0266 C11 1.0354 (4) 0.4017 (2) 0.9549 (3) 0.0320 C12 1.1261 (4) 0.3414 (2) 0.9112 (3) 0.0331 C13 1.0796 (4) 0.3322 (2) 0.7962 (3) 0.0236 C14 0.9207 (4) 0.3142 (2) 0.7699 (3) 0.0236 H141 0.8931 0.3115 0.6963 0.0290* H142 0.9022 0.2639 0.8001 0.0290* H132 1.0973 0.3810 0.7641 0.0369* H131 1.1331 0.2910 0.7709 0.0369* H122 1.2258 0.3578 0.9263 0.0401* H112 1.0626 0.4029 1.0285 0.038* H111 1.0524 0.4530 0.9276 0.038* H101 0.8227 0.4243 0.9529 0.0319* H102 0.8571	H31	0.5855	0.4436	0.8948	0.0268*	
C10 0.8764 (4) 0.3834 (2) 0.9267 (3) 0.0266 C11 1.0354 (4) 0.4017 (2) 0.9549 (3) 0.0320 C12 1.1261 (4) 0.3414 (2) 0.9112 (3) 0.0331 C13 1.0796 (4) 0.3322 (2) 0.7962 (3) 0.0236 C14 0.9207 (4) 0.3142 (2) 0.7699 (3) 0.0236 H141 0.8931 0.3115 0.6963 0.0290* H142 0.9022 0.2639 0.8001 0.0290* H132 1.0973 0.3810 0.7641 0.0369* H131 1.1331 0.2910 0.7709 0.0369* H122 1.2258 0.3578 0.9263 0.0401* H121 1.1159 0.2916 0.9441 0.0398* H112 1.0626 0.4029 1.0285 0.0387* H111 1.0524 0.4530 0.9276 0.0388* H101 0.8227 0.4243 0.9529 0.0319* H102 0.8571	C9	0.8339 (3)	0.3781 (2)	0.8113 (3)	0.0211	
C11 1.0354 (4) 0.4017 (2) 0.9549 (3) 0.0320 C12 1.1261 (4) 0.3414 (2) 0.9112 (3) 0.0331 C13 1.0796 (4) 0.3322 (2) 0.7962 (3) 0.0305 C14 0.9207 (4) 0.3142 (2) 0.7699 (3) 0.0236 H141 0.8931 0.3115 0.6963 0.0290* H142 0.9022 0.2639 0.8001 0.0290* H132 1.0973 0.3810 0.7641 0.0369* H131 1.1331 0.2910 0.7709 0.0369* H122 1.2258 0.3578 0.9263 0.0401* H112 1.0626 0.4029 1.0285 0.038* H111 1.0524 0.4530 0.9276 0.038* H101 0.8227 0.4243 0.9529 0.0319* H102 0.8571 0.3337 0.9574 0.0321*	C10	0.8764 (4)	0.3834(2)	0.9267 (3)	0.0266	
C12 1.1261 (4) 0.3414 (2) 0.9112 (3) 0.0331 C13 1.0796 (4) 0.3322 (2) 0.7962 (3) 0.0305 C14 0.9207 (4) 0.3142 (2) 0.7699 (3) 0.0236 H141 0.8931 0.3115 0.6963 0.0290* H142 0.9022 0.2639 0.8001 0.0290* H132 1.0973 0.3810 0.7641 0.0369* H131 1.1331 0.2910 0.7709 0.0369* H122 1.2258 0.3578 0.9263 0.0401* H121 1.1159 0.2916 0.9441 0.0398* H112 1.0626 0.4029 1.0285 0.0387* H111 1.0524 0.4530 0.9276 0.0388* H101 0.8227 0.4243 0.9529 0.0319* H102 0.8571 0.3337 0.9574 0.0321* H91 0.8653 0.4269 0.7852 0.0256*	C11	1.0354 (4)	0.4017 (2)	0.9549 (3)	0.0320	
C13 1.0796 (4) 0.3322 (2) 0.7962 (3) 0.0305 C14 0.9207 (4) 0.3142 (2) 0.7699 (3) 0.0236 H141 0.8931 0.3115 0.6963 0.0290* H142 0.9022 0.2639 0.8001 0.0290* H132 1.0973 0.3810 0.7641 0.0369* H131 1.1331 0.2910 0.7709 0.0369* H122 1.2258 0.3578 0.9263 0.0401* H121 1.1159 0.2916 0.9441 0.0398* H112 1.0626 0.4029 1.0285 0.0387* H111 1.0524 0.4530 0.9276 0.0388* H101 0.8227 0.4243 0.9529 0.0319* H102 0.8571 0.3337 0.9574 0.0321* H91 0.8653 0.4269 0.7852 0.0256*	C12	1.1261 (4)	0.3414(2)	0.9112 (3)	0.0331	
C14 0.9207 (4) 0.3142 (2) 0.7699 (3) 0.0236 H141 0.8931 0.3115 0.6963 0.0290* H142 0.9022 0.2639 0.8001 0.0290* H132 1.0973 0.3810 0.7641 0.0369* H131 1.1331 0.2910 0.7709 0.0369* H122 1.2258 0.3578 0.9263 0.0401* H121 1.1159 0.2916 0.9441 0.0398* H112 1.0626 0.4029 1.0285 0.0387* H111 1.0524 0.4530 0.9276 0.0388* H101 0.8227 0.4243 0.9529 0.0319* H102 0.8571 0.3337 0.9574 0.0321* H91 0.8653 0.4269 0.7852 0.0256*	C13	1.0796 (4)	0.3322 (2)	0.7962 (3)	0.0305	
H1410.89310.31150.69630.0290*H1420.90220.26390.80010.0290*H1321.09730.38100.76410.0369*H1311.13310.29100.77090.0369*H1221.22580.35780.92630.0401*H1211.11590.29160.94410.0398*H1121.06260.40291.02850.0387*H1111.05240.45300.92760.0388*H1010.82270.42430.95290.0319*H1020.85710.33370.95740.0321*H910.86530.42690.78520.0256*	C14	0.9207 (4)	0.3142 (2)	0.7699 (3)	0.0236	
H142 0.9022 0.2639 0.8001 0.0290* H132 1.0973 0.3810 0.7641 0.0369* H131 1.1331 0.2910 0.7709 0.0369* H122 1.2258 0.3578 0.9263 0.0401* H121 1.1159 0.2916 0.9441 0.0398* H112 1.0626 0.4029 1.0285 0.0387* H111 1.0524 0.4530 0.9276 0.0388* H101 0.8227 0.4243 0.9529 0.0319* H102 0.8571 0.3337 0.9574 0.0321* H91 0.8653 0.4269 0.7852 0.0256*	H141	0.8931	0.3115	0.6963	0.0290*	
H132 1.0973 0.3810 0.7641 0.0369* H131 1.1331 0.2910 0.7709 0.0369* H122 1.2258 0.3578 0.9263 0.0401* H121 1.1159 0.2916 0.9441 0.0398* H112 1.0626 0.4029 1.0285 0.0387* H111 1.0524 0.4530 0.9276 0.0388* H101 0.8227 0.4243 0.9529 0.0319* H102 0.8571 0.3337 0.9574 0.0321* H91 0.8653 0.4269 0.7852 0.0256*	H142	0.9022	0.2639	0.8001	0.0290*	
H131 1.1331 0.2910 0.7709 0.0369* H122 1.2258 0.3578 0.9263 0.0401* H121 1.1159 0.2916 0.9441 0.0398* H112 1.0626 0.4029 1.0285 0.038* H111 1.0524 0.4530 0.9276 0.038* H101 0.8227 0.4243 0.9529 0.0319* H102 0.8571 0.3337 0.9574 0.0321* H91 0.8653 0.4269 0.7852 0.0256*	H132	1.0973	0.3810	0.7641	0.0369*	
H122 1.2258 0.3578 0.9263 0.0401* H121 1.1159 0.2916 0.9441 0.0398* H112 1.0626 0.4029 1.0285 0.0387* H111 1.0524 0.4530 0.9276 0.0388* H101 0.8227 0.4243 0.9529 0.0319* H102 0.8571 0.3337 0.9574 0.0321* H91 0.8653 0.4269 0.7852 0.0256*	H131	1.1331	0.2910	0.7709	0.0369*	
H121 1.1159 0.2916 0.9441 0.0398* H112 1.0626 0.4029 1.0285 0.0387* H111 1.0524 0.4530 0.9276 0.0388* H101 0.8227 0.4243 0.9529 0.0319* H102 0.8571 0.3337 0.9574 0.0321* H91 0.8653 0.4269 0.7852 0.0256*	H122	1.2258	0.3578	0.9263	0.0401*	
H112 1.0626 0.4029 1.0285 0.0387* H111 1.0524 0.4530 0.9276 0.0388* H101 0.8227 0.4243 0.9529 0.0319* H102 0.8571 0.3337 0.9574 0.0321* H91 0.8653 0.4269 0.7852 0.0256*	H121	1.1159	0.2916	0.9441	0.0398*	
H111 1.0524 0.4530 0.9276 0.0388* H101 0.8227 0.4243 0.9529 0.0319* H102 0.8571 0.3337 0.9574 0.0321* H91 0.8653 0.4269 0.7852 0.0256*	H112	1.0626	0.4029	1.0285	0.0387*	
H101 0.8227 0.4243 0.9529 0.0319* H102 0.8571 0.3337 0.9574 0.0321* H91 0.8653 0.4269 0.7852 0.0256*	H111	1.0524	0.4530	0.9276	0.0388*	
H102 0.8571 0.3337 0.9574 0.0321* H91 0.8653 0.4269 0.7852 0.0256*	H101	0.8227	0.4243	0.9529	0.0319*	
H91 0.8653 0.4269 0.7852 0.0256*	H102	0.8571	0.3337	0.9574	0.0321*	
	H91	0.8653	0.4269	0.7852	0.0256*	

C15	0.5610 (4)	0.2850 (2)	0.8046 (3)	0.0241
C16	0.6141 (4)	0.2078 (2)	0.7642 (3)	0.0278
C17	0.5191 (4)	0.1396 (2)	0.7838 (4)	0.0384
C18	0.5129 (5)	0.1321 (2)	0.8962 (4)	0.0417
C19	0.4658 (5)	0.2085 (2)	0.9392 (4)	0.0422
C20	0.5606 (4)	0.2771 (2)	0.9183 (3)	0.0311
H201	0.5268	0.3251	0.9447	0.0378*
H202	0.6569	0.2673	0.9528	0.0383*
H192	0.4688	0.2031	1.0120	0.0512*
H191	0.3689	0.2193	0.9064	0.0512*
H182	0.4466	0.0910	0.9058	0.0500*
H181	0.6065	0.1185	0.9331	0.0498*
H172	0.5551	0.0914	0.7590	0.0461*
H171	0.4234	0.1485	0.7469	0.0457*
H162	0.7100	0.1971	0.8001	0.0339*
H161	0.6162	0.2122	0.6921	0.0335*
H151	0.4605	0.2881	0.7737	0.0293*
C21	0.6789 (5)	0.4384 (3)	0.4836 (3)	0.0369
C22	0.7659 (4)	0.4476 (2)	0.5777 (3)	0.0319
H221	0.8470	0.4679	0.6117	0.0402*
H211	0.6673	0.4494	0.4168	0.0473*
C23	0.4363 (5)	0.3554 (3)	0.4789 (3)	0.0381
C24	0.4102 (5)	0.3268 (3)	0.5711 (3)	0.0384
H241	0.3520	0.2995	0.6029	0.0476*
H231	0.4047	0.3586	0.4116	0.0481*

```
Atomic displacement parameters (Å2)
```

8	U^{11}	U^{22}	$U^{\beta 3}$	U^{12}	U^{13}	U^{23}
Nil	0.0268 (2)	0.0225 (2)	0.0202 (2)	0.00357 (17)	-0.00116 (17)	-0.00260 (16)
P2	0.0175 (4)	0.0186 (4)	0.0194 (4)	-0.0006 (3)	0.0007 (3)	-0.0005 (3)
C3	0.0226 (15)	0.0207 (15)	0.0220 (15)	-0.0013 (12)	0.0010(12)	0.0007 (12)
C4	0.0189 (15)	0.0264 (17)	0.0307 (18)	0.0035(13)	0.0029 (13)	-0.0047 (14)
C5	0.0259 (18)	0.034 (2)	0.034(2)	0.0077 (15)	0.0055 (15)	-0.0012 (16)
C6	0.039(2)	0.0251 (17)	0.0328 (19)	0.0085 (16)	0.0019 (16)	-0.0007 (15)
C7	0.036(2)	0.0195 (16)	0.0335 (19)	0.0018 (15)	0.0048 (15)	-0.0046 (14)
C8	0.0298 (18)	0.0176 (15)	0.0336 (19)	-0.0027 (13)	0.0064 (14)	0.0002 (13)
C9	0.0172 (14)	0.0228 (15)	0.0231 (16)	-0.0002 (12)	0.0030 (12)	-0.0010 (12)
C10	0.0186 (15)	0.0351 (19)	0.0240 (16)	-0.0002 (14)	-0.0023 (13)	-0.0001 (14)
CII	0.0225 (17)	0.039(2)	0.0315 (19)	-0.0024 (15)	-0.0049 (14)	-0.0073 (16)
C12	0.0188 (16)	0.034 (2)	0.044 (2)	0.0002 (15)	-0.0032 (15)	-0.0038 (17)
C13	0.0188 (16)	0.0297 (18)	0.043 (2)	0.0016 (14)	0.0048 (15)	-0.0045 (16)
C14	0.0202 (15)	0.0222 (16)	0.0279 (17)	0.0026(13)	0.0027 (13)	-0.0023 (13)
C15	0.0188 (15)	0.0209 (16)	0.0316 (18)	-0.0007 (12)	0.0021 (13)	-0.0007 (13)
C16	0.0257 (17)	0.0194 (16)	0.038(2)	-0.0018 (13)	0.0055 (15)	-0.0016 (14)
C17	0.0288 (19)	0.0228 (18)	0.065 (3)	-0.0027 (15)	0.0105 (19)	-0.0036 (18)
C18	0.033 (2)	0.0245 (19)	0.073 (3)	0.0017 (16)	0.022 (2)	0.013 (2)
C19	0.047 (3)	0.029 (2)	0.058 (3)	-0.0001 (19)	0.028 (2)	0.0090 (19)
C20	0.037 (2)	0.0237 (17)	0.035 (2)	-0.0022 (15)	0.0129 (16)	0.0038 (15)
C21	0.046 (2)	0.041 (2)	0.0246 (18)	0.0082 (19)	0.0092 (17)	0.0069 (16)
C22	0.0310 (19)	0.037 (2)	0.0281 (18)	-0.0033 (16)	0.0075 (15)	0.0073 (16)
C23	0.041 (2)	0.038 (2)	0.0277 (19)	-0.0017 (18)	-0.0164 (16)	-0.0107 (16)

C24	0.034 (2)	0.034 (2)	0.042 (2)	-0.0109 (17)	-0.0075 (17)	-0.0052 (18)	

Geometric parameters (Å, °)

NEL 02	2 1972 (10)	CII HIII	0.076
NII-P2	2.1873 (10)	CII—HIII	0.976
NII-CZI	1.987 (4)	C12-C13	1.534 (6)
NII-C22	2.000 (4)	C12-H122	0.979
NII-C23	1.985 (4)	CI2—HIZI	0.971
N11-C24	1.988 (4)	C13-C14	1.529 (5)
P2-C3	1.867 (4)	C13—H132	0.968
P2-C9	1.867 (3)	C13—H131	0.966
P2-C15	1.863 (4)	C14—H141	0.975
C3-C4	1.533 (5)	C14—H142	0.980
C3-C8	1.541 (5)	C15-C16	1.545 (5)
C3—H31	0.981	C15-C20	1.527 (5)
C4-C5	1.526 (5)	C15-H151	0.979
C4-H41	0.899	C16-C17	1.530 (5)
C5-C6	1.526 (6)	C16—H162	0.975
C5-H52	0.974	C16-H161	0.971
C5-H51	0.972	C17-C18	1.519(7)
C6-C7	1.526 (5)	C17-H172	0.973
C6-H62	0.968	C17-H171	0.973
C6-H61	0.974	C18-C19	1.527 (6)
C7-C8	1.533 (5)	C18-H182	0.969
C7-H72	0.968	C18-H181	0.971
C7-H71	0.974	C19-C20	1.538 (5)
C8-H82	0.977	C19-H192	0.973
C8-H81	0.971	C19-H191	0.971
C9-C10	1.529 (5)	C20-H201	0.970
C9-C14	1.533 (5)	C20-H202	0.969
C9-H91	0.972	C21-C22	1.392 (6)
C10-C11	1.533 (5)	C21-H211	0.901
C10-H101	0.969	C22-H221	0.897
C10-H102	0.975	C23-C24	1.389 (6)
C11-C12	1.527 (5)	C23-H231	0.900
C11-H112	0.973	C24—H241	0.889
P2-Ni1-C21	136.69 (13)	C11-C12-C13	111.6 (3)
P2-Nil-C22	95.89(12)	C11-C12-H122	108.9
C21-Ni1-C22	40.88 (17)	C13-C12-H122	109.8
P2-Nil-C23	137.14(15)	C11-C12-H121	108.1
C21-Ni1-C23	86.01 (19)	C13-C12-H121	109.2
C22-Ni1-C23	126.90 (18)	H122-C12-H121	109.2
P2-Nil-C24	96 26 (13)	C12-C13-C14	110.8 (3)
C21-Ni1-C24	126.95 (19)	C12-C13-H132	108.3
C22-Nil-C24	167.83 (17)	C14-C13-H132	108.4
C23-Ni1-C24	40.94 (19)	C12-C13-H131	110.4
Ni1-P2-C3	112.29(11)	C14-C13-H131	109.7
Ni1-P2-C9	114 80 (11)	H132-C13-H131	109.3
C3-P2-C9	102.55(15)	C9-C14-C13	110.6 (3)
Ni1-P2-C15	113.88 (12)	C9-C14-H141	109.3
C3-P2-C15	102.72 (15)	C13-C14-H141	109.0

C9-P2-C15	109.38 (16)	C9-C14-H142	109.2
P2-C3-C4	110.9 (2)	C13-C14-H142	108.9
P2-C3-C8	112.1 (2)	H141-C14-H142	109.8
C4-C3-C8	109.8 (3)	P2-C15-C16	112.9 (2)
P2-C3-H31	107.3	P2-C15-C20	119.6 (3)
C4-C3-H31	108.3	C16-C15-C20	109.3 (3)
C8-C3-H31	108_3	P2-C15-H151	103.8
C3-C4-C5	111.6 (3)	C16-C15-H151	104.9
C3-C4-H41	123.5	C20-C15-H151	104.7
C5-C4-H41	124.9	C15-C16-C17	110.5 (3)
C4-C5-C6	111.8 (3)	C15-C16-H162	109.0
C4-C5-H52	108.8	C17-C16-H162	107.8
C6-C5-H52	109.3	C15-C16-H161	110.4
C4-C5-H51	108.5	C17-C16-H161	110.1
C6-C5-H51	109.1	H162-C16-H161	108.9
H52-C5-H51	109.3	C16-C17-C18	111.1 (4)
C5-C6-C7	110.5 (3)	C16-C17-H172	109.3
C5-C6-H62	110.5	C18-C17-H172	110.1
C7-C6-H62	109.5	C16-C17-H171	109.0
C5-C6-H61	109.1	C18-C17-H171	108.7
C7-C6-H61	108.4	H172-C17-H171	108.5
H62-C6-H61	108.8	C17-C18-C19	111.4 (4)
C6-C7-C8	111.3 (3)	C17-C18-H182	109.3
C6-C7-H72	108.3	C19-C18-H182	109.2
C8-C7-H72	108.8	C17-C18-H181	109.4
C6-C7-H71	109.1	C19-C18-H181	108.6
C8-C7-H71	109.9	H182-C18-H181	109.0
H72-C7-H71	109.4	C18-C19-C20	111.3 (3)
C3-C8-C7	111.0 (3)	C18-C19-H192	109.7
C3-C8-H82	109.5	C20-C19-H192	109.8
C7-C8-H82	108.9	C18-C19-H191	108.2
C3-C8-H81	108.7	C20-C19-H191	108.5
C7-C8-H81	109.0	H192-C19-H191	109.3
H82-C8-H81	109.7	C19-C20-C15	110.6 (3)
P2-C9-C10	118.5 (2)	C19-C20-H201	109.6
P2-C9-C14	112.5 (2)	C15-C20-H201	110.2
C10-C9-C14	110.0 (3)	C19-C20-H202	108.8
P2-C9-H91	103.9	C15-C20-H202	108.8
C10-C9-H91	105.5	H201-C20-H202	108.8
C14-C9-H91	105.2	Ni1-C21-C22	70.0 (2)
C9-C10-C11	109.8 (3)	Ni1-C21-H211	144.4
C9-C10-H101	110.1	C22-C21-H211	145.5
C11-C10-H101	109.1	C21-C22-Ni1	69.1 (2)
C9-C10-H102	109.8	C21-C22-H221	146.0
C11-C10-H102	109.0	Ni1-C22-H221	144.9
H101-C10-H102	109.0	Ni1-C23-C24	69.7 (2)
C10-C11-C12	111.9 (3)	Ni1-C23-H231	144.4
C10-C11-H112	109.5	C24-C23-H231	146.0
C12-C11-H112	109.4	C23-C24-Nil	69.4 (2)
C10-C11-H111	108.3	C23-C24-H241	146.4
C12-C11-H111	108.8	Ni1-C24-H241	144.2
H112-C11-H111	109.0		

V. References

1 A. J. Arduengo, R. Krafczyk, R. Schmutzler, H. A. Craig, J. R. Goerlich, W. J. Marshall and M. Unverzagt, *Tetrahedron*, 1999, **55**, 14523–14534.

2 A. Boudier, P.-A. R. Breuil, L. Magna, H. Olivier-Bourbigou and P. Braunstein, *Journal of Organometallic Chemistry*, 2012, **718**, 31–37.

3 E. Nicolas, A. Ohleier, F. D'Accriscio, A.-F. Pécharman, M. Demange, P. Ribagnac, J. Ballester, C. Gosmini and N. Mézailles, *Chemistry A Eur. J.*, 2015, **21**, 7690–7694.

4 T. Saito, H. Nishiyama, H. Tanahashi, K. Kawakita, H. Tsurugi and K. Mashima, *J. Am. Chem. Soc.*, 2014, **136**, 5161–5170.

5 P. B. Hitchcock, M. F. Lappert, C. MacBeath, F. P.E. Scott and N. J.W. Warhurst, *J. Organomet. Chem.*, 1997, **528**, 185–190.

6 M. J. Iglesias, J. F. Blandez, M. R. Fructos, A. Prieto, E. Álvarez, T. R. Belderrain and M. C. Nicasio, *Organometallics*, 2012, **31**, 6312–6316.