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Abstract. The design of cyber-physical systems is a complex process and relies on the simulation of the system
behavior before its deployment. Such is the case, for instance, of joint simulation of the different subsystems
that constitute a hybrid automotive powertrain. Co-simulation allows system designers to simulate a whole sys-
tem composed of a number of interconnected subsystem simulators. Traditionally, these subsystems are mod-
eled by experts of different fields using different tools, and then integrated into one tool to perform simulation at
the system-level. This results in complex and compute-intensive co-simulations and requires the parallelization
of these co-simulations in order to accelerate their execution. The simulators composing a co-simulation are
characterized by the rates of data exchange between the simulators, defined by the engineers who set the com-
munication steps. The RCOSIM approach allows the parallelization on multi-core processors of co-simulations
using the FMI standard. This approach is based on the exploitation of the co-simulation parallelism where
dependent functions perform different computation tasks. In this paper, we extend RCOSIM to handle addi-
tional co-simulation requirements. First, we extend the co-simulation to multi-rate, i.e. where simulators are
assigned different communication steps. We present graph transformation rules and an algorithm that allow
the execution of each simulator at its respective rate while ensuring correct and efficient data exchange between
simulators. Second, we present an approach based on acyclic orientation of mixed graphs for handling mutual
exclusion constraints between functions that belong to the same simulator due to the non-thread-safe imple-
mentation of FMI. We propose an exact algorithm and a heuristic for performing the acyclic orientation.
The final stage of the proposed approach consists in scheduling the co-simulation on a multi-core architecture.
We propose an algorithm and a heuristic for computing a schedule which minimizes the total execution time of
the co-simulation. We evaluate the performance of our proposed approach in terms of the obtained execution
speed. By applying our approach on an industrial use case, we obtained a maximum speedup of 2.91 on four
cores.

1 Introduction

The recent advancement in merging different technologies
and engineering domains has led to the emergence of the
field of Cyber-Physical Systems (CPS) [1]. In such systems,
embedded computers interact with, and control physical
processes. Because of the heterogeneity of the involved
components (multi-physics, sensors, actuators, embedded
computers), CPS may feature very complex architectures
and designs, ever raising the need for time, cost, and
effort-effective approaches for building robust and reliable
systems. Numerical simulation has proven successful in
responding to this need, and is therefore increasingly consid-
ered to be an indisputable step in design verification and

validation. For complex CPS, experts of different engineer-
ing disciplines may be involved in the design process by
developing models and simulators for different parts of the
system. In a later stage, the developed simulators are
coupled together in order to perform what is called simula-
tion at the system level [2]. This approach is called
co-simulation [3]. Each simulator is assigned an integration
step, which in some cases is driven by the dynamics of the
modeled system and the control objective, and exchanges
data with the other simulators according to a communica-
tion step which can be equal or different than its integration
step. Enabling co-simulation of heterogeneous models
requires using adequate tools and methods. In this scope,
the Functional Mock-up Interface (FMI) [4] was developed
with the goal of facilitating the co-simulation and the
exchange of subsystem models and simulators. FMI defines

Numerical methods and HPC
A. Anciaux-Sedrakian and Q. H. Tran (Guest editors)

* Corresponding author: nicolas.pernet@ifpen.fr

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Oil & Gas Science and Technology - Rev. IFP Energies nouvelles 74, 49 (2019) Available online at:
� S.E. Saidi et al., published by IFP Energies nouvelles, 2019 ogst.ifpenergiesnouvelles.fr

https://doi.org/10.2516/ogst/2019009

REGULAR ARTICLE

http://creativecommons.org/licenses/by/4.0/
https://www.ifpenergiesnouvelles.fr/
https://ogst.ifpenergiesnouvelles.fr
https://doi.org/10.2516/ogst/2019009


a standardized interface that can be implemented by
modeling tools in order to create models and simulators that
can be connected with other FMI models and simulators.

Co-simulation is an alternative approach to monolithic
simulation where a complex system is modeled as a whole.
Here, by complex system, we refer to systems where the con-
trolled physical process constitutes a multi-physics system
and is modeled in the continuous-time domain using
(hybrid) Ordinary Differential Equations (ODEs). Because
they are aimed to be implemented on embedded computers,
numerical laws that control the physical process aremodeled
in the discrete time domain. All of these features add to the
complexity of the models and simulators. Co-simulation has
a number of advantages over the monolithic approach.
It allows modeling each part of the system using the most
appropriate tool instead of using a single modeling soft-
ware. Also, it allows a better intervention of the experts
of different fields at the subsystem level. Furthermore,
co-simulation facilitates the upgrade, the reuse, and the
exchange of models and simulators. In co-simulation, the
equations of each Functional Mock-up Unit (FMU) are inte-
grated using a solver separately. FMUs exchange data by
updating their inputs and outputs according to their com-
munication steps [5]. For connected FMUs with different
communication steps, the master algorithm can provide
extrapolation techniques to produce the missing data of
the continuous part of the simulated system.

Figure 1 shows an example of the evolution of time and
data exchange between two FMUs. The horizontal arrows
represent the simulated time of each FMU. The vertical
double arrows represent data exchange between the FMUs.
In general, for each FMU, simulation is performed integra-
tion step by integration step. We consider that integration
step sizes of the FMUs may differ. Also, we consider that
data exchange between FMUs only happens when the sim-
ulated time of both FMUs is equal. Consequently, a com-
munication step is defined for every couple of simulators.
In addition, we consider, that this communication step is
a multiple of the integration steps of both. Co-simulation
requires domain-specific information for each involved
FMU. Such information, which is beyond the scope of
FMI, can be provided by domain experts, for example by
using an approach like the one proposed by Sirin et al.
[6]. The communication steps of FMUs can be shared as
part of this information. It is worth noting that setting com-
munication step sizes might depend on the parameters set
for the FMU, and the dynamics of the inputs.

Usually, assembling FMUs results in a heavy co-simula-
tion, requiring high processing power. Increasing CPU per-
formance through frequency scaling has reached some
technological limits leading in a stagnation in the transistor
count in processors. As a consequence, during the last
decade, parallelism has been by far the main way for
increasing the performance of processors [7].

In fact, the last years have witnessed a major shift
among semiconductor manufacturers to building multi-core
processors, i.e. integrating multiple processors into one chip
allowing parallel processing on a single computer. Enabling
parallel execution of heavy co-simulations on multi-core
processors is keenly sought by the developers and the users

of simulation tools. However, fulfilling this objective is not
trivial and appropriate parallelization techniques need to
be applied on co-simulation simulators in order to acceler-
ate their execution on multi-core processors.

In order to achieve (co-)simulation acceleration using
multi-core execution, different approaches are possible
and were already explored. From a user point of view, it
is possible to modify the model design in order to prepare
its multi-core execution, for example by using models that
are developed using parallel computing libraries as in [8].
Using parallel solvers as in [9] is another alternative. In
[10], authors present the DACCOSIM framework which
allows multi-threaded distributed simulation of FMUs on
multi-core processors as well as clusters of computers. How-
ever, the parallelization achieved through this approach is
not automatic as the user has to define the distribution of
the FMUs on the architecture. A more detailed discussion
of related work is given in [11].

In this paper, we address the problem from a co-simula-
tion tool provider point of view. In such a tool, the user con-
nects different FMUs, embedding solvers or using solvers
provided by the co-simulation tool. In this case, it is not pos-
sible tochangethemodels, the solvers,nor themodeling tools.

Readers can refer to Figure 16 to figure out the main
stages of the proposed solution.

The rest of the paper is organized as follows. Section 2
gives a background about the approach proposed in this
paper. The dependence graph model, the graph transforma-
tion rules, algorithm and heuristic are presented in Section 3.
Then Section 4 presents our multi-core scheduling pro-
posal for co-simulation acceleration. In Section 5 we evaluate
our proposed approach using both randomly generated
graphs and an industrial use-case. Finally, we conclude in
Section 7.

2 Background

The Refined CO-SIMulation (RCOSIM) [11] approach
allows the parallelization on multi-core processors of
co-simulations using the FMI standard. This approach is
based on a representation of the co-simulation using a
Directed Acyclic Graph (DAG). A scheduling heuristic is
then used to accelerate the execution of the co-simulation.

We chose to build on the RCOSIM approach in order to
achieve parallelization of FMI co-simulations for acceler-
ated execution. Parallel execution of the functions of one

Model A

Model B

Integration step hA Communication step HA

D
ata exchange

D
ata exchangeIntegration step hB Communication step HB

Fig. 1. Evolution of time and data exchange between two
FMUs during co-simulation.
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FMU is interesting since, as can be seen in Figure 3, it may
not be possible to execute all the functions of one FMU and
then all functions of another one. Concurrent execution is
needed here which may lead to using synchronization mech-
anisms hurting performance. However, by exploring the
search space of parallelization solutions, an efficient solution
can be sought.

We did not use known parallel programming libraries
for the following specific reasons. It is clear that MPI is
not suitable for our goal since we target shared memory
architectures whereas MPI is used to program distributed
memory architectures. The other option is to use OpenMP
or similar libraries which are adapted to shared-memory
architectures. However, OpenMP is efficient especially in
the case of data parallelism (e.g. loop parallelism) which
is not apparent in the co-simulations that we target. In fact,
since we do not have access to the source code of the func-
tions, we can not perform parallelization of the functions
code, e.g. solver function, by using OpenMP pragmas. We
only have information about the co-simulation at the func-
tion level, i.e. the functions can only be called but their code
cannot be accessed. It should be noted that libraries such as
OpenMP and Intel TBB offer task programming features
which can be used to execute multiple functions in parallel.
Note that the code of each function is not parallelized, but
two or more functions can be executed in parallel using this
solution. However, they rely on online scheduling which
may introduce high overhead and thus decreases the perfor-
mance. In addition, given that information about depen-
dence between functions is available and the execution
times can be measured, we assume that offline scheduling
is more efficient to achieve our goal.

In this paper, we deal with the limitations of this
approach that we highlighted in a recent work [12].
Although RCOSIM resulted in interesting co-simulation
speedups, it has two limitations that have to be considered
in the multi-core scheduling problem in order to obtain bet-
ter performances. First, RCOSIM supports only mono-rate
co-simulations, i.e. the different FMUs have to be assigned
the same communication step size. Nevertheless, some
co-simulation scenarios have groups of FMUs that are more
tightly coupled than others. This leads to different commu-
nication step sizes between some FMUs of the same
co-simulation. In particular, in a given co-simulation scenar-
io, we may have small communication steps sizes to ensure
accuracy between tightly coupled FMUs and large commu-
nication step sizes between loosely coupled FMUs to speed
up the co-simulation. The use case we propose in Section 5
is an example of such co-simulation. Note that this work is
restricted to fixed integration step sizes and communication
step sizes that are greater or equal to the integration
step sizes of the respective simulators. Second, the func-
tions of an FMU may not be thread-safe, i.e. they cannot
be executed in parallel as they may share some resource
(e.g. variables) that might be corrupted if two operations
try to use it at the same time. Consequently, if two or more
operations belonging to the same FMU are executed on dif-
ferent cores, a mechanism that ensures these operations are
executed in disjoint time intervals must be set up. It is
worth noting that a co-simulation should be repeatable

which would not be possible if mutual exclusion is not han-
dled properly as this may lead to race conditions.

Previously, these mutual exclusion constraints were
tackled in RCOSIM by executing the operations of the
same FMU on the same core which restricts the exploitation
of the parallelism.

We propose in this article a solution for each of the afore-
mentioned limitations by making extensions to RCOSIM.
In order to allow handling multi-rate co-simulations, we
present a graph transformation algorithm that is applied
to the initial constructed graph. Then, mutual exclusion
constraints are represented by adding, in the graph, non
oriented edges between operations belonging to the same
FMU. In order assign directions to the added non oriented
edges, we formulate the problem, propose a resolution using
linear programming and finally present an acyclic orienta-
tion heuristic. Then we present a multi-core scheduling
solution for such co-simulation graph. We first propose a
resolution using linear programming before presenting a
multi-core scheduling heuristic. Multi-core scheduling
problems are known to be NP-hard resulting in exponential
resolution times when exact algorithms are used. Heuristics
have been extensively used in order to solve multi-core
scheduling problems. In most situations they lead to results
of good quality in practicle resolution times. In particular,
list heuristics are widely used in the context of offline
multi-core scheduling.

Automatic parallelization [13] of computer programs
embodies the adaptation of the potential parallelism inher-
ent in the program to the effective parallelism that is pro-
vided by the hardware. Because computer programs are
usually complex (multiple functions, nested function calls,
control flow jumps, etc.), this process of adaptation requires
the use of a model for abstracting the program to be paral-
lelized. The aim of using such model is to identify which
parts of the program can be executed in parallel by express-
ing some features of the program such as data dependence
between different parts of the code. Task dependence
graphs are commonly used for this purpose. A task depen-
dence graph is a DAG denoted G(V, A) where:

– V is the set of vertices of the graph. The size of the
graph n is equal to the number of its vertices. Each
vertex vi: 0 � i < n represents a task which is an atomic
unit of computation, i.e. it cannot be allocated to
several computing resources.

– A is the set of arcs of the graph. A directed arc is
denoted as a pair (vi, vj) and describes a precedence
constraint between vi and vj, i.e. vi has to finish its exe-
cution before vj can start its execution.

The task dependence graph defines the partial order to
be respected when executing the set of tasks. This partial
order describes the potential parallelism of the program,
i.e. vertices that are not in precedence relation A which is
asymmetric and transitive.

The co-simulation of FMUs lends itself to the task
dependence graph representation as shown hereafter.
According to the FMI standard, the code of an FMU can
be exported in the form of source code or as precompiled
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binaries. However, most FMU providers tend to adopt
the latter option for proprietary reasons. We are thus
interested in this case. The method for automatic
parallelization of FMU co-simulation that we propose in
this article is based on representing the co-simulation as a
task dependence graph. We present in the rest of this
section how this graph is constructed and a set of attributes
that characterize it. The graph construction and character-
ization method is part of the RCOSIM approach as
presented in [11].

2.1 Construction of the dependence graph
of an FMU co-simulation

The entry point for the construction of a task dependence
graph of an FMU co-simulation is a user-specified set of
interconnected FMUs as depicted in Figure 2. Here, we con-
sider only co-simulations where all FMUs are assigned iden-
tical communication step sizes. We refer to the graph which
represents such co-simulation as mono-rate graph. The exe-
cution of each FMU is seen as computing a set of inputs, a
set of outputs, and the state variables of the FMU. A com-
putation of an input, output, or state variables is performed
by FMU C function calls. Thanks to FMI, it is additionally
possible to access information about the internal structure
of a model encapsulated in an FMU. In particular, as shown
in Figure 3, FMI allows the identification of Direct Feed-
through (e.g. YB1) and Non Direct Feedthrough (e.g.
YA1) outputs of an FMU and other information depending
on the version of the standard:

– FMI 1.0: Dependence between inputs and outputs are
given. The computation of the state at a given simula-
tion step k is considered necessary for the computation
of every output at the same simulation step k. It is
considered that the computation of the state at a

simulation step k + 1 requires the computation of each
of the inputs at the simulation step k.

– FMI 2.0: In addition to the information provided in
FMI 1.0, more information is given about data depen-
dence. It is specified which output at a given simulation
step depends on the state computation at the same
step. Also, it is specified which input at a simulation
step k needs to be computed before the computation
of the state at the step k + 1.

FMU information on input/output dependence allows
transforming the FMU graph into a graph with an
increased granularity. For each FMU, the inputs, outputs,
and state are transformed into operations. An input, out-
put, or state operation is defined as the set of FMU function
calls that are used to compute the corresponding input, out-
put, or state respectively. The co-simulation is described by
a task dependence graph G(V, A) called the operation
graph where each vertex oi 2 V : 0 � i < n represents one
operation, each arc ðoi; ojÞ 2 A : 0 � i; j < n represents a
precedence relation between operations oi and oj, and
n = |V| is the size of the operation graph. The operation
graph is built by exploring the relations between the FMUs
and between the operations of the same FMU. A vertex is
created for each operation and arcs are then added between
vertices if a precedence dependence exists between the
corresponding operations. If FMI 1.0, which does not give
information about the dependence between the state vari-
ables computation and the input and output variables com-
putations, is used, we must add arcs between all input
operations and the state operation of the same FMU.
Furthermore, arcs connect all output operations and the
state operation of the same FMU because the computation
at the simulation step k of an output must be performed
with the same value of the state (computed at simulation
step k) as for all the outputs belonging to the same FMU.

YA1

YA2

YA3

UA1

UA2

UB1

UB2

UB3

YB1

YB2

FMU A

FMU B

Fig. 2. Inter-FMU dependence specified by the user.

YA1

YA2

YA3

UA1

UA2

UB1

UB2

UB3

YB1

YB2

FMU A

FMU B

Fig. 3. Intra-FMU dependence provided by FMI.
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An execution of the obtained graph corresponds to one sim-
ulation step. The operation graph corresponding to the
FMUs of Figure 3 is shown in Figure 4. Note that we
assume that no rollbacks are used and that the appropriate
sequence of function calls is used as stated in the FMI
standard.

2.2 Dependence graph attributes

The operation graph is used as input to the scheduling
algorithm. In addition to the partial order defined by the
graph, the scheduling algorithm uses a number of attributes
to compute an efficient schedule of the operation graph.
Many list scheduling algorithms are based on the Critical
Path Method (CPM) [14] and use a set of attributes and
notations to characterize the operation graph.

The notation fm (oi) is used to refer to the FMU to
which the operation oi belongs, and T(oi) to denote the type
of the operation oi, i.e. T ðoiÞ 2 fupdateinput; updateoutput;
updatestateg. An operation oi is characterized by its commu-
nication step H(oi) which is equal to the communication
step of its FMU. oj is a predecessor of oi if there is an arc
from oj to oi, i.e. ðoj; oiÞ 2 A. We denote the set of predeces-
sors of oi by pred(oi). In the example shown by Figure 5,
pred(d) = {b, c}. oj is an ancestor of oi if there is a path
in G from oj to oi. The set of ancestors of oi is denoted by
ance(oi). In the example shown by Figure 5, ance
(d) = {a, b, c}. oj is a successor of oi if there is an arc from
oi to oj, i.e. ðoiojÞ 2 A. We denote the set of successors of oi
by succ(oi). In the example shown by Figure 5, succ
(d) = {b, c}. oj is a descendant of oi if there is a path in
G from oi to oj. The set of descendants of oi is denoted by
desc(oi). In the example shown by Figure 5, desc(a) =
{b, c, d}. A profiling phase allows measuring the execution
time C(oi). For each operation, the average execution time
of multiple co-simulation runs is used. Let’s consider that
the operations shown in Figure 5 have the following execu-
tion times C(a) = 2, C(b) = 2, C(c) = 1, C(d) = 4. The ear-
liest start time from start S(oi) and the earliest end time
from start E(oi) are defined by equations (1) and (2) respec-
tively. S(oi) defines the earliest time at which the operation
oi can start its execution. S(oi) is constrained by the prece-
dence relations. The earliest time the operation oi can finish
its execution is defined by E(oi):

SðoiÞ ¼
0; if pred oið Þ ¼ ;
maxoj2predðoiÞðEðojÞÞ; otherwise;

(
ð1Þ

E oið Þ ¼ S oið Þ þ C oið Þ: ð2Þ
In the example of Figure 5, we have: S(a) = 0, S(b) = 2,

S(c) = 2, S(d) = 4 and E(a) = 2, E(b) = 4, E(c) = 3,
E(d) = 8.

The latest end time from end denoted by EðoiÞ and the
latest start time from end denoted by SðoiÞ are defined by
equations (3) and (4) respectively.

EðoiÞ ¼
0; if succðoiÞ ¼ ;
maxoj2succðoiÞðSðojÞÞ; otherwise;

(
ð3Þ

S oið Þ ¼ E oið Þ þ C oið Þ: ð4Þ
In the example of Figure 5, we have: E að Þ ¼

6; E bð Þ ¼ 4; E cð Þ ¼ 4; EðdÞ ¼ 0 and S að Þ ¼ 8; S bð Þ ¼
6; S cð Þ ¼ 5; SðdÞ ¼ 4.

The critical path of the graph is the longest path in the
graph. The length of a path is computed by accumulating
the execution times of the operations that belong to it.
The length of the critical path of the operation graph
denoted by R is defined by equation (5). The critical path
is a very important characteristic of the operation graph.
It defines a lower bound on the execution time of the graph,
i.e. in the best case the time needed to execute the whole
graph is equal to the length of the critical path:

R ¼ max
oi2V I

E oið Þð Þ: ð5Þ

In the example of Figure 5, we have: R = max (E(a),
E(b), E(c), E(d)) = max (2, 4, 3, 8) = 8.

The flexibility F(oi) is defined by equation (6). F(oi)
expresses the length of an execution interval within which
operation oi can be executed without increasing the total
execution time of the graph:

F oið Þ ¼ R� S oið Þ � C oið Þ � E oið Þ: ð6Þ
In the example of Figure 5, we have F(a) = 8�0�2�6 = 0,

F(b) = 8�2�2�4 = 0, F(c) = 8�2�1�4 = 1, F(d) =
8�4�4�0 = 0.

Y 1A UB3 U 2A U 1B

U 1A U 2BY 2AY 2B

Y 1B Y 3A

Fig. 4. Operation graph obtained from the FMUs of Figure 3.

a

b

c

d

Fig. 5. Example of an operation graph.
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3 Extension of the dependence graph model
for FMU co-simulation

This section describes our proposed extensions to the
dependence graph model that is used for representing an
FMU co-simulation. The transformations that it undergoes
in order to represent multi-rate co-simulation and mutual
exclusion constraints are presented.

3.1 Dependence graph of a multi-rate FMU
co-simulation

Our operation graph model has to be extended in order
to accommodate multi-rate data exchange between
operations.

Consider an operation graph that is constructed as
described in the previous section from a multi-rate co-simu-
lation, i.e. some FMUs have different communication steps.
Such graph is referred to as a multi-rate operation graph.
One way for making such operation graph suitable for mul-
ti-core scheduling is to transform it into a mono-rate graph.
This section presents an algorithm that transforms the ini-
tial multi-rate operation operation graph G(V, A) into a
mono-rate operation operation graph GM (VM, AM). The
aim of this transformation is to ensure that each operation
is executed according to the communication step of its
respective FMU and also to maintain a correct data
exchange between the different FMUs, whether they have
different or identical communication steps. Similar algo-
rithms have been used in the real-time scheduling literature
to account for multi-rate scheduling problems [15].

We define the Hyper-Step (HS) as the Least Common
Multiple (LCM) of the communication steps of all the oper-
ations: HS = LCM (H(o1), H(o2),. . ., H(on)) where n = |VI|
is the number of operations in the initial graph. The Hyper-
Step is the smallest interval of time for describing an infi-
nitely repeatable pattern of all the operations. The transfor-
mation algorithm consists, first of all, in repeating each
operation oi, ri times where ri is called the repetition factor
of oi and ri ¼ HS

HðoiÞ. Each repetition of the operation oi is
called an occurrence of oi and corresponds to the execution
of oi at a certain simulation step. We use a superscript to
denote the number of each occurrence, for instance osi
denotes the sth occurrence of oi. The instant for which osi
is computed is denoted as t(oi, s) = H(oi) � s. Operations
belonging to the same FMU have the same repetition factor
since they are all executed according to the communication
step of the FMU they belong to. Therefore, we define the
repetition factor of an FMU to be equal to the repetition
factor of its operations. Then, arcs are added between oper-
ations following the rules presented hereafter. Consider two
operations oi; oj 2 V I connected by an arc ðoi; ojÞ 2 AI, then
adding an arc ðosi ; ouj Þ to AM, depends on the instants t(oi, s)
and t(oj, u) for which osi and ouj are computed respectively.
In other words, if t(oi, s), and t(oj, u) are the simulation
steps associated with osi and ouj respectively, then the
inequality t(oi, s) � t(oj, u) is a necessary condition to
add the arc ðosi ; ouj Þ to AM. In addition, ouj is connected with

the latest occurrence of oi that satisfies this condition. For-
mally, ouj is connected with osi such that s = max (0, 1,. . .,
ri�1): t(oi, s)� t(oj, u). In the case where H(oi) = H(oj) (and
therefore ri = rj), occurrences osi and ouj which correspond to
the same number, i.e. s = u, are connected by an arc. On
the other hand, if HðoiÞ 6¼ HðojÞ, we distinguish between
two types of dependence: we call the arc ðoi; ojÞ 2 AI a slow
to fast (resp. fast to slow) dependence if H(oi) > H(oj) (resp.
H(oi) < H(oj)). For a slow to fast dependence ðoi; ojÞ 2 AI,
one occurrence of oi is executed while several occurrences of
oj are executed. In this case, arcs are added between each
occurrence osi : s 2 f0; 1; . . . ; ri � 1g, and the occurrence
ouj such that:

u ¼ s� HðoiÞ
HðojÞ

� �
: ð7Þ

We recall that for a slow to fast dependence, the master
algorithm can perform extrapolation of the inputs of the
receiving FMU. For a fast to slow dependence
ðoi; ojÞ 2 AI, arcs are added between each occurrence osi ,
and the occurrence ouj : u 2 f0; 1; . . . ; rj � 1g such that:

s ¼ u� HðojÞ
HðoiÞ

� �
: ð8Þ

Arcs are added also between the occurrences of the same
operation, i.e. ðosi ; os

0
i Þ where s 2 f0; 1; . . . ; ri � 2g and

s0 = s + 1. Finally, for each FMU, arcs are added between
the sth occurrence of the state operation, where
s 2 f0; 1; . . . ; ri � 2g, and the (s + 1)th occurrences of
the input and output operations. The multi-rate graph
transformation is detailed in Algorithm 1. The algorithm
traverses all the graph by applying the aforementioned rules
in order to transform the graph and finally stops when all
the nodes and the edges have been visited.

Figure 6 shows the graph obtained by applying the mul-
ti-rate transformation algorithm on the graph of Figure 4.
In this example HB = 2 � HA, where HA and HB are the
communication steps of FMUs A and B respectively.

Without any loss of generality, the superscript which
denotes the number of the occurrence of an operation is
not used in the remainder of this article for the sake of
simplicity. Each occurrence of an operation osi in the graph

YS
1A US

3B YS
1B US

2A YS
3A US

1B

YS
2B US

1A YS
2A US

2B US+1
1A

YS+1
1A

US+1
2A YS+1

3A

YS+1
2A

S+1

Fig. 6. Graph obtained by applying the multi-rate transforma-
tion algorithm on the graph of Figure 4.
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G(V, A) becomes an operation that is referred to using the
notation oj.

Algorithm 1: Multi-rate graph transformation algorithm.

3.2 Dependence graph with mutual exclusion
constraints

3.2.1 Motivation

The FMI standard states that “FMI functions of one
instance don’t need to be thread safe’’. Consequently, an
FMU could be implemented using global variables which
introduce errors when calling the different functions of the
FMU in parallel. It is up to the executing environment to
ensure the calling sequences of functions are respected as
specified in the FMI standard. These restrictions introduce
mutual exclusion constraints on the operations of the same
FMU.

In [12] we have shown that using synchronization
objects such as mutexes or allocation constraints strongly
reduce the obtained speedup. We consequently propose an
alternative solution that could satisfy the mutual exclusion
constraints while: i) leaving as much flexibility as possible
for allocating the operations to the cores and; ii) introduc-
ing lower synchronization overhead. The proposed method
is based on modeling the mutual exclusion constraints in
the operation graph of the co-simulation.

3.2.2 Acyclic orientation of mixed graphs

The operation graph model can be extended in order to
represent scheduling problems that involve precedence con-
straints and also mutual exclusion constraints. This is com-
monly done using mixed graphs. A mixed graph G(V, A, D)
is a graph which contains a set A of directed arcs denoted
(oi, oj): 0 � i, j < n and a set D of undirected edges denoted
[oi, oj]: 0 � i, j < n. In the scheduling literature, these
graphs are known also as disjunctive graphs [16]. In addi-
tion to the arcs corresponding to the previously introduced
precedence constraints, mutual exclusion relations are
represented by edges in a mixed graph such that:

– Precedence constraints: 8ðoi; ojÞ 2 A; oi must finish its
execution before oj can start its execution.

– Mutual exclusion constraints: 8½oi; oj � 2 D; oi and oj
must be executed in strictly disjoint time intervals.

Operations belonging to the same FMU can be executed
in either order but not in parallel. In order to compute a
schedule for a mixed graph, an execution order has to be
defined for each pair of operations connected by an undi-
rected edge which is interpreted by assigning a direction
to this edge. Cycles must not be introduced in the graph
while assigning directions to edges, otherwise, the schedul-
ing problem becomes infeasible. Since the final goal is to
accelerate the execution of the co-simulation, the acyclic
orientation of the mixed graph has to minimize the length
of the critical path of the graph.

The acyclic orientation problem is closely related to ver-
tex coloring of a graph. In its general form, i.e. when all
edges of the graph are undirected, vertex coloring is a func-
tion a:V ? {1, 2,. . ., k} which labels the vertices of the
graph with integers, called colors, such that the inequality
9 holds:
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8 oi; oj
� � 2 D; a oið Þ 6¼ a oj

� 	
: ð9Þ

The acyclic orientation of the graph can then be
obtained by assigning a direction to every edge such that
the color of the corresponding tail vertex is smaller than
the color of the corresponding head vertex. A graph coloring
with k colors is referred to as k-coloring. In its general form,
vertex coloring aims at finding a minimum vertex coloring,
i.e. minimizing k the number of the used colors. The mini-
mum number of colors required to color an undirected graph
is called the chromatic number and is denoted v(G). The
Gallai–Hasse–Roy–Vitaver theorem [17–20] links the length
of the longest path of the graph, obtained by the orientation
which minimizes this length, to vertex coloring of the graph.
It states that the length of the longest path of a directed
graph is at least v(G). Thus, a minimum vertex coloring
leads to an acyclic orientation that minimizes the length of
the critical path of the resulting graph. Computing the chro-
matic number of a graph is NP-complete [21].

The acyclic orientation of a mixed graph can be
obtained via vertex coloring also. However, vertex coloring
of a mixed graph has to take into account both arcs and
edges of the graph. More precisely, a vertex coloring of a
mixed graph is a function a:V ? {1, 2,. . ., k} such that
inequalities 9 and 10 hold:

8 oi; oj
� 	 2 A; a oið Þ < a oj

� 	
: ð10Þ

A coloring of a mixed graph G(V, A, D) exists only if it
is cycle-free [22], i.e. the directed graph G(V, A, ;) does not
contain any cycle. The problem of acyclic orientation of
mixed graphs has been studied in the literature in [23–25].
The authors proposed efficient algorithms for the orienta-
tion of special types of mixed graphs and showed that, in
the general case, the problem is NP-Hard.

3.2.3 Problem formulation

LetG(V,A) be an operation graph of an FMU co-simulation
constructed as described in previous sections. In order to
represent mutual exclusion constraints between FMU oper-
ations, the initial operation graph G(V, A) is transformed
into a mixed graph by connecting each pair of mutually
exclusive operations oi, oj by and edge [oi, oj]. The resulting
mixed graph is denoted G(V, A, D), where V is the set of
operations, A is the set of arcs, and D is the set of edges.
Once the mixed graph is constructed, directions have to be
assigned to its edges in order to define an order of execution
for mutually exclusive operations. The precedence and
mutual exclusion relations represented by the mixed graph
G(V, A, D) are given by expressions (11) and (12). If oper-
ations oi and oj are connected by an arc (oi, oj), the time
interval (S(oi), E(oi)] must precede the time interval
(S(oj), E(oj)]. Otherwise, if operations oi and oj are con-
nected by an edge [oi, oj)], time intervals (S(oi), E(oi)] and
(S(oj), E(oj)] must be strictly disjoint:

8 oi; oj
� 	 2 A; E oið Þ � S oj

� 	
; ð11Þ

8 oi; oj
� � 2 D; S oið Þ;E oið Þð � \ S oj

� 	
;E oj

� 	� � ¼ ;: ð12Þ

The timing attributes of the operations in the mixed
graph G(V, A, D) are the same as in the initial graph
G(V, A) because the added set of edges ½oi; oj� 2 D does
not impact the computation of these attributes. The attri-
butes of an operation oi, connected by an edge with another
operation, may change only when this edge is assigned a
direction.

An edge [oi, oj] is called a conflict edge if the intervals
(S(oi), E(oi)] and (S(oj), E(oj)] in the graphG(V,A) overlap
(Eq. (13)). If for a given edge [oi, oj] either E(oi) � S(oj) or
E(oj) � S(oi), there is no conflict and the edge can be
assigned a direction:

E oið Þ > S oj
� 	

andE oj
� 	

> S oið Þ: ð13Þ
It should be noted that, for a given edge [oi, oj], choosing

either of the execution orders does not impact the numerical
results of the co-simulation since these operations do not
have data dependence. Still, we have to ensure mutual
exclusion between them due to the non-thread-safe imple-
mentation of FMI. Following the definition given in the pre-
vious section, the corresponding coloring is a function a:
V ? {1, 2,. . ., k} which is equivalent to mapping the oper-
ations oi 2 V to the time intervals [S(o1), E(o1)], [S(o2),
E(o2)],. . ., [S(on), E(on)].

The problem of acyclic orientation of the mixed graphG
(V, A, D) can be stated as an optimization problem as
follows:

– Input: Mixed graph G(V, A, D)
– Output: DAG G(V, A0)
– Find: Coloring a:V ? {1, 2,. . ., k}
– Minimize: Number of colors k
– Subject to:

– 8 ðoi; ojÞ 2 A; aðoiÞ < aðojÞ
– 8 ½oi; oj � 2 D; aðoiÞ 6¼ aðojÞ

3.2.4 Resolution using integer linear programming

Let G(V, A, D) be a mixed graph constructed from the
operation graph G(V, A) as described in the previous
sections to represent precedence and mutual exclusion
constraints between operations of an FMU co-simulation.
In the following, we present an Integer Linear Programming
formulation for the problem of acyclic orientation of
G(V, A, D). The proposed formulation is based on the
scheduling notation which gives a more compact set of
constraints compared to a formulation that uses the vertex
coloring notation.

Tables 1 and 2 summarize the variables and the con-
stants that are used in the ILP formulation respectively.

The following set of constraints is used in the ILP for-
mulation of the acyclic orientation problem:

– Precedence constraints: The start time of each opera-
tion is equal to the maximum of the end times of all its
predecessors. Expression (14) captures this constraint.
Note that expression (14) indicates that the start time
of operation oj is greater or equal to the end time of
each predecessor oi. This is sufficient to express
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SðojÞ ¼ maxoi2predðoj ÞðEðoiÞÞ since the formulated prob-
lem is a minimization problem.

8ðoi; ojÞ 2 A; SðojÞ � EðoiÞ : ð14Þ
– Mutual exclusion constraints:We define the binary vari-

able bij which is associated with the direction that is
assigned to the edge [oi, oj]. The assignment of directions
to edges is given by the function / : f½oi; oj � 2 Dg !
fðoi; ojÞ; ðoj ; oiÞg. bij is set to 1 if the edge [oi, oj] is
assigned a direction from oi to oj, i.e. color
/([oi, oj]) = (oi, oj) and to 0 otherwise. Note that bij is
the complement of bji. For every pair of operations that
are connected by and edge, we have to ensure that their
time intervals are strictly disjoint, i.e. 8 oi; oj

� � 2 D;
ðSðoiÞ;EðoiÞ� \ ðSðojÞ;EðojÞ� ¼ ;. Expressions (15)
and (16) capture this constraint where M is a large
positive integer.

8 oi; oj
� � 2 D; SðoiÞ � EðojÞ �M � ð1� bijÞ ð15Þ

8 oi; oj
� � 2 D; SðojÞ � EðoiÞ �M � bij ð16Þ

– Time intervals: Expression (17) is used to compute the
end time of each operation.

8oi 2 V ; EðoiÞ ¼ SðoiÞ þ CðoiÞ ð17Þ

– Length of the critical path: The critical path P is equal
to the maximum of the end times of all the operations
(expression (18)).

8oi 2 V ; P � EðoiÞ ð18Þ
The objective of this linear program is to minimize the
length of the critical path of the operation graph (expres-
sion (19)):

min Pð Þ: ð19Þ
3.2.5 Acyclic orientation Heuristic

While exact algorithms such as ILP give optimal results,
they suffer from very long execution times not acceptable

for the users. For many real world applications, ILP fails
to produce the results within acceptable times. Heuristics
are usually good alternatives. While the optimality of the
solution cannot be guaranteed when using heuristics, they,
in most cases, provide results of good quality, not too far
from the optimal solution within acceptable execution
times. We propose in this section a heuristic for the acyclic
orientation of the mixed graph G(V, A, D). A straightfor-
ward acyclic orientation can be obtained by sorting the
operations in a non-decreasing order of their start times S
(oi) and assigning directions to edges following this order,
i.e. 8 oi; oj

� � 2 D; S oið Þ � S oj
� 	

; /ð½oi; oj�Þ ¼ ðoi; ojÞ. This
is a fast greedy acyclic orientation, however it can be
improved as we will show hereafter.

Let d be the sum of the repetition factors of all the
FMUs. The set of operations V can be represented as a
union of mutually disjoint non empty subsets such that
every subset contains all operations that belong to the same
FMU and that correspond to the same occurrence:

V ¼ Sd
k¼1

V k; 8 opi ; oqj 2 V k; k 2 0; 1; . . . ; df g;

fm opið Þ ¼ fm oqj
� 	

and p ¼ q:

ð20Þ

It is known that edges in the set D exist only between
operations that belong to the same FMU. Furthermore, for
every edge ½opi ; oqj � 2 D, operations oi and oj correspond to
the same occurrence. Even if operations which belong to
the same FMU and correspond to different occurrences are
mutually exclusive, it is not needed to connect them by an
edge because an execution order is already ensured for these
operations by the way the operation graph is constructed.
In other words, all the operations of an FMU, and which
correspond to the same occurrence have to finish their execu-
tion before the next occurrence of any operation can start its
execution. Similarly to the operation set, the edge set D can
be subdivided into mutually disjoint non empty subsets:

D ¼ Sd
k¼1

Dk; 8 ½opi ; oqj � 2 Dk; k 2 f0; 1; . . . ; dg;

fm opið Þ ¼ fm oqj
� 	

and p ¼ q:

ð21Þ

In view of the above, we define the set of subgraphs
which constitute the graph GðV ; ;;DÞ ¼ Sd

k¼1GðV k;DkÞ.
Theorem 3.1 indicates the relationship between the acyclic
orientations of the subgraphs G(Vk, Dk) and the acyclic
orientation of the mixed graph G(V, A, D).

Theorem 3.1. An acyclic orientation of the mixed graph
G(V, A, D) can be obtained by finding an acyclic orienta-
tion for every subgraph Gk (Vk, Dk) following the

Table 1. Variables used in the ILP formulation of the acyclic orientation problem.

Variable Type Description

S(oi) Integer Start time of operation oi
E(oi) Integer End time of operation oi
bij Binary Orientation decision variable associated with edge ½oi; oj� 2 D
P Integer Length of the graph critical path

Table 2. Constants used in the ILP formulation of acyclic
orientation problem.

Constant Type Description

C(oi) Integer Execution time of operation oi
M Integer Large positive number
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non-decreasing order of the start times of the operations as
described previously.

Proof. In order to prove this, we have to show that
every edge in D is assigned a direction and that the result-
ing orientation does not lead to the creation of a cycle. We
use a proof by contradiction to prove this statement. Since
every edge [oi, oj] belongs to one subset of edges Dk, finding
acyclic orientations for all the subgraphs Gk (Vk) leads to
assigning a direction to every edge in D. The existence of
a cycle in the resulting graph means that there exists at
least an edge [oi, oj] that has been transformed into the
arc (oi, oj) and S(oi) > S(oj). However, this is not possible
because the greedy acyclic orientation assigns directions
to edges following a non-decreasing order of the start times
of the operations which contradicts the previous assertion
and thus proves Theorem 3.1.

Consider now that the acyclic orientation of each sub-
graph Gk (Vk, Dk) is obtained by finding a vertex coloring
for this subgraph. This vertex coloring can be seen as a
sequence of assignments a1; a2; . . . ; ajDk j, such that every
assignment al assigns a color to one operation oi 2 V k and
leads to assigning directions to edges that connect oi with
other already colored operations oj 2 V k. The number of
assignments needed to perform the acyclic orientation of
Gk (Vk, Dk) is equal to the number of edges jDkj. Following
the coloring of an operation and the engendered assignment
of directions, the attributes of some operations may change.
Two situations have to be distinguished:

– Coloring al of operation oi does not lead to assigning a
direction to any conflict edge. In this case, no changes
of the timing attributes occur.

– Coloring al of operation oi leads to assigning a direction
to at least one conflict edge ½oi; oj � 2 Dk . Without any
loss of generality, suppose that the edge [oi, oj] is trans-
formed into the arc (oi, oj), then the start time S(oj) is
changed to S(oj)  E(oi). This leads to changing the
end time E(oj) also and possibly causes a domino effect
for the start times and end times of all the descendants
oj 0 2 descðojÞ (see Algorithm 2). Moreover, if SðojÞ >
EðoiÞ, the end time from end EðoiÞ is changed to
EðoiÞ  SðojÞ. Similarly, this leads to changing the
start time from end SðojÞ and possibly causes a domino
effect for the start times and end times of all the ances-
tors oi0 2 anceðoiÞ (see Algorithm 3).

We now describe our proposed acyclic orientation heuris-
tic. The heuristic takes as input a mixed graph G(V, A, D)
and the attributes of the operations oi 2 V as computed for
the digraph GðV ;A; ;Þ, and assigns directions to all the
edges ½oi; oj� 2 D. Applying Theorem 3.1, the heuristic con-
sists in finding vertex colorings of the subgraphs which con-
stitute the graphG(V,A,D) (see Algorithms 4 and 5). In the
first step, the graph GðV ; ;;DÞ obtained by removing all the
arcs ðoi; ojÞ 2 A from the mixed graph G(V, A, D) is parti-
tioned into d subgraphs where d is the number of all occur-
rences of all FMUs such that each subgraph contains all the
operations of one FMUwhich correspond to the same occur-
rence and all the edges that connect them: GðV ; ;;DÞ ¼Sd

k¼1GkðV k; ;;DkÞ. Then, the set of operations oi 2 V is

sorted in a non-decreasing order of the start times S(oi).
Next, the heuristic iteratively assigns colors to operations.
It keeps a list of already colored operations Lk for each
subgraph GðV k; ;;DkÞ. The operations of every list oi 2 Lk

are sorted in increasing order of their assigned colors. At
each iteration, the heuristic selects among the operations
not yet colored oi 2 V , the operation which has the earliest
start time S(oi) to be assigned a color. Ties are broken by
selecting the operation with the least flexibility. We call
the operation to be colored at a given iteration, the pending
operation. The heuristic checks in the order of Lk if the edges
which connect the pending operation oi 2 V k with the oper-
ations oj 2 Lk are conflict edges. If a conflict edge
½oi; oj� 2 Dk : oj 2 Lk is detected, the pending operation is
assigned the color a(oj) and the colors assigned to all the
already colored operations oi0 2 Lk such that a(oi0) � a(oi),
are increased a(oi0) = a(oi0) + 1. The corresponding edges
are then accordingly assigned directions. Afterward, the
timing attributes of the operations are updated using
Algorithms 2 and 3. At this point, the increase ofR, the crit-
ical path of the graph, is evaluated. Next, the operations
oi0 2 Lk: a(oi0) > a(oi) are reassigned their previous colors a
(oi0) = a(oi0)�1, and the pending operation is assigned the
color a(oi) = a(oi) + 1. The increase in the critical path is
evaluated again similarly. After repeating this process for
all the edges ½oi; oj� 2 Dk : oj 2 Lk, the pending operation
is finally assigned the color which leads to the least increase

Algorithm 2: Update of the start and end times
following an assignment al.
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in the critical path, and edges ½oi; oi0 � 2 Dk : oi0 2 l are
assigned directions accordingly. The heuristic begins
another iteration by selecting a new operation to be colored.
The heuristic assigns a color to one operation at each itera-
tion. Every operation is assigned a color higher than the col-
ors of all its predecessors which guarantees that no cycle is
generated. The heuristic finally stops when all the opera-
tions have been assigned colors.

Algorithm 3: Update of the start and end times from end
following an assignment al.

3.2.6 Complexity

The outermost loop (while loop) of the acyclic orientation
heuristic is repeated n times, such as at each iteration,
one operation is assigned a color. Recall that n is the num-
ber of operations in the operation graph. The selection of
the operation with latest start time is done in Oðlog nÞ.
The first inner loop iterates over all the edges connecting
the selected operation. It is repeated at most d times, where
d is the maximum number of edges connecting one opera-
tion. The inner most loop is executed twice in all cases. This
results in an execution of the nested inner loops in O(d).
In addition Algorithms 2 and 3 that are called in the
heuristic have each a complexity of O(n) since they are
based on a recursion whose depth is at most n. Therefore,

the complexity of the acyclic orientation heuristic is evalu-
ated to Oðn2dÞ.

4 Multi-core scheduling of FMU dependence
graphs for co-simulation acceleration

This section presents methods for scheduling an operation
graph on a multi-core architecture. Once the operation
graph has been constructed and undergone the different
phases of transformations as shown in the previous sections,
it is scheduled on the multi-core platform with the goal of
accelerating the execution of co-simulation.

In order to achieve fast execution of the co-simulation
on a multi-core processor, an efficient allocation and
scheduling of the operation graph has to be achieved. The
scheduling algorithm takes into account functional and
non functional specification in order to produce an alloca-
tion of the operation graph vertices (operations) to the
cores of the processor, and assign a starting time to each
operation. We present hereafter a linear programming
model and a heuristic for scheduling FMU dependence
graphs on multi-core processors with the aim of accelerating
the execution of the co-simulation.

Algorithm 4: Acyclic orientation heuristic.

Continued on next page
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Algorithm 5: Evaluate procedure.

4.1 Problem formulation

The acceleration of the co-simulation corresponds to the
minimization of the makespan of the dependence graph.
The makespan is the total execution time of the whole
graph. The dependence graph that is fed as input to the
scheduling algorithm is a DAG, therefore, it represents a
partial order relationship in the execution of the operations,
since two operations connected by an arc must be executed
sequentially whereas the other ones can be executed in
parallel. The scheduling algorithm makes decisions on

allocating the operations to the cores while respecting this
partial order and trying to minimize the total execution
time of the dependence graph. In addition to the execution
time of the operations, the scheduling algorithm has to take
into considerations, the cost of inter-core synchronization.
The scheduling problem can be stated as an optimization
problem as follows:

– Input: Operation graph GF (VF, AF)
– Output: Offline Schedule of operations on multi-core

processor
– Find:

– Allocation of operations to cores, a:V ? P
– Assignment of start times to operations,

b : V � P ! N

– Minimize: Makespan of the graph P ¼
maxðEðoiÞÞoi2V

– Subject to: Precedence constraints of the graph GF
(VF, AF)

4.2 Resolution using linear programming

In this section, we give our ILP formulation of the task
scheduling problem for the acceleration of FMU
co-simulation.

4.2.1 Variables and constants

Tables 3 and 4 summarize respectively the variables and the
constants that are used in the ILP formulation of the
scheduling problem for co-simulation acceleration.

4.2.2 Constraints

We define the decision binary variables xij which indicate
whether the operation oi is allocated to core pj or not.
Expression (22) gives the constraint that each operation
has to be allocated to one and only one core:

8 oi 2 V ;
X
pj2P

xij ¼ 1: ð22Þ

The end time of each operation oi is computed using the
expression (23):

8oi 2 V ;E oið Þ ¼ S oið Þ þ C oið Þ: ð23Þ

For operations that are allocated to the same core and
that are completely independent, i.e. no path exists
between them, we have to ensure that they are executed
in non overlapping time intervals. Expressions (24) and
(25) capture this constraint. bij is a binary variable that is
set to one if oi is executed before oj:

8p 2 P ; 8 oi 2 V ; 8 oj 2 V ; ðoi; ojÞ; ðoj; oiÞ 62 AF;

EðoiÞ � SðojÞ þM � ð3� xip � xjp � bijÞ;
ð24Þ

8p 2 P ; 8 oi 2 V ; 8 oj 2 V ; ðoi; ojÞ; ðoj; oiÞ 62 AF;

EðojÞ � SðoiÞ þM � ð2� xip � xjp þ bijÞ:
ð25Þ

Continued
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The cost of synchronization is taken into account as
follows. A synchronization cost is introduced in the
computation of the start time of an operation oj, if it has a
predecessor that is allocated to a different core and if its start
time is the earliest among the successors of this predecessor
that are allocated to the same core as the operation oj. syncijp
is a binary variable which indicates whether synchroniza-
tion is needed between oi and oj if oj is allocated to p.
Therefore, syncijp¼1 iff aðojÞ¼p and aðoiÞ 6¼ p and SðojÞ ¼
maxoj0 2succðoiÞ and aðoj0 Þ¼pðSðoj0 ÞÞ. Expressions (26) and (27)
capture this constraint. Vip is a binary variable that is set
to one only if aðoiÞ 6¼ p. It is used to define for which cores
a synchronization is needed between oi and its successors,
in other words, if the successor is allocated to the same core
as oi, no synchronization is needed. Expressions (28) and
(29) capture this constraint. Variable Qip denotes the earli-
est start time among the start times of all successors of oi
that are allocated to processor p. It is computed using
expressions (30) and (31):

8oi 2 V ;
X

8p2P ;8oj2predðoiÞ
syncijp ¼ V ip; ð26Þ

8oi 2 V ; 8oj 2 succ oið Þ; syncijp � xjp : 8oi 2 V ; ð27Þ

8oi 2 V ; 8oj 2 succ oið Þ; V ip � xjp � xip : 8oi 2 V ; ð28Þ

8oi 2 V ; V ip �
X

8oj2succ oið Þ
xjp � xip
� 	

; ð29Þ

8oi 2 V ; 8oj 2 succ oið Þ;Qip � S oj
� 	þM � 1� xjp

� 	
;

ð30Þ

8oi 2 V ; 8oj 2 succ oið Þ;Qip � S oj
� 	�M � 1� syncijp

� 	
:

ð31Þ
The start time of each operation is computed using

expression (32). The synchronization cost is introduced
taking into account the synchronizations with all predeces-
sors of oj that are allocated to different cores:

8oj 2 V ; 8oi 2 predðojÞ;
SðojÞ �



EðoiÞ þ

P
8p2P ;8o

i
0 2pred ojð Þ

syncijp � synCost
�
:

ð32Þ
The makespan is equal to the latest end time among

the end times of all the operations as captured by
expession (33):

8oi 2 V ; P � E oið Þ: ð33Þ

4.2.3 Objective function

The objective of this linear program is to minimize the
makespan of the dependence graph:

minðP Þ: ð34Þ

4.3 Multi-core scheduling Heuristic

A variety of list multi-core scheduling heuristics exist in the
literature and each heuristic may be suitable for some speci-
fic kinds of multi-core scheduling problems. We detail in
this section a heuristic that we have chosen to apply on
the final graph GF (VF, AF) in order to minimize its make-
span. Because of the number of fine-grained operations, and
since the execution times and the dependence between the
operations are known before runtime, it is more convenient
to use an offline scheduling heuristic which has the advan-
tage of introducing lower overhead than online scheduling
heuristics. We use an offline scheduling heuristic similar
to the one proposed in [26] which is a fast greedy algorithm
whose cost function corresponds well to our minimization
objective. In accordance with the principle of list scheduling
heuristics, this heuristic is priority-based, i.e. it builds a
list of operations that are ready to be scheduled, called

Table 3. Variables used in the ILP formulation of the acyclic orientation problem.

Variable Type Description

xik Binary Decision variable for scheduling operation oi on core pk
S(oi) Integer Start time of operation oi
E(oi) Integer End time of operation oi
syncijk Binary Synchronization between oi and oj if oj scheduled on pk
bij Binary oi is executed before oj
Qik Integer Earliest start time of successors oi that are scheduled on pk
Vik Binary oi not scheduled on pk
mkp Integer Makespan

Table 4. Constants used in the ILP formulation of acyclic
orientation problem.

Constant Type Description

C(oi) Integer Execution time of operation oi
M Integer Large positive number
synCost Integer Cost of synchronization
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candidate operations and selects one operation based on the
evaluation of the cost function. We denote by q the cost
function and call it the schedule pressure. It expresses the
degree of criticality of scheduling an operation. The sched-
ule pressure of an operation is computed using its flexibil-
ity and the penalty of scheduling which refers to the
increase in the critical path resulting from scheduling an
operation.

The heuristic is detailed in Algorithm 6 and considers
the different timing attributes of each operation oi 2 V F

in order to compute a schedule that minimizes the make-
span of the graph. The heuristic schedules the operations
of the graph GF (VF, AF) on the different cores iteratively
and aims at minimizing the schedule pressure of an opera-
tion on a specific core while taking into account the syn-
chronization costs. The heuristic updates the set of
candidate operations to be scheduled at each iteration.
An operation is added to the set of candidate operations
if it has no predecessor or if all its predecessors have already
been scheduled. For each candidate operation, the schedule
pressure is computed on each core and the operation is allo-
cated to its best core, the one that minimizes the pressure.
Then, a list of candidate operation-best core pairs is
obtained. Finally, the operation with the largest pressure
on its best core is selected and scheduled. Synchronization
operations are added between the scheduled operation
and all its predecessors that were allocated to different
cores. The heuristic repeats this procedure and finally stops
when all the operations have been scheduled.

4.3.1 Complexity

The scheduling heuristic contains three nested loops. The
outermost loop is executed until all the operations are
scheduled. At each iteration, one operation is scheduled.
Therefore, the outermost loop is executed n times where
n is the number of operations in the operation graph.
In the inner loops, the heuristic attempts to schedule all
the ready operations on all the available cores. As such,
the inner loops execute in OðnpÞ, where p is the number
of cores. From the foregoing, the complexity of our heuristic
is evaluated to Oðpn2Þ.

4.4 Code generation

In this section, we describe how the FMU co-simulation
code is generated based on the schedule tables produced
by the proposed scheduling algorithms. Since the FMU
co-simulation is intended to be executed on multi-core desk-
top computers running general purpose or real-time operat-
ing systems, the implementation is achieved using native
threads. Such threads consist in threads that are provided
by the operating system in contrast to threads that are
related to a specific programming language and/or rely on
a specific runtime library.

In the generated code, as many threads are created as
there are cores. Each thread is responsible for the execution
of the schedule of one core. Therefore, each thread reads
from the schedule table of its corresponding core and exe-
cutes the operations that are specified in this table. These
operations can be computational operations, i.e. input,

output, and state operations, or synchronization operations.
The synchronization operations are implemented using
semaphores provided by the operating system. They are
of two types: signal and wait operations. The execution of
a signal operation by a thread consists in signaling the cor-
responding semaphore. The execution of a wait operation
by a thread consists in waiting for the corresponding
semaphore. Each thread executes its associated schedule
table repeatedly, and thus executes FMU operations and

Algorithm 6: Multi-core scheduling heuristic.
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synchronizes with the other threads. Hereafter, we refer to
these threads as schedule threads.

The orchestration of the co-simulation is ensured by a
master thread which runs the FMI master algorithm. The
master thread creates and launches the schedule threads.
During the execution, the master thread and the schedule
threads are synchronized at fixed points. First, the master
thread signals to the schedule threads the start of the
co-simulation which launches their execution. Each thread
starts, then, the execution of its associated schedule table
as described in the previous paragraph. When it finishes
the execution of the whole schedule table, it signals this
to the master thread and waits for a new signaling from
it. The master thread waits until all the schedule threads
signal that they finished the execution of their respective
schedule tables. Then, the master thread launches a new
iteration by signaling to the schedule threads to start
executing their corresponding schedule tables again. This
process is repeated until the desired simulation time is
reached.

5 Evaluation

In this section, we evaluate our proposed approach. We
start by describing a method for randomly generating
benchmark operation graphs. Then, we present the evalua-
tion of the performances of the acyclic orientation and the
scheduling heuristics. Finally, we give runtime performance
and numerical accuracy results obtained by applying our
approach on an industrial use case.

5.1 Random generator of operation graphs

Due to the difficulty in acquiring enough industrial FMU
co-simulation applications for assessing our approach, we
had to use a random generator of FMU dependence graphs.
The generator creates the graphs and characterizes them
with attributes. We set the parameters of this generator,
e.g. the number of FMUs and the number of operations
based on our experience using industrial FMU co-simula-
tion. Of course, the use of randomness for synthetic graphs
generation restraints the possibility of considering exactly
the same results for industrial application. Our evaluation
nevertheless gives some indications about the achievable
level of performance for the heuristics and the graph scale
from which the exact algorithms may fail to produce result
with an acceptable execution duration.

5.1.1 Random operation graph generation

The random generator that we have implemented consists
in two stages. In other words, we have to generate, first,
the different FMUs of the co-simulation and their internal
structures. Second, we generate the dependence graph by
creating inter-FMU dependence in such a way that the
resulting operation graph is a DAG. The proposed genera-
tor is based on a technique of assignment of operations to
levels. The level of an operation is the number of operations
on the longest path from a source operation to this

operation. The dependence graph can then be visualized
on a grid of levels as depicted in Figure 7. The generator
uses the following parameters:

– The graph size n: the number of operations;
– The number of FMUs m;
– The graph height h: the maximum number of levels in

the graph;
– The graph width w: the maximum number of nodes on

one level.

Note that parameters n and m are related. In other
words, for a given size of a graph n, an adequate number
of FMUs m has to be chosen.

The generation of the dependence graph is performed as
follows:

– Input: Size of the graph n, number of FMUs m, height
of the graph h, and width of the graph w.

– Step 1: Randomly distribute the n operations across
the m FMUs. Given the number of operations of each
FMU, we randomly determine the number of its input
operations and the number of its output operations.
Every FMU has one state operation.

– Step 2: Randomly generate the intra-FMU arcs. This
step is controlled by two parameters. The number of
arcs to generate and the number of Non Direct Feed-
through (NDF) outputs of the FMU. These outputs
are not considered when randomly generating the arcs.

– Step 3: Randomly assign the operations to the grid
levels. This step is performed by assigning output oper-
ations and then input operations repeatedly.

1. Assign all NDF operations to level 0 of the grid.
2. Randomly assign remaining output operations to even

levels (2, 4,. . ., h�3) of the grid.
3. Assign the input operations to the odd levels (1, 3,. . .,

h�4) of the grid such that any input operation oi that
is connected to an output operations oj (intra-FMU
dependence) is assigned to the level preceding the
level to which oj has been assigned.

4. Assign the remaining input operations (each of which
is not connected with any output operation) to the
level h�2 of the grid. These operations will be con-
nected only with the state operations of their respec-
tive FMUs.

5. Add the state operations to the last level of the grid.

– Step 4: Create the arcs of the dependence graph. At
this step, we randomly generate inter-FMU depen-
dence. For each operation oi on the level lvl of grid,
we randomly select an output operation oj from the pre-
ceding level lvl�1 and which belongs to a different
FMU than oi. We create an arc from oj to oi. If no such
output operation is found at level lvl�1, we select
randomly an output operation from any level lvl0 <
lvl�1 and connect it with the operation oi. Finally the
arcs from input and output operations to state opera-
tions are created. Note that non oriented edges are
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Fig. 7. Random generation of an operation graph.
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automatically added between every pair of operations
that belong to the same FMU and are mutually exclu-
sive as described in Section 3.1.

Figure 7 illustrates the steps of our proposed random
operation graph generator.

5.1.2 Random operation graph characterization

In addition to random generation of the dependence graph
structure, we need to generate the attributes of the graph.
In particular, the following attributes are generated by
our random generator:

– Communication steps of the FMUs: A range or a set for
the values of the communication steps is specified. The
generator randomly assigns a communication step from
this range or set to every FMU.

– Execution times of the operations: Different ranges of
the execution times are specified for input, output, and
state operations. Execution times are generated ran-
domly in such a way that state operations have longer
execution times than output and input operations.

5.2 Performances of the Heuristics

We have carried out different tests in order to evaluate our
proposed approach. For both the acyclic orientation and
the scheduling, we compared the execution time of our pro-
posed heuristic with the execution time of the ILP, and the
value of the objective function of the heuristic with the
value of the objective function of the ILP. For ILP resolu-
tion, we used three solvers: lpsolve [27], Gurobi [28], and
CPLEX [29]. With lpsolve, we were only able to solve small
instances of the scheduling problem. Gurobi was much
more efficient but we obtained the best performance using

CPLEX. Therefore, the results presented hereafter were
obtained using CPLEX. Tests were performed on a desktop
computer with a 6-core Intel Xeon processor running at
2.7 GH and 16GB RAM.

5.2.1 Execution time of the acyclic orientation
algorithms

In order to compare the execution time of our acyclic
orientation heuristic with the execution time of the acyclic
orientation ILP, we have generated 200 random operation
graphs of different sizes between 5 and 10 000. We consid-
ered 10 000 as the maximum size of the operation graph
because it corresponds to the size of large industrial
applications.

We executed the acyclic orientation heuristic and ILP
on all of the generated random graphs and measured the
elapsed time between the start and the end of the execution.
For the ILP, the execution is stopped if the optimal solution
is not found within two days. The obtained execution times
are shown on a logarithmic scale in Figure 8. The acyclic
orientation ILP cannot be resolved in practical times when
the size of the operation graph exceeds 250. When the
number of operations is less than 250 the ILP finds the
optimal solution in reasonable times, except for two graphs.
In addition, we observe that an increase in the graph size
does not always result in an increase in the execution time.
This can be explained by the fact that other factors impact
the speed of resolution, e.g. number of conflict edges. Still, it
is important to notice that the application of the acyclic
orientation ILP is limited to relatively small graphs.
On the other hand, the acyclic orientation heuristic pro-
duces results in practical execution times even for very large
operation graphs (10 000).

5.2.2 Critical path length

We compared the values of the critical path length obtained
using the acyclic orientation heuristic and ILP. Tests were
performed using the same set of operation graphs described
in the previous section. However, we consider only graphs
for which the ILP was able to return the optimal solution
within the resolution time limit that we set, i.e. two days.
Thus, we applied our proposed heuristic and ILP on
12 operation graphs of sizes between 20 and 240 and saved
the obtained length of the critical path. Results are depicted
in Figure 9. For most of the operation graphs, our acyclic
orientation heuristic produces a length of the critical path
that is equal to the length of the critical path produced
by the acyclic orientation ILP. The heuristic returns a
longer length of the critical path for three graphs but the
gap is very small remaining below 8%.

5.2.3 Execution time of the scheduling algorithms
for co-simulation acceleration

Similarly to the acyclic orientation tests, we compared the
execution time of the scheduling heuristic with the execu-
tion time of the scheduling ILP using 200 generated random
operation graphs of different sizes between 5 and 10 000.
We set a two day limit for the resolution of the ILP. Tests

Fig. 8. Comparison of the execution times of the acyclic
orientation algorithms.
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were run for the scheduling problem with 2, 4, and 8 cores.
Execution times were measured by fixing the number
of cores and varying the number of operations (graph size).
The results are depicted for two and eight cores in
Figures 10 and 11 respectively. All results are plotted on
a logarithmic scale. In these figures, we see that the execu-
tion time of the ILP resolution increases exponentially as
the graph size increases, and only small instances are
resolved within acceptable times. On the other hand, the
acyclic orientation heuristic is very fast and produces results
in very short times and even for very large graphs, the
execution times remain within practical bounds.

5.2.4 Makespan

We run tests to compare the value of the makespan
obtained using the acyclic orientation heuristic and ILP.
For these tests we have generated ten operation graphs of
size n = 15. We have used graphs of size 15 because the
ILP resolution returns the optimal solution in very short
times which is not the case for large graphs. The graphs
are different from each other because they are generated
randomly which leads to different topologies and execution
times of the operations. We run the scheduling heuristic
and ILP on these graphs to obtain the values of the make-
span. Results are shown in Figures 12 and 13 for two and
eight cores respectively. Overall, the results show that the
scheduling heuristic produces a makespan which is very
close to the makespan produced by the scheduling ILP.
The gap between the heuristic and the ILP result lies
between 0% and 16%. We notice that the gap is smaller
when eight cores are used than when two cores are used.
In fact, when two cores are used the maximum gap is
16%, whereas when four or eight cores are used the maxi-
mum gap is 6%. This shows that the scheduling heuristic
performs better when the effective parallelism is increased.
It can be explained by the fact that the scheduling heuristic
attempts more allocation possibilities which leads to a
better exploitation of the potential parallelism.

5.3 Industrial use case

We tested our proposed approach on an industrial use case.
Tests have been performed on a computer with an 8-core
Intel core i7 processor running at 2.7 GH with 16GB
RAM. In the rest of this section, we first give a description
of the use case and then present the tests and the obtained
results.

5.3.1 Use case description

Our use case consists in a Spark Ignition (SI) RENAULT
F4RT engine co-simulation. It is a four-cylinder in line Port
Fuel Injector (PFI) engine in which the engine displacement

Fig. 9. Comparison of the critical path length.

Fig. 10. Comparison of the scheduling execution time for two
cores.
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is 2000 cm3. The air path is composed of a turbocharger
with a mono-scroll turbine controlled by a waste-gate, an
intake throttle and a downstream-compressor heat exchan-
ger (Fig. 14). This co-simulation is composed of six FMUs:
an FMU of the airpath, four FMUs of the four cylinders,
and one FMU of the controller. The engine model was
developed using Modelica. The engine model was imported
into xMOD using the FMI export features of the Dymola1

tool. The operation graph of this use-case contains over
100 operations.

5.3.2 Test campaign

We based our tests on three different versions of RCOSIM.
We refer to our proposed method as MUO-RCOSIM (for
Multi-Rate Oriented RCOSIM). We compared the
obtained results with two approaches: The first one is
RCOSIM which is mono-rate and thus we had to use the
same communication step for all the FMUs. We used a
communication step of 20 ls. The second one consists in
using RCOSIM with the multi-rate graph transformation
algorithm. We refer to it as MU-RCOSIM (for Multi-Rate
RCOSIM). For MUO-RCOSIM and MU-RCOSIM we used
the recommended configuration of the communication steps
for this use case. For each cylinder, we used a communica-
tion step of 20 ls. The communication step used for the
airpath is 100 ls. The airpath has slower dynamics than
the cylinders and this configuration of the communication
steps corresponds to the specification given by engine engi-
neers. For each FMU, we used a Runge-Kutta 4 solver with
a fixed integration step equal to the communication step.
The graph of this use case is transformed by Algorithm 1
into a graph containing over 280 operations that are
scheduled by the multi-core scheduling heuristic.

5.3.3 Speedup

The speedup obtained using MUO-RCOSIM is compared
with the speedups obtained using RCOSIM and MU-
RCOSIM. The speedup was evaluated by running the
co-simulation in xMOD. Execution times measurements
were performed by getting the system time stamp at the
beginning and at the end of the co-simulation. For a given
run of the co-simulation, the speedup is computed by divid-
ing the single-core co-simulation execution time of
RCOSIM by the co-simulation execution time of this run
on a fixed number of cores. Figure 15 sums up the results.
The same speedup is obtained using MUO-RCOSIM and
MU-RCOSIM even when only one core is used. This
speedup is obtained thanks to using the multi-rate configu-
ration. More specifically, increasing the communication step
of the airpath from 20 ls to 100 ls results in fewer calls to
the solver leading to an acceleration in the execution of the
co-simulation. By using multiple cores, speedups are
obtained using both MUO-RCOSIM and MU-RCOSIM.
Additionally, MUO-RCOSIM outperforms MU-RCOSIM
with an improvement in the speedup of, approximately
30% when two cores are used, and approximately 10% when
four cores are used. This improvement is obtained thanks to
the acyclic orientation heuristic which defines an efficient
order of execution for the operations of each FMU that
are mutually exclusive. This defined order tends to allow
the multi-core scheduling heuristic to better adapt the
potential parallelism of the operation graph to the effective
parallelism of the multi-core processor (number of cores)
resulting in an improvement in the performance. MU-
RCOSIM, on the other hand, uses the solution of RCOSIM
which consists in simply allocating mutual exclusive
operations to the same core introducing restrictions on
the possible solutions of the multi-core scheduling heuristic.
When using eight cores, no further improvement is possi-
ble since the potential parallelism is fully exploited. Worse
still, the overhead of the synchronization between the cores
becomes counter-productive, which explains why the
speedup with eight cores is less than the speedup with four
cores for all the approaches. The best performance is
obtained using five cores with slight improvement com-
pared to using four cores.

5.4 Comparison of offline and online scheduling

In our work, we adopted an offline scheduling heuristic
assuming it is more efficient than online scheduling since
it introduces lower overhead. This choice was based on
the fact that the grain size of the operation graph is small
which makes it unsuitable for online scheduling which
involves more decision overhead in runtime than offline
scheduling. In fact, the decision overhead in runtime may
become much more costly then the execution of the opera-
tions. Moreover, the different operations perform different
tasks and have different execution times in contrast to
applications that exhibit data parallelism which could be
efficiently handled by online scheduling. In addition, the
execution times of the operations and the dependence
between them are known before the execution which allows
the application of offline scheduling. In order to confirm this

Fig. 11. Comparison of the scheduling execution time for eight
cores.

1 http://www.3ds.com/products-services/catia/products/dymola
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assumption, we have compared our approach with a run-
time scheduling approach, i.e. online scheduling. For this
end, we have used Intel TBB library for the parallelization
of the co-simulation. We performed several speedup tests
and compared the results obtained using the two
approaches.

5.4.1 Intel TBB flow graph

We have chosen Intel TBB to implement an online schedul-
ing because it offers a programming interface introduced in
Intel TBB 4.0, which allows easy parallelization of programs
represented as graphs. It can be combined with loop
parallelism supported by Intel TBB to further improve
the parallelism exploitation. In Intel TBB, we distinguish
between dependence graphs and data flow graphs. In depen-
dence graphs, a dependence represents a precedence
constraint between two nodes. During execution, this
dependence acts as a signal to inform a node that a

predecessor has finished its execution. In data flow graphs,
a dependence is accompanied by data transfer from a
predecessor to a node. In our implementation we used
dependence graphs as explained hereafter. Intel TBB offers
a wide range of classes that can be used to implement
dependence graphs. In particular the graph class and other
related classes are used for this purpose. In general, a depen-
dence graph involves three main components: a graph
object, nodes, and edges. A graph object provides methods
for the execution of tasks created from the nodes of the
graph and to wait for the execution of the dependence graph
to finish. Provided node classes allow the creation of
different types of nodes. These nodes can be classified into
four categories: Functional, Buffering, Split/Join and
others.

The user creates a graph, its nodes and then specifies
dependence between them. The classes and functions of
Intel TBB are highly parametrized to allow many possibil-
ities of implementation.

Fig. 12. Comparison of the makespan for two cores.

Fig. 13. Comparison of the makespan for eight cores.
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The execution of the dependence graph follows the par-
tial order specified by the created edges. When a node
receives a signal of completion, a task is spawned to execute
the body of this node.

We present here the fundamental concepts necessary to
describe how we used Intel TBB. The official documenta-
tion2 of Intel TBB should be consulted for more detailed
explanation.

5.4.2 Scheduling in Intel TBB

Intel TBB is based on programming with tasks instead of
threads. Tasks are atomic units of execution that are
allocated to threads to be executed. The objective is to
make programming simpler by thinking at a higher level,
i.e. specifying the potential parallelism of the program
without having to handle the adaptation to the effective
parallelism. The threads that run the tasks are called
worker threads. The allocation is automatically done in
runtime using an online scheduling algorithm known as
work stealing. Each thread keeps a pool of tasks that are
ready to be executed in a deque which is a double-ended
queue. Elements can be pushed onto or popped from a
deque from both ends. Threads are responsible for task
creation, known as task spawning. When a task is spawned
by a thread, it is pushed onto the deque of this thread from
the top. The thread always pops the task on the top of its
deque and executes it. As such, a thread uses its local deque
as a stack. If the local deque is empty, the thread tries to
pick a task from another randomly chosen thread, called
the victim. It pops a task from the bottom of the deque
of the victim thread, therefore using the deque of the victim
as a queue.

In the case of an application implemented as a depen-
dence graph, tasks are spawned on behalf of the nodes of
the graph. When a node receives messages from all its pre-
decessors, a task is spawned on behalf of this node. When
run, this task executes the body of the node. When a task
finishes its execution it sends a message that is transferred
to its predecessors.

5.4.3 Implementation

We used Intel TBB to implement parallel FMI co-simula-
tion in xMOD. The first part which consists in creating
the operation graph through the analysis of inter and
intra-FMU dependence is the same as in RCOSIM. If the
co-simulation is multi-rate, the multi-rate graph transfor-
mation is performed as well. Once the operation graph is
constructed, an Intel TBB dependence graph which repre-
sents this operation graph is automatically created. The
graph is of a dependence graph type because we do not
manage explicitly data transfer between the different oper-
ations since the functions of the FMUs are provided in the
form of binaries. Data transfer is implicitly managed by the
partial order defined in the operation graph. In other terms,
an operation that produces data is necessarily executed
before the operation that consumes it. Data writing and
reading is done through shared memory and is hidden from
the developer. It follows from this that data flow graphs
provided by Intel TBB are not suitable for representing
such co-simulations because they require explicit manage-
ment of data transfer between the nodes.

The creation of the dependence graph is done as follows:
First, a graph is created and then nodes and edges are
added to this graph. A node is created for each operation
and added to an array that stores all the created nodes.
The first node that is created is a source node which has
no predecessor. This node becomes a predecessor of all the
nodes that have no predecessor in the operation graph.
The body of this node contains the initialization of the
co-simulation. Then, for each operation in the operation
graph, a function node is created. A function node can have
multiple ports to be connected with multiple predecessors
and successors. The body of each function node contains
the FMU function calls of the corresponding operation.
Finally, the edges that connect the nodes are added to
the graph. All the created edges are of type continue mes-
sage. Such edges are used to signal that the execution
finished.2 software.intel.com/en-us/tbb-reference-manual

Fig. 15. Speedup results.

Fig. 14. Spark Ignition (SI) RENAULT F4RT engine model.
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Fig. 16. Comparison of the different phases of the offline and online scheduling approaches.
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The execution of the co-simulation consists in executing
this dependence graph repeatedly, similarly to our offline
scheduling approach, i.e. the whole graph is executed at
each iteration before a new execution can begin. Initially,
one thread is responsible of the creation of the dependence
graph and launching the source node. Only the source node,
which performs the initialization of the co-simulation, is
executed explicitly using a function provided by the Intel
TBB library. When this function is called, a task is spawned
to execute the body of the source node. Afterward, the
runtime library handles the flow of messages in the graph.
When the execution of the source node body is finished, it
sends a continue message to all its predecessors. Tasks are
spawned for the nodes that receive the messages to be
executed which in turn send continue messages when their
execution is finished and so forth. After all the nodes are
executed, the execution is restarted in the same way. The
scheduling is managed by the runtime library which creates
a pool of working threads and uses the work stealing algo-
rithm described above.

5.4.4 Comparison

We implemented a parallelization approach of FMI
co-simulations using Intel TBB for the purpose of compar-
ing it with our proposed offline scheduling approach. We
have measured the speedups obtained on different numbers
of cores using both approaches. First of all, let’s summarize
the differences between the two approaches. Figure 16 illus-
trates the main steps of both approaches. As stated above,
the two first two phases which consist in the construction of
the operation graph and the graph transformation in the
case of a multi-rate co-simulation are performed in the same
way in both approaches. If online scheduling is used, the
next step is execution. On the other hand, if offline schedul-
ing is used, two more phases are performed before the
execution. The acyclic orientation heuristic is applied on
the operation graph to handle mutual exclusion constraints.
After this, the offline scheduling heuristic is used to com-
pute a schedule of the operations. During execution, in both
the offline and online scheduling approaches, a thread is
executed on each core. In the case of offline scheduling, each
thread reads the schedule of the corresponding core and
executes the operations in the order of this schedule, which
does not change during execution. In the case of online
scheduling, since no schedule is computed before execution,
the runtime library distributes the operations across the
threads during execution in such a way to balance the load.
Each thread pushes the operations onto its deque from the
top. It executes these operations by popping the operation
on the top from its deque, or if its deque is empty, it steals
work from another thread by popping an operation for the
bottom of this victim thread. Mutual exclusion constraints
are handled in online scheduling using lightweight mutex
locks provided by the runtime library. These locks have
lower cost than mutex locks provided by the OS.

We run the co-simulation of the industrial use case on
an 8-core Intel core i7 processor running at 2.7 GH with
16GB RAM. The obtained speedup using offline scheduling
raises 2.44 and is better than the one obtained using
online scheduling (1.64) which confirms our assumption.

The decision overhead of online scheduling is very costly
compared to the execution times of operations which
decreases the performance.

6 Discussion

In order to discuss the advantages and drawbacks of the pro-
posed approach, we challenge here our methodology in
terms of compliance with co-simulation scenario, application
to industrial use case and optimality metrics. First, in
Section 2 we explain that RCOSIM and our proposed exten-
sion is applied to co-simulation of connected models, where
each model is imported as a FMU with its own fixed step
solver. Since we aim at proposing solution to accelerate
industrial co-simulation, we choose to focus on co-simulation
solution where all models are imported into a unique tool.
Indeed, optimizing a multi-software co-simulation, from
different tool vendors, would not be possible without access-
ing the code of each simulation tool. On the opposite, the
FMI standard meets a real success and most modeling and
simulation tools offer now the possibility to export models
as FMUs. By focusing on what could be done in the import-
ing software, we keep a large set of possibilities as a real
capability to experiment. Our industrial co-simulation goal
also prevents us to propose solution including models modi-
fication. In large companies or when different parties provide
different components of a system, numerous models are
available. Each of them was built, validated and used by
domain experts. At the co-simulation stage of the develop-
ment process, the engineers are rarely able to understand
all the models, and sometimes they do not have access to
the initial model but only to the FMU.

In our approach we restricted to FMU with fixed step
solver, mainly because beyond the co-simulation accelera-
tion problem, the next step of our work is to perform the
co-simulation under real-time constraints. This goal, which
is out of scope of this article, leads us to restrict to co-simu-
lation scenarios where computation duration can be evalu-
ated and bounded. With variable step solvers, the number
of computation phases is variable and consequently the
computation duration over a simulation time interval is dif-
ficult to evaluate. That prevents to ensure that real-time
constraints will be met. Nevertheless, if we discard our final
objective, our solution could be applied to co-simulation of
FMU with variable step solver. Indeed, if for each FMU i
with a variable step solver, we can set a fixed macro step
value Hi, all the previous described process can be applied.
The macro-step parameter for a variable step solver forces a
regular rate at which computation have to be done. But the
solver remains free to cut the macro-step Hi in several steps,
with variable step sizes. In our approach, all these interme-
diate computations over the macro-step would be consid-
ered as a unique operation.

Since we describe the connected FMU with a directed
acyclic graph, it could prevent to apply our methodology
for co-simulation scenarios containing algebraic loops (and
consequently cycles in the corresponding graph). We pro-
pose to handle algebraic loops by inserting a delay function
for breaking each cycle, then solving the corresponding
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initialization problem to be able to parameter the output
delivered by the delay functions at the first step.

One limitation of our approach when dealing with
industrial use cases could be the size of the Hyper-Step
(HS), the least common multiple of the communication step
sizes. Indeed, in the case of a large number of FMUs with
communication steps sharing few common factor, HS could
be a large number. In our solution, it directly impacts the
size of the dependence graph which has to be scheduled.
In order to handle this limitation, we suggest, if the
communication step cannot be harmonized, to split the
co-simulation senario in several ones and apply RCOSIM
principles on each part. The partition choice would be made
for reducing the HS of each part. Thanks to our approach,
it is easy to find how many cores are sufficient to reach the
maximum speed up for each sub-scenario. Then the number
of cores could be partitioned, one partition for each
scenario. At execution, data exchange between the different
co-simulation parts would have to be sequenced by adding
synchronization mechanisms.

We do not deny that our solution have a cost in terms of
computation time, even if the proposed heuristics offer an
interesting trade-off between optimality and computation
time. If a co-simulation execution takes few seconds on a
monocore, this is obviously unnecessary to lose time to
compute a distributed schedule before launching it. Our
approach could be easily implemented to launch the
co-simulation scenario on one core while, after profiling
the operation cost (from the current monocore execution),
another process on another core could compute the different
steps of our solution. Then, if the co-simulation is not over,
the execution could switch from the initial monocore execu-
tion to the one optimized for multicore. This efficient sched-
ule could also be recorded to be used in the next launch of
the same scenario.

Our evaluation methodology could rise some observa-
tions. With automatic graph generator, we choose to test
our solution on a large amount of graph rather than a
few number of industrial case studies. The goal is to com-
pare our heuristics performance to an exact solution algo-
rithm. One may argue that the optimality comparison
suffers that the exact ILP algorithm is quickly unable to
find a solution when the number of operations increase
and consequently we do not prove that heuristics continue
to give results close to the optimal solution when graphs
become bigger. However, the reader should keep in mind
that our goal is to accelerate the co-simulation. Optimality
is not targeted since we show that optimal solution search is
too costly in terms of time. The comparison is consequently
more relevant with monocore co-simulation (given by the
speedup factor) or with a totally on-line scheduling algo-
rithm. The presented industrial use-case tends to show that
our proposed approach offers a real speed-up compared to
these two basic solutions. Of course, numerous parameters
of the co-simulation scenario could increase the computa-
tion cost of our solution. First, the maximal number of
operations in one FMU is a factor, leading to increase the
time spent by the acyclic orientation heuristic. Second, as
previously discussed, the HS length compared to each Hi
directly grows the number of operations to schedule.

Finally, scheduling heuristics are sensitive to the number
of cores.

7 Conclusion

The complexity of cyber-physical systems is steadily
increasing due to several factors. A lot of efforts is being
made in industry as well as in academia in order to imple-
ment technologies and methods that respond to the require-
ments and challenges in the design of complex CPS.
Co-simulation is increasingly being adopted as a system-
level simulation approach in the context of CPS design
thanks to its advantages over monolithic simulation.
Strengths of co-simulation include easy upgrade, reuse,
and exchange of models and simulators, improved computa-
tional performance compared to monolithic simulation, and
allowing better intervention of experts at the subsystem
level in multi-domain design projects.

In this article, we are interested in the rising require-
ments on the computational performance of FMI co-simula-
tion. Precisely, we look for proposing solution to efficiently
exploit multi-core processor, available on every computer,
to accelerate desktop co-simulation. We build on the work
that was previously developed at IFP Energies nouvelles
and aim at improving the existing RCOSIM method.

We propose extensions to the operation graph model
used in RCOSIM to represent the co-simulation. The first
extension targets multi-rate co-simulation. We propose
some rules for transforming a multi-rate operation graph
into a mono-rate one in order to prepare its multi-core
scheduling. Based on these rules, we propose an algorithm
that performs this transformation. The second extension
consists in transforming the operation graph in order to
handle mutual exclusion constraints between operations.
First, the operation graph is transformed into a mixed
graph by adding (non oriented) edges between mutually
exclusive operations. Then, an acyclic orientation is com-
puted for the mixed graph by assigning a direction to each
edge. We propose two algorithms to perform the acyclic
orientation: an ILP-based exact algorithm and a heuristic.
Then we propose a multi-core scheduling algorithms for
co-simulation acceleration. For this we propose two multi-
core scheduling algorithms. The first algorithm is an
ILP-based exact algorithm and the second one is a list
scheduling heuristic. The schedule is computed using either
of these algorithms over the hyperstep. During execution,
this schedule is executed repeatedly. Finally, we evaluate
our proposed approach. First, we propose a random gener-
ator of operation graphs. We use this graph to generate a
large number of synthetic operation graphs of different sizes
and structures and with different attributes. We evaluate
the performances of our proposed ILP-based exact algo-
rithms and heuristics for the acyclic orientation and
scheduling for co-simulation acceleration. The obtained
results show the efficiency of our heuristics. While the
proposed ILP algorithms give optimal results for small
operation graphs they suffer from intractable execution
times. Our proposed heuristics, on the other hand, give
acceptable results within acceptable execution times. Last,
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we validate our approach for co-simulation acceleration
against an industrial use case. The obtained results show
the improvements made thanks to using multi-rate co-simu-
lation and also using the acyclic orientation to handle
mutual exclusion constraints. In addition, we compare our
approach with a runtime (online) scheduling approach.
Our approach outperforms it which consolidates our choice
of adopting an offline scheduling approach.
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