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Inertial flow past a finite-length axisymmetric cylinder of aspect ratio 3: effect of the yaw angle
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We study the flow past a finite-length yawed 3D cylinder by a Finite Volume / Fictitious Domain (FV/FD) method. We validate our non-boundary-fitted method against boundary-fitted numerical results for a finite-length cylinder whose axis is parallel to the streamwise direction. Drag and lift forces exerted on the cylinder and vortex shedding onset and frequency are carefully analysed. Satisfactory agreement with published results give strong confidence in the numerical methodology provided the boundary layer is accurately resolved. Then, we carry out a detailed study of the flow past a yawed cylinder of aspect ratio L/D = 3 (where L is the cylinder length and D is the cylinder diameter) at moderate Reynolds numbers (25 Re 250). We show that the wake patterns and the associated transitions depend strongly on Re and the yaw angle θ with respect to the streamwise direction. Various regimes are encountered including standing-eddy pattern, steady shedding of one or two pairs of counter-rotating vortices, periodic shedding of counterrotating vortices and unsteady shedding of hairpin shaped vortices. The steady shedding of one or two pairs of counter-rotating vortices prevails in the range of parameters studied. Hydrodynamic forces exerted on the cylinder are well approximated by laws derived in the Stokes flow regime, even for moderate Reynolds numbers. For the highest Reynolds numbers (Re = 150, 200, 250) we show that the forces slowly depart from the Stokes based laws. Simple modification of these laws are proposed yielding a satisfactory match with the numerical results. An accurate way to compute the torque is also proposed based on the normal force to the cylinder.

INTRODUCTION

Fluidized beds are frequently encountered in various industrial processes such as catalysis and biomass gasification. While a large number of studies exist in the literature on the flow past a single or multiple spherical particles (see for instance Clift et al. [START_REF] Clift | Bubbles, drops, and particles[END_REF] among many others), little is known about finite-length cylindrical particles that are frequently used in bubbling fluidized beds. Therefore, we investigate the flow past a single finite-length yawed cylinder using numerical simulation as a step towards the understanding of the flow around many finite-length yawed cylinders.

One of the earliest studies of the flow past a cylinder oriented perpendicularly to the streamwise direction is due to Wieselsberger [START_REF] Wieselsberger | Further data on the law of liquid and air drag[END_REF]. Both infinite-length and finite-length cylinders were considered. The aspect ratio is defined as L/D , where L is the cylinder length and D the cylinder diameter. Wieselsberger [START_REF] Wieselsberger | Further data on the law of liquid and air drag[END_REF] covered a large range of Reynolds numbers Re = ρDU/µ from 400 to 8 × 10 5 where µ, ρ and U are the dynamic viscosity, the density and the far field inlet velocity, respectively. Wieselsberger [START_REF] Wieselsberger | Further data on the law of liquid and air drag[END_REF] observed that the drag coefficient decreases when decreasing L/D. Zdravkovich et al. [START_REF] Zdravkovich | Flow past short circular cylinders with two free ends[END_REF] studied the flow past a perpendicular cylinder of finite aspect ratio 1 ≤ L/D ≤ 10 at high Reynolds numbers 6 × 10 4 ≤ Re ≤ 2.6 × 10 5 . The drag coefficient was also observed to decrease when decreasing L/D. Zdravkovich et al. [START_REF] Zdravkovich | Flow past short circular cylinders with two free ends[END_REF] observed a kind of vortex shedding in the range 2 ≤ L/D ≤ 8 and an asymmetric flow pattern for 1 ≤ L/D ≤ 3 for all values of Re he investigated. Inoue and Sakuragi [START_REF] Inoue | Vortex shedding from a circular cylinder of finite length at low reynolds numbers[END_REF] performed a detailed numerical study of the flow past a finite-length cylinder. The selected aspect ratios and Reynolds numbers were respectively 0.5 ≤ L/D ≤ 100 and 40 ≤ Re ≤ 300. They identified five different vortex shedding patterns depending on both aspect ratio and Reynolds number. They also showed that the critical Reynolds number for the onset of the unsteady regime decreases with L/D.

The flow past an infinite yawed cylinder has also been widely studied in relation to its numerous industrial applications as, e.g., offshore risers in oil industry or strand wires of floating offshore wind turbines. Relf and Powell [START_REF] Relf | Tests on Smooth and Stranded Wires Inclined T the Wind Direction, and a Comparison of Results on Stranded Wires in Air and Water[END_REF] studied experimentally the flow of air past strand wires at Re ≈ 10000. In this regime they observed that the normal force exerted on the cylinder is proportional to the square of the normal component of the velocity (the normal direction here is given by the normal vector to the cylinder surface in the plane defined by the cylinder axis and the far field inlet velocity). Sears [START_REF] Sears | The boundary layer of yawed cylinders[END_REF] theoretically demonstrated, using boundary layer theory, that the flow past an infinite-length yawed cylinder is determined by the normal component of the velocity. In other words, the force on an infinite-length cylinder tilted by an angle θ with respect to the flow direction is identical to the force on the same infinite-length cylinder in cross-flow with velocity U sin θ. This law called independence principle (IP) has been widely used to predict the hydrodynamic force exerted a yawed cylinder. However this principle suffers from limitations summarized in Zdravkovich [65, p 955] and primarily due to simplifications inherent to its boundary layer derivation. Moreover its application to yawed cylinders of finite aspect ratio L/D remains an open question.

Studies of the flow past a finite-length yawed or aligned cylinder (aligned in the sense that its symmetry axis is parallel to the streamwise direction) are more sparse compared to the large amount of works on the flow past a cylinder perpendicular to the streamwise direction. Auguste [START_REF] Auguste | Instabilités de sillage générées derrière un corps solide cylindrique, fixe ou mobile dans un fluide visqueux[END_REF] and Auguste et al. [START_REF] Auguste | Bifurcations in the wake of a thick circular disk[END_REF] numerically studied the wake past an aligned cylinder of small aspect ratio 0 ≤ L/D ≤ 1. The Reynolds number selected was in the range 0 ≤ Re ≤ 400. Auguste [START_REF] Auguste | Instabilités de sillage générées derrière un corps solide cylindrique, fixe ou mobile dans un fluide visqueux[END_REF] observed that the critical Reynolds number for the transition to the unsteady regime varies strongly with the aspect ratio L/D. To the authors' knowledge, the bifurcation scenario for L/D > 1 has not been studied so far. Recently Chrust et al. [START_REF] Chrust | Parametric study of the transition in the wake of oblate spheroids and flat cylinders[END_REF] evidenced the effect of L/D on the wake past aligned spheroids. Ramberg [START_REF] Ramberg | The effects of yaw and finite length upon the vortex wakes of stationary and vibrating circular cylinders[END_REF] studied experimentally the flow past free-ended yawed cylinders and yawed cylinders fitted with endplates at Reynolds number 160 ≤ Re ≤ 1100. He showed that results were very sensitive to the cylinder end conditions. Recently Vakil and Green [START_REF] Vakil | Drag and lift coefficients of inclined finite circular cylinders at moderate reynolds numbers[END_REF] performed a complete analysis based on numerical results of the flow past a yawed cylinder of aspect ratio 2 ≤ L/D ≤ 20 for moderate Reynolds number 1 ≤ Re ≤ 40. They proposed empirical relations for the drag force and the lift force exerted on the cylinder. They also checked the validity of the IP. Even if the range of Reynolds number studied was lower than the one required for the strict application of the boundary layer theory, they obtained a relatively good agreement between the values of the drag predicted by the IP and the actual values of the drag for large θ > 45 • . A large number of numerical studies on the flow past a solid obstacle, regardless of its shape and angular position, use a boundary-fitted method in order to optimally compute the flow in the boundary layer around that obstacle [START_REF] Auguste | Instabilités de sillage générées derrière un corps solide cylindrique, fixe ou mobile dans un fluide visqueux[END_REF][START_REF] Inoue | Vortex shedding from a circular cylinder of finite length at low reynolds numbers[END_REF][START_REF] Vakil | Drag and lift coefficients of inclined finite circular cylinders at moderate reynolds numbers[END_REF]. These methods are very accurate but not designed to efficiently handle (i) multiple angular positions of a single solid obstacle of arbitrary shape, (ii) a large number of solid obstacles of arbitrary shape, or (ii) a single/multiple freely moving rigid bodies. In all these 3 cases, extensive re-meshing is required, either as a function of the solid obstacle angular position [START_REF] Vakil | Drag and lift coefficients of inclined finite circular cylinders at moderate reynolds numbers[END_REF] or as a function of the time dependent position of the particles [START_REF] Hu | Direct simulation of fluid particle motions[END_REF]. For the 3 aforementioned flow configurations, fictitious domain methods are usually preferred. Indeed, the no-slip boundary condition on the particle surface and/or the rigid body motion inside the particle volume are imposed on a fixed Eulerian grid using forcing terms added to the fluid momentum conservation equation [START_REF] Mittal | Immersed boundary methods[END_REF]. These methods have proven to be efficient for the flow past multiple rigid obstacles and the free motion of multiple rigid particles, with a spherical, spheroidal and angular shape (see Ardekani et al. [START_REF] Ardekani | Numerical study of the sedimentation of spheroidal particles[END_REF], Uhlmann and Dušek [START_REF] Uhlmann | The motion of a single heavy sphere in ambient fluid: a benchmark for interface-resolved particulate flow simulations with significant relative velocities[END_REF], Wachs et al. [START_REF] Wachs | Accuracy of finite volume/staggered grid distributed lagrange multiplier/fictitious domain simulations of particulate flows[END_REF] among many others).

The investigation reported here, based on about a hundred simulations spanning inclination angles θ from 0 • to 90 • and Reynolds numbers from 25 to 250, provides the first description of the flow past short yawed cylinders of aspect ratio 3. The selected aspect ratio and Reynolds number ranges are particularly relevant to many chemical engineering applications. In fact, cylindrical pellets with an aspect ratio around 3 are frequently encountered in fixed and fluidized bed reactors. The paper is organized as follows. The numerical procedures is presented in Section 2; technical details regarding the numerical schemes and the fictitious domain approach are provided in Appendix A. We end this section with a careful validation of our numerical method by comparing our computed results to the boundary-fitted results summarized in the Supplemental Material (SM) [SMf]. We describe and analyse the flow past a L/D = 3 yawed cylinder in inertial regimes in Section 3.

A special attention is paid to the transition between wake regimes as a function of Re and θ.

For the sake of conciseness, some regimes well documented in the literature as, e.g., regimes for θ = 90 • and θ = 0 • ), or very close to other regimes described earlier in Section 3 are detailed in Appendix C. In Section 4, we attempt to find simple laws for the drag, lift and torque coefficients in order to provide closure laws needed in higher scale models such as Euler-Lagrange methods. In particular the validity of the IP as models derived in the Stokes regimes are discussed. Main conclusions and future work are presented in Section 5.

NUMERICAL PROCEDURES AND VALIDATION

Computations are performed with our Finite Volume / Fictitious Domain method implemented in our parallel code PeliGRIFF [START_REF] Wachs | PeliGRIFF, a parallel DEM-DLM/FD direct numerical simulation tool for 3D particulate flows[END_REF][START_REF] Wachs | Accuracy of finite volume/staggered grid distributed lagrange multiplier/fictitious domain simulations of particulate flows[END_REF]. We have used this method and corresponding code in many flow configurations, including fixed obstacles and freely-moving particles, with spherical and non-spherical particles, and with or without heat transfer. Since the whole numerical method follows almost exactly what we described in Dorai et al. [START_REF] Dorai | Fully resolved simulations of the flow through a packed bed of cylinders: Effect of size distribution[END_REF] the numerical details are outlined in Appendix A. We begin this section by a presentation of the computational domain and the associated boundary conditions. The second subsection is dedicated to a detailed validation of the code in the flow configuration we are interested in here, i.e., the inertial flow past a single cylinder in an unbounded domain. The design of a computational flow domain relevant of an unbounded domain and valid in all studied configurations (various aspect ratios and yawed angles) while keeping its size "not too large" is not straightforward. In the following we briefly review several computational domains used in the past literature. Auguste [START_REF] Auguste | Instabilités de sillage générées derrière un corps solide cylindrique, fixe ou mobile dans un fluide visqueux[END_REF] selected a cylindrical domain whose length and radius are 25D and 10D, respectively, where D is the disk diameter. The author focused on the flow past various disks of aspect ratio varying from 0 to 1. Special attention is paid to the distance between the disk and the outlet boundary which has to be at least 15D to avoid errors on the computation of the hydrodynamic force. Inoue and Sakuragi [START_REF] Inoue | Vortex shedding from a circular cylinder of finite length at low reynolds numbers[END_REF] studied the flow past cylinders perpendicular to the streamwise direction. In their study, the aspect ratio varied from 0.5 to 100. Their computational domain is a box and the authors defined five computational domains depending on the range of aspect ratio studied. In particular the length of the domains in the streamwise direction ranges from 115D to 190D. The height of the domains, i.e., the domain size in the direction parallel to the cylinder axis, varies linearly with L as L + 60D. The depth of the domains, i.e., the domain size in the direction perpendicular to both the cylinder axis and the streamwise direction, is equal to 60D and is thus fixed for all aspect ratios studied. Vakil and Green [START_REF] Vakil | Drag and lift coefficients of inclined finite circular cylinders at moderate reynolds numbers[END_REF] studied the flow past a yawed cylinder of variable aspect ratio ranging from 2 to 20. Their computational domain shares some similarities with the computational domain selected by Inoue and Sakuragi [START_REF] Inoue | Vortex shedding from a circular cylinder of finite length at low reynolds numbers[END_REF].

Indeed both the domain length and the domain height depend on L and are set to 25L and 12L, respectively, while the domain depth is fixed and set to 50D.

In this work, we define the size of our domain using a length proportional to the equivalent spherical diameter (the diameter of a sphere with same volume as the cylinder): D e = (LD 2 ) 1/3 . This choice ensures that the domain size changes with the size of the cylinder while remaining relatively small. This design rule remains valid from L/D = 1 and at least up to L/D = 10 as shown later in this section with careful validations.

Simulations are performed in a cuboid domain (i.e., a box) meshed with an irregular cartesian grid. (x, y, z) coordinates are defined as follows: x is parallel to the streamwise direction, y is perpendicular to the streamwise direction in the plane defined by the streamwise direction and cylinder axis, z is perpendicular to the plane defined by the streamwise direction and cylinder axis. The box size is adapted to the cylinder diameter D, to the cylinder length L and the angular position of the cylinder defined by the angle θ between the cylinder axis and the streamwise direction. Indeed the length L x , height L y and depth L z of the box are respectively 30D e + L cos θ, 20D e + L/2 cos θ and 20D e (see Fig. 1). L y and L z are chosen sufficiently large to avoid wall effects for moderate Reynolds numbers.

L z is defined in such a way that the wake can develop without being perturbed by the outlet boundary. The domain is divided into two main regions. An inner region around the cylinder which is made of regular cells. The size of this subdomain (L xb , L yb , L zb ) is specified in Fig. 1. L xb is larger downstream of the cylinder to ensure that the near wake is well captured. The outer region is made of stretched cells of growing size away from the cylinder that smoothly match the inner region cell size.

Boundary conditions are prescribed as follows. Symmetry boundary conditions are imposed on the 4 lateral walls. At the inlet a uniform velocity profile is imposed as u = (U, 0, 0).

The imposition of the outlet boundary condition is not straightforward and different choices can be found in the literature [45, p. 36]. The choice made in the PeliGRIFF code is to impose a zero velocity gradient condition ∂u/∂n = 0 and an arbitrary reference pressure p = p ref at the outlet boundary. Such a boundary condition has been used with success by other authors as, e.g., Kim and Elghobashi [START_REF] Kim | On the equation for spherical-particle motion: effect of reynolds and acceleration numbers[END_REF] to study the unsteady flow past a sphere.

In the following sections, the numerical method described above is applied to the study of the flow past a finite-length yawed cylinder. The Reynolds number Re = ρU D/µ, the yaw angle θ and the aspect ratio L/D fully characterize the system. Governing equations and flow variables are non-dimensionalized by introducing the following scales: D for length, U for velocity, D/U for time (implying that we employ a convective time scale), ρU 2 for pressure, ρU 2 /D for Lagrange multiplier and U/D for vorticity. The choice of the length scale is far from straightforward. Indeed assorted definitions are used in the literature :

Sears [START_REF] Sears | The boundary layer of yawed cylinders[END_REF] used the cylinder length, Vakil and Green [START_REF] Vakil | Drag and lift coefficients of inclined finite circular cylinders at moderate reynolds numbers[END_REF] used the cylinder diameter and Hölzer and Sommerfeld [START_REF] Hölzer | Lattice boltzmann simulations to determine drag, lift and torque acting on non-spherical particles[END_REF] used the equivalent diameter. The analysis to come involves the following dimensionless output parameters:

• The Strouhal number St = f D/U when the wake and the force experienced by the body are unsteady and periodic. St compares the vortex shedding frequency f to the flow characteristic frequency U/D. Different ways of measuring f are found in the literature : local measurement of the oscillation of variables in the wake [START_REF] Inoue | Vortex shedding from a circular cylinder of finite length at low reynolds numbers[END_REF] or measurement of the oscillation of the lift force [START_REF] Auguste | Instabilités de sillage générées derrière un corps solide cylindrique, fixe ou mobile dans un fluide visqueux[END_REF]. We use the latter definition.

When there is no ambiguity on the orientation of the lift force (i.e., when the wake exhibits a symmetry plane), we write the dimensionless frequency as St. Otherwise, when the wake is fully three-dimensional and/or oscillates with multiple frequencies, we specify the direction and/or the frequency as a subscript of St [Note1]. In both cases a Discrete Fourier Transform (DFT) analysis is performed (details about the DFT analysis can be found in Appendix B). This procedure allows us to compute the frequencies appearing in the wake with a good accuracy . As detailed in Appendix B the magnitude of the error associated with the estimation of the dimensionless frequencies is inversely proportional to the physical simulation time. In the remainder of the paper this dimensionless error is always estimated as ±1/2 × D/U × 1/(n∆t) where n is the number of simulated time steps used in the DFT.

• To characterize the hydrodynamic force and torque exerted on the cylinder, we define the classical drag coefficient as C D = F x /(1/2ρU 2 LD) and lift coefficients as

C Li = F i /(1/2ρU 2 LD) , i = (y, z).
Those coefficients represent ratios of hydrodynamic force components to an inertial characteristic force 1/2ρU 2 LD. LD is proportional to the lateral surface area of the cylinder. It is common practice to define the drag coefficient of a bluff body using the surface area of the projection of the body on a plane normal to the streamwise direction [7, p 339]. Our choice to use LD as the reference surface area for drag and lift coefficients is guided by two main reasons: (i) when L D and θ > 0 the projected surface area of the disk becomes negligible compared to the lateral surface area of the cylinder, and (ii) since the reference surface area does not depend on θ, comparison between hydrodynamic force and torque at different yaw angles is made simpler. Accordingly, the torque coefficient C T is defined as

C T = T /(1/2ρU 2 L 2 D).
It is also worth noting that other authors choose D e as a single reference length for all dimensionless quantities [START_REF] Sanjeevi | On the orientational dependence of drag experienced by spheroids[END_REF].

• The wake is visualized using the Q criterion [START_REF] Hunt | Eddies, streams, and convergence zones in turbulent flows[END_REF] defined as follows:

Q = 1 2 (e ij e ij -ω ij ω ij ) (1) 
where e ij = 1/2(∂u i /∂x j + ∂u j /∂x i ) and ω ij = 1/2(∂u i /∂x j -∂u j /∂x i ) are the components of the strain-rate and vorticity tensors, respectively.

In all computations the dimensionless time step is set to ∆t = 1.25 × 10 -2 in order to (i) satisfy the CFL condition and (ii) make the splitting error tolerable. Each computation is run over a dimensionless time interval at least equal to t = 100 when the flow is steady.

When the flow is unsteady and periodic, computations are run at least until t = 200 and until the system has experienced at least ten periods of oscillations. Time-averaged quantities are denoted with an overline symbol, i.e., time-averaged value of x is denoted x.

In order to evaluate the influence of the domain size on the numerical results, the flow past a (L/D = 10, θ = 90 • ) cylinder at Re = 100 is computed with 2 different domain sizes:

(i) the domain as defined in Fig. 1 and (ii) a domain 1. [START_REF] Inoue | Vortex shedding from a circular cylinder of finite length at low reynolds numbers[END_REF] are taken as reference.

the same grid size in the inner region around the cylinder for the 2 domains. The selected grid size corresponds to 32 grid points over the cylinder diameter. This space resolution is enough at Re = 100 to capture well the viscous boundary layer that develops along the cylinder surface. Results obtained with the two domains are compared to each other and to those of Inoue and Sakuragi [START_REF] Inoue | Vortex shedding from a circular cylinder of finite length at low reynolds numbers[END_REF]. Tab. I shows that the difference between our 2 domains is less than 1% for both the drag coefficient C D and the Strouhal number St. Our computed St matches very well St computed by Inoue and Sakuragi [START_REF] Inoue | Vortex shedding from a circular cylinder of finite length at low reynolds numbers[END_REF]. The relative error of about 3.5% is deemed to be small given the differences between our computational method and Inoue and Sakuragi [START_REF] Inoue | Vortex shedding from a circular cylinder of finite length at low reynolds numbers[END_REF]'s computational method (in particular non boundary fitted versus boundary fitted, respectively). The domain size as defined in Fig. 1 is thus used for all computations presented in this paper.

2.2. Flow past a L/D = 1 cylinder with θ = 0 : comparison with boundary fitted mesh results

In this section we compare our results to results presented in the SM [SMf] obtained with a boundary-fitted method implemented in the JADIM code from IMFT that enables one to adopt an arbitrarily fine body-fitted mesh in the boundary layer around the cylinder.

The JADIM numerical solution is hence deemed to be a reference solution. A cylinder of aspect ratio L/D = 1 aligned with the streamwise direction is considered. To demonstrate the ability of our approach to properly describe the flow past a yawed cylinder, we select 5

Reynolds numbers Re = 25, 50, 100, 200, 360 covering both the stationary regime with axial symmetry and the unsteady vortex shedding regime. Tab. II shows C D and the recirculation length l r for Re = 25, 50, 100, 200 (stationary regime) as a function of grid size. l r is measured from the downstream tip of the cylinder to the downstream tip of the eddy. The downstream tip of the eddy is fitted with a fourth-order polynomial. The error on C D using the coarsest grid (16 grid points per cylinder diameter) is less than 3.5% except for Re = 200. Since the thickness of the boundary layer scales as O(D/Re 1/2 ), there is approximatively one grid point in the viscous boundary layer at Re = 200. This is far from being sufficient, since even for boundary fitted mesh about 3 to 5 five grid points are necessary to accurately describe the viscous boundary layer [START_REF] Auguste | Instabilités de sillage générées derrière un corps solide cylindrique, fixe ou mobile dans un fluide visqueux[END_REF].

The error on l r using the coarsest grid is larger than 3% for all Reynolds numbers. This error decreases significantly using a twice finer grid (32 grid points per cylinder diameter).

However, we note that the error made on l r is still higher than 3% for Re = 25. The increase of numerical errors for low Reynolds number flows is pointed out by Wachs et al. [START_REF] Wachs | Accuracy of finite volume/staggered grid distributed lagrange multiplier/fictitious domain simulations of particulate flows[END_REF] [Note2] and is often associated to the operator splitting error that scales as ∆t/Re [START_REF] Perot | An analysis of the fractional step method[END_REF]. Fig. 2 shows the vortex shedding behind the cylinder at Re = 360. The wake exhibits a planar symmetry in the (x, y) cut plane containing the cylinder axis. Hairpin vortices are shed periodically behind the cylinder. This type of wake is a distinctive feature of wake instability and has been observed in the literature for the flow past a sphere [START_REF] Sakamoto | A study on vortex shedding from spheres in a uniform flow[END_REF], the flow past a cylinder [START_REF] Inoue | Vortex shedding from a circular cylinder of finite length at low reynolds numbers[END_REF] and even when a sphere crosses a fluid-fluid interface [START_REF] Pierson | Inertial settling of a sphere through an interface. part 1. from sphere flotation to wake fragmentation[END_REF]. The vortex structure is single-sided, i.e., hairpin vortices always rotate in the same direction. Moreover, vortices are all shed with the same orientation which induces an averaged non-zero lift force on the cylinder (the direction of the lift force is defined unambiguously in that case owing to the wake symmetry plane).

C Fig. 3 illustrates the hydrodynamic regimes observed in a (Re, θ) plane. Colour areas delineate the regimes based on symmetry and unsteadiness. Three different temporal regimes are encountered: steady, periodic and unsteady. The regime is called periodic when the wake unsteadiness is predominantly governed by a unique frequency, otherwise it is called unsteady. Three types of symmetry can also be defined: (i) x axial symmetry, (ii) (x, z) horizontal reflectional planar symmetry, and (iii) (x, y) vertical reflectional planar symmetry.

We observe seven regimes classified by unsteadiness and symmetry properties in Fig. 3. For θ = 0 • , due to the specific geometric configuration, the wake is steady and axisymmetric for all Re studied. It is likely that the axisymmetry will be broken for sufficiently higher Re > 250 as observed for the L/D = 1 cylinder (see SM [SMf]). For θ > 0 • the axisymmetry is intrinsically broken but the wake keeps a steady vertical symmetry plane. This regime (in yellow in Fig. 3) is the most frequently observed regime for the range of Re studied.

We also would like to shortly underscore the specific symmetry observed when the cylinder is perpendicular to the flow direction, i.e., θ = 90 • . Indeed for Re < 125 and θ = 90 • the wake has two symmetry planes (purple region in Fig. 3). The onset of unsteadiness for all yaw angles is characterized by the emergence of a unique frequency, therefore those regimes are called periodic (green, red and brown regions in Fig. 3). Except for θ = 60 • , the onset of periodicity as a function of Re is characterized by the appearance of one reflectional symmetry plane. The brown region in Fig. 3 is very specific in the sense that it is periodic but without a clear wake symmetry. It is called quasi-symmetric since each wake structure shed is almost parallel and its centroid follows a straight line. For the highest Re and θ, symmetry and periodicity are completely lost and three-dimensional structures manifest in the wake (cyan region in Fig. 3).

We also found three main wake patterns: standing eddy, longitudinal vortex pairs and hairpin shaped vortices. Hence to summarize, if we include wake pattern in the classification of regimes, we have found 10 regimes identified as symbols in Fig. presented in this section. For the sake of conciseness, the interested reader will hence find the detailed analysis of these regimes in Appendix C 1, C 3 and C 2, respectively. In order to make the discussion as clear as possible, we discuss the flow regime map based on increasing

Re for decreasing ranges or specific values of θ.

θ = 90 •

The regimes associated with the flow past a L/D = 3 cylinder oriented perpendicularly to the flow direction are presented in Appendix C 1 since this problem has been studied

previously by Inoue and Sakuragi [START_REF] Inoue | Vortex shedding from a circular cylinder of finite length at low reynolds numbers[END_REF]. Nevertheless several new comments can be made with respect to the original study of Inoue and Sakuragi [START_REF] Inoue | Vortex shedding from a circular cylinder of finite length at low reynolds numbers[END_REF] and are summarized as follows.

Up to Re ≈ 110 (Fig. 3, ), the flow structure past the solid body oriented perpendicularly to the flow direction presents two steady symmetric counter-rotating vortex pairs. The wake has two symmetry planes, one vertical and one horizontal. A first unsteady bifurcation occurs at Re = 125. Two pairs of counter-rotating vortices are still observed in the wake but their magnitudes oscillate periodically. This regime was not observed by Inoue and Sakuragi [START_REF] Inoue | Vortex shedding from a circular cylinder of finite length at low reynolds numbers[END_REF]. It appears that this is a transitional since the magnitude of the lift force oscillations keeps increasing even after a computational time of t = 500. Increasing Re, double-sided hairpin shaped vortices are shed (Appendix C 1, Inoue and Sakuragi [START_REF] Inoue | Vortex shedding from a circular cylinder of finite length at low reynolds numbers[END_REF]). The Strouhal number in this regime slowly increases as a function of Re to reach St z ≈ 0.12 for Re = 175.

Our results agree perfectly well with the results of Inoue and Sakuragi [START_REF] Inoue | Vortex shedding from a circular cylinder of finite length at low reynolds numbers[END_REF]. In fact, Inoue

and Sakuragi [START_REF] Inoue | Vortex shedding from a circular cylinder of finite length at low reynolds numbers[END_REF] also observed two pairs of counter-rotating vortices for Re = 100 and symmetric double-sided hairpin vortex shedding for Re = 150. With further increase of Re, other frequencies appear but the wake maintains a (x, z) symmetry plane. This symmetry plane is definitively broken with the appearance of a mode along the y direction at Re ≈ 200.

This mode generates non-negligible oscillations of the lift force along y and torque along z with the same dimensionless frequency St y ≈ 0.05.

In the following we briefly compare the transition scenario with another bluff body wake : the cube wake. Transitions of the cube wake have been studied by Saha [START_REF] Saha | Three-dimensional numerical simulations of the transition of flow past a cube[END_REF]. and the flow becomes unsteady but maintains its symmetry plane. In contrast with the cylinder wake, single-sided hairpin shaped vortices are shed periodically. Though the trivial state between the cube and cylinder wake matches, the transition sequence differs noticeably.

Moreover the Reynolds number for which the transition appears differs considerably. Periodic shedding of two counter-rotating vortex pairs For Re > 125, an unsteady bifurcation occurs. The unsteady regime is characterized by one single frequency and it is thus called periodic. The onset of unsteadiness with respect to Re is delayed by the horizontal symmetry loss. Indeed, while the first unsteady regime appears for θ ≈ 90 • at Re = 125, it only appears at Re ≈ 160 for θ = 85 • . For smaller yaw angles θ < 85 • , the critical Reynolds number related to the appearance of unsteadiness decreases with decreasing θ (Fig. 3). As shown in the two snapshots in Fig. 5 for (θ = 80 • , Re = 150), the wake structure oscillates.

The top pair of vortices has a smaller magnitude than the bottom pair of vortices. During the whole sequence, one bottom pair of vortices and one top pair of vortices are shed.

The intensity of the longitudinal vorticity oscillates and consequently the vortex filaments visually disappear depending on the Q criterion value. This regime is here called periodic shedding of two counter-rotating vortex pairs (Fig. 3, ). We characterize this regime as transitional since its range of existence in the (Re, θ) diagram is narrow (Fig. 3). However A mechanism for the transition between the periodic shedding of two counter-rotating vortex pairs and the periodic shedding of single-sided hairpins vortices is presented here. One can notice that the upper pair of counter-rotating vortices of small amplitude observed in For (θ = 85 • , Re = 175) double-sided hairpin shaped vortices are visible in the wake in Fig. 8. We observe that some hairpin vortices are slightly tilted with respect to others.

Moreover the centre of the hairpin structures oscillates in the vertical direction when moving away from the cylinder. Since the wavelength of this oscillation is visually close to the one observed in the case of shedding of single-sided hairpin shaped vortices (for lower Re), we can predict that the mode along y is still present and its frequency is of the same order as for lower Reynolds numbers. Finally, the wake pattern is quite unusual and is (presumably improperly) renamed the 'accordion fold' regime due to the specific position of the hairpin vortices. In the flow map shown in Fig. 3, the 'accordion fold' regime is surrounded by 3D unsteady and single-sided regimes. This raises questions about how unstable modes grow and compete with each other. A small change of the cylinder tilt angle θ by a few degrees drastically changes the symmetry/lack of symmetry and associated wake patterns. This question could be further elucidated by the bifurcation theory [START_REF] Crawford | Symmetry and symmetry-breaking bifurcations in fluid dynamics[END_REF][START_REF] Fabre | Bifurcations and symmetry breaking in the wake of axisymmetric bodies[END_REF]. The steady shedding of one or two pairs of counter-rotating vortices are the two wake patterns observed for θ = 0 • up to θ ≈ 55 • for all Re. These regimes have been documented

in Appendix C 2 and Section 3 3.2. No periodic regime is observed and the vertical planar symmetry is always present. As shown in Fig. 3, the one pair regime prevails for Re ≤ 150 while the two pair regime increasingly dominates for higher Re. This behaviour suggests that the appearance of the second pair of vortices is linked to the amount of vorticity produced at the surface of the cylinder that scales as Re 1/2 following the boundary layer theory.

θ = 0 •

When the cylinder is aligned with the flow direction a steady toroidal vortex is observed (the reader is refereed to Appendix C 3 for more details).

Discussion

Additional comments on the aspect ratio The flow map shown in Fig. 3 and the analysis of the flow regimes that we have performed so far reveal the strong dependence of the wake pattern on both Re and θ. We would like to shortly comment here on the transition between some regimes in light of results available in the literature. The results of Ramberg [START_REF] Ramberg | The effects of yaw and finite length upon the vortex wakes of stationary and vibrating circular cylinders[END_REF] for long cylinders (L/D 20, 160 ≤ Re ≤ 1000) (Fig. 2c in his article) are valuable data to discuss similarities and differences with our own results presented in this work. Ramberg [START_REF] Ramberg | The effects of yaw and finite length upon the vortex wakes of stationary and vibrating circular cylinders[END_REF] observed two different regimes: (i) a steady regime with one counter-rotating vortex pair for low θ and (ii) a periodic shedding of oblique vortices for high θ (Von-Kármán vortex streets).

The transition between these two regimes occurs approximatively at θ = 40 • and decreases with Re. There are two main differences between the map drawn by Ramberg [START_REF] Ramberg | The effects of yaw and finite length upon the vortex wakes of stationary and vibrating circular cylinders[END_REF] and ours.

Firstly, he observed oblique vortex shedding for high θ, while we observe hairpin vortex shedding. Secondly, the transition between the regimes observed by Ramberg [START_REF] Ramberg | The effects of yaw and finite length upon the vortex wakes of stationary and vibrating circular cylinders[END_REF] and the transition between our regimes does not occur for the same Re and θ. These differences are attributed to different aspect ratios in Ramberg [START_REF] Ramberg | The effects of yaw and finite length upon the vortex wakes of stationary and vibrating circular cylinders[END_REF]'s study and ours. Inoue and Sakuragi [START_REF] Inoue | Vortex shedding from a circular cylinder of finite length at low reynolds numbers[END_REF], when studying the flow past a cylinder in a cross flow, also pointed out that for a fixed Reynolds number the aspect ratio has a significant impact on the wake pattern. For instance, at Re = 150, hairpin vortex shedding is observed for a L/D = 3 cylinder while oblique vortex shedding is observed for a L/D = 25 cylinder.

In the opposite limit of small aspect ratios (L/D = 1/50) Gao et al. [START_REF] Gao | Flow around an inclined circular disk[END_REF] studied nu-merically the effect of the yaw angle on the wake. They distinguished five different states : steady state, periodic state, periodic state with a low frequency modulation, quasi-periodic state and chaotic state. As for the cylinder aligned with the flow direction (θ = 0 • ) a small inclination results in a loss of axisymmetry. They also observed that the bifurcation sequence occurring for θ = 0 • is generally observed for other angles. If we use their convention, we can draw the same conclusions: the first unsteady regime observed when increasing Re is always periodic and it is then disturbed by one or more frequencies. Nevertheless a distinctive feature between a disk and a cylinder can be underlined. In the disk case the periodic regimes are most of the time (except in the region of arbitrary symmetry plane as discussed in Gao et al. [START_REF] Gao | Flow around an inclined circular disk[END_REF]) characterized by a (x, y) symmetry plane while in the cylinder case (x, y)

symmetry is encountered but also (x, z) quasi-symmetry as detailed in Section 3 3. than the frequency encountered during the free falling case. Despite some similarities the two problems are thus fundamentally different. The inclined body case can be considered as the limit where the density of the particles is infinite, a limit which is far from the density ratio of Toupoint et al. [START_REF] Toupoint | Freely falling cylinders at moderate reynolds numbers; part 1: kinematics and wake[END_REF].

TIME AVERAGED RESULTS : LOAD ON THE CYLINDER

We discuss here the time averaged load on the cylinder as a step to derive the closures needed in the averaged momentum equations [START_REF] Capecelatro | An euler-lagrange strategy for simulating particleladen flows[END_REF]. When the flow is steady (blue, yellow and purple areas of Fig. 3), the averaged loads are simply equal to the instantaneous loads.

The results of the previous section show that the modes disrupting the (x, y) symmetry plane have a negligible signature on the loads. For instance the C Lz oscillations amplitude for Re = 200 and θ = 75 • (Fig. 11) only amounts to 5% of the mean drag coefficient and is at least one order of magnitude smaller than the y oscillations amplitude. The modes disrupting the (x, z) symmetry plane are more energetic and create non-negligible force and torque oscillations. Indeed Fig. 9 (b) shows that the y force oscillations amplitude reaches a value approximatively equal to 25% of the mean value.

In this section we suggest simple laws for the drag force, the lift force and the hydrodynamic torque as a function of θ and Re. We first shortly review different approaches to this problem from the literature and then suggest simple laws for C D , C Ly and C T z . We then put the suggested laws to the test by comparing their performance to our computed results. In order to show the effect of the unsteady modes on the loads, the mean loads and the mean amplitude of the loads are shown (with errorbars). 17: Sketch of the force and torque exerted on a yawed cylinder.

State of the art
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The force and torque experienced by a finite-length cylinder in a steady flow are not known exactly even in the Stokes flow regime Re = 0. However, owing to the linearity of the equations in this regime, the force exerted on a cylinder tilted with an angle θ (see Fig. 17) can be related to the force exerted on the same cylinder tilted by θ = 0 • and θ = 90 • as:

C ⊥ = C ⊥θ=90 • sin θ (2) C = C θ=0 • cos θ (3) 
where C ⊥ and C are the normal force and parallel force coefficients, respectively. The drag and lift coefficients follow as:

C D = C Dθ=0 • cos 2 θ + C Dθ=90 • sin 2 θ ( 4 
)
C Ly = C Dθ=0 • cos θ sin θ -C Dθ=90 • sin θ cos θ (5) 
In the Stokes regime, the hydrodynamic torque on a cylinder is zero : a freely moving cylinder keeps its initial orientation while falling under gravity. This specific property is lost when including weak effects of inertia [START_REF] Cox | The steady motion of a particle of arbitrary shape at small reynolds numbers[END_REF]. When Re 1, the torque coefficient along z varies as :

C T z ∝ sin θ cos θ (6) 
For high Reynolds numbers, the IP states that the normal force on an infinitely long yawed cylinder in a flow of velocity U is the same as the force exerted on the same cylinder placed in a cross flow of velocity U sin θ [START_REF] Sears | The boundary layer of yawed cylinders[END_REF]. The normal coefficient can thus be written as [START_REF] Hoerner | Fluid-dynamic drag: practical information on aerodynamic drag and hydrodynamic resistance[END_REF]:

C ⊥ = C ⊥θ=90 • sin 2 θ (7)
and the drag and lift coefficients as:

C D = C Dθ=90 • sin 3 θ (8) C Ly = C Dθ=90 • sin 2 θ cos θ (9) 
In order to account for the force experienced by a cylinder aligned with the flow direction into the drag law, Rosendahl [START_REF] Rosendahl | Using a multi-parameter particle shape description to predict the motion of non-spherical particle shapes in swirling flow[END_REF] proposed the following empirical relation based on the IP:

C D = C Dθ=0 • + (C Dθ=90 • -C Dθ=0 • ) sin 3 θ (10) 
There are several other empirical and semi-empirical laws derived for the drag force exerted on non spherical-particles as, e.g., the law suggested by [START_REF] Hölzer | New simple correlation formula for the drag coefficient of non-spherical particles[END_REF]. In [START_REF] Hölzer | New simple correlation formula for the drag coefficient of non-spherical particles[END_REF], the authors proposed to use the lengthwise and crosswise sphericity (whose definition can be found in their article) instead of using explicitly the orientation of the particle. Their correlation gives good agreement with existing results in the literature when dealing with general complex shape particles. Here we are interested in cylindrical particles and attempt to develop a specific law for such a body shape.

Simple laws for the hydrodynamic force and torque

One of the drawbacks of the laws proposed above is that, for most of them, they explicitly depend on the drag force exerted on the cylinder when it is aligned with the flow direction, i.e., C Dθ=0 • . The flow past a cylinder perpendicular to the flow direction has been studied extensively and a precise correlation has been proposed by Clift et al. [11,p. 154]. This is not the case when the cylinder is aligned with the flow direction. Therefore, for practical purposes it is desirable to find a law that does not involve C Dθ=0 2) and ( 3) is not due to linearity of the pressure and velocity fields. So why do the Stokes-based laws work so well even for moderate Re ? Sanjeevi and Padding [START_REF] Sanjeevi | On the orientational dependence of drag experienced by spheroids[END_REF] proposed an explanation based on a scaling of the median surface pressure p ∝ (U.n) 2 , where n is the normal to the body in the median plane ((x, y) plane in our configuration). This scaling performs well in their situation but is not suited to our cylinder since n in the (x, y) plane is a constant over each of the three main surfaces of the cylinder, i.e., its two end disks and its length. The good agreement between the Stokes-based laws and our present numerical results remains elusive at this stage and may be the consequence of a subtle combination of pressure and friction forces.

Equations ( 4) and ( 5) require C Dθ=0 • which is a priori unknown. Results obtained using slender body theory (L D) (see for instance Batchelor [START_REF] Batchelor | Slender-body theory for particles of arbitrary cross-section in stokes flow[END_REF]) can be used to obtain a rough estimate of C Dθ=0 • . At the lowest order in D/L the slender body theory gives [Note6]:

C Dθ=0 • ≈ 1/2C Dθ=90 • .
Thus for moderate Reynolds numbers 25 ≤ Re ≤ 100 we suggest the following law for the drag:

C D ≈ C Dθ=90 • 1 2 cos 2 θ + sin 2 θ , (11) 
and the lift : We offer below simple arguments to modify the laws in order to give reasonable agreement in this regime. The basic idea is to keep the behaviour of the Stokes law when it works well (low θ for C ⊥ and high θ for C ) and change the law when departure manifests. When θ ≈ 90 • C ⊥ behaves as :

C Ly ≈ C Lyθ=90 • 1 2 cos θ sin θ -sin θ cos θ . ( 12 
C ⊥ ≈ C ⊥θ=90 • (A cos θ + sin θ) ( 13 
)
where A is a function of Re which can be fitted to our numerical results. Since A increases very slowly with Re we choose it as a constant A = 0.26. When θ ≈ 0 • a similar relationship can be obtained for the force coefficient parallel to the cylinder :

C ≈ C θ=0 • (cos θ + B sin θ) , ( 14 
)
where B is a function of Re. From our numerical results, we note that B should be a slightly increasing function of Re but for the sake of simplicity B is chosen constant and equal to B = 0.80. As shown in Fig. 20, ( 13) and ( 14) match well our numerical results for high and low yaw angles, respectively. In order to obtain a solution uniformly valid on the whole range of θ, (13) and ( 14) are matched to equations ( 2) and (3). To this aim we use powers of trigonometric functions in order to make some terms of ( 13) and ( 14) negligible when the other terms approach the Stokes law and obtain:

C ⊥ ≈ C ⊥θ=90 • sin θ + 0.26C ⊥θ=90 • cos θ sin 2 θ (15) C ≈ C θ=0 • cos θ + 0.8C θ=0 • sin θ cos 2 θ (16) 
Even if the above equations contained terms similar to the terms in the Stokes law, they are different from equations obtained using a formal development in Re in the Oseen regime [START_REF] Cox | The steady motion of a particle of arbitrary shape at small reynolds numbers[END_REF]. This is not surprising since they have been derived using numerical simulations for Re 1. ( 15) and ( 16) match pretty well our numerical results, as plotted in Fig. 20.

Expressions for the drag coefficient and the lift coefficient can be obtained straightforwardly but we still need C Dθ=0 • . Based on our numerical results we choose

C Dθ=0 • = 0.4C Dθ=90 • .
The resulting equations shown below are used for the highest Reynolds number 150 ≤ Re ≤ 250:

C D ≈ C Dθ=90 • 0.4 cos θ cos θ + 0.8 sin θ cos 2 θ + sin θ sin θ + 0.26 cos θ sin 2 θ , (17) 
C Ly ≈ C Dθ=90 • 0.4 sin θ cos θ + 0.8 sin θ cos 2 θ -cos θ sin θ + 0.26 cos θ sin 2 θ . [START_REF] Fabre | Bifurcations and symmetry breaking in the wake of axisymmetric bodies[END_REF] At this stage several comments can be made. Laws [START_REF] Clift | Bubbles, drops, and particles[END_REF] and ( 12) obtained using linearity of Stokes equations might be valid for other aspect ratios. Indeed the linearity of Stokes equations remains valid for all aspect ratios and these laws have proven to be valid even for spheroids of high aspect ratio [START_REF] Sanjeevi | On the orientational dependence of drag experienced by spheroids[END_REF]. The assumption C Dθ=0 • ≈ 1/2C Dθ=90 • is also supposed to give more accurate results as L/D increases [START_REF] Batchelor | Slender-body theory for particles of arbitrary cross-section in stokes flow[END_REF]. However [START_REF] Esteghamatian | Particle resolved simulations of liquid/solid and gas/solid fluidized beds[END_REF] and [START_REF] Fabre | Bifurcations and symmetry breaking in the wake of axisymmetric bodies[END_REF] have no reason to be valid for other L/D.

Deriving a law for the torque (or pitching-torque since the angular velocity is zero) valid for high Reynolds number flows and arbitrary L/D is beyond the scope of the present study.

The reader interested in that question may consult Zastawny et al. [START_REF] Zastawny | Derivation of drag and lift force and torque coefficients for non-spherical particles in flows[END_REF]. However, physical arguments and a simple model are given in the following. The hydrodynamic torque reads T = S r × σ • ndS where r is the local position relative to the cylinder mass centre. We define the hydrodynamic centre r hc as the point where the hydrodynamic torque vanishes.

The hydrodynamic torque can thus be written:

T = r hc × F. (19) 
In the following, straightforward assumptions are made to derive a closed expression for the torque. We define a Cartesian coordinate system as (x , y ⊥ , z) where x is the axis of symmetry of the cylinder starting from its mass centre, as illustrated in Fig. 17. Our main motivation is to find the z component of the torque. From flow symmetry considerations, we assume that r hc ≈ (x hc , x ⊥hc , 0) which does not seem to be a strong assumption except in cases where (x, y) planar symmetry is broken. We further assume that the parallel component of the hydrodynamic centre is larger than the perpendicular component, i.e., that r hc ≈ (x hc , 0, 0). This assumption is expected to be valid for long cylinders L D.

We obtain:

T z ≈ x hc F ⊥ (20) 
From [START_REF] Gao | Flow around an inclined circular disk[END_REF] and assuming that we know the normal force exerting on the cylinder, the new unknown to derive an expression for the torque is the position of the hydrodynamic centre

x hc . This equation supports the choice of L as the characteristic length in the expression of C T z . x hc is made dimensionless by dividing by L rather than D. With the help of ( 20), ( 6) derived for Re 1 can be understood as follows: since to leading order in Re the normal force varies as sin θ, the hydrodynamic centre position x hc varies as cos θ. Two main questions remain to be addressed (i) is this law valid for higher Reynolds numbers ? and (ii) can we estimate the magnitude of the torque ? 

for Re = 50, ---( 22) for Re = 250. x hc = T z /F ⊥ using our numerical results . This expression becomes singular when θ → 0.

We note that x hc stays close to the cylinder mass centre for all the configurations studied.

For Re = 50 and Re = 100, x hc varies as cos θ. Thus, as for the force, the law (6) obtained in the Oseen regime remains valid for moderate Reynolds number. Since the magnitude of x hc decreases linearly with Re for θ = 45 • , we suggest the following law for the hydrodynamic centre position:

x hc = √ 2(aRe -b) cos θ. ( 21 
)
where a = 1/6600 and b = 0.12 are parameters fitted with our numerical results. This law is used for 25 ≤ Re ≤ 150.

For Re = 200 and Re = 250, the magnitude of x hc decreases with decreasing θ for θ ≤ 45 • . ( 21) is not able to capture this behaviour. We thus suggest the following law:

x hc = 2(aRe -b) sin θ cos θ, (22) 
which fits very well our numerical results for Re = 250. Once again some comments can be made on the validity of these correlations. For Re 1, calculations in the Oseen regime [START_REF] Cox | The steady motion of a particle of arbitrary shape at small reynolds numbers[END_REF] predict a linear increase of the dimensional torque with Re and a dimensional normal force constant to leading order in Re. Thus, to leading order in Re, x hc increases linearly with

Re. This disagrees with [START_REF] Ghidersa | Breaking of axisymmetry and onset of unsteadiness in the wake of a sphere[END_REF] where the magnitude is seen to decrease with Re. One possible reason for this discrepancy is that the Reynolds numbers studied here are probably already far beyond the validity of the Oseen regime. Nevertheless this needs further investigation.

We would like to point out that ( 22) should be taken cautiously since it tends to zero for Re ≈ 792, which clearly disagrees with previous observations on the flow past a cylinder at high Reynolds number [START_REF] Jayaweera | The behaviour of freely falling cylinders and cones in a viscous fluid[END_REF].

Numerical results

Moderate Re (25 ≤ Re ≤ 100) Figs. 22abde exhibit a highly satisfactory agreement between the predictions obtained in the Stokes regime with ( 4) and ( 5) and our numerical results for both the lift coefficient and the drag coefficient at Re = 25 and Re = 50. The semi-empirical relations based on linear laws ( 11) and ( 12) also provide a good agreement with our numerical results. As observed by Sanjeevi and Padding [START_REF] Sanjeevi | On the orientational dependence of drag experienced by spheroids[END_REF] for spheroidal particles, the laws derived by assuming the linearity of Stokes equations match closely the numerical results even for inertial regimes. For Re = 25 and Re = 50, the predictions of both the lift coefficient and the drag coefficient given by the semi empirical relation of Rosendahl [START_REF] Rosendahl | Using a multi-parameter particle shape description to predict the motion of non-spherical particle shapes in swirling flow[END_REF] are less accurate than the laws based on the linearity of Stokes equations.

As Re increases to 75 and 100, the drag force plotted in Fig. 22gh and Fig. 22jk, respectively, slowly departs from the predictions obtained in the Stokes regime. Indeed the drag coefficient is underestimated by ( 4) and ( 11), especially for θ ∈ [30 • , 75 • ]. However the predictions for the lift coefficient given by the laws derived by assuming the linearity of Stokes equations still agree very well with our numerical results. Oseen regime (based on ( 21) and (2), [START_REF] Cox | The steady motion of a particle of arbitrary shape at small reynolds numbers[END_REF]) to our numerical results. The torque is zero for θ = 0 • and θ = 90 • but the only stable configuration is θ = 90 • as explained by Khayat and Cox [START_REF] Khayat | Inertia effects on the motion of long slender bodies[END_REF]. The agreement between our numerical results and (20) based on ( 21) and ( 2) is satisfactory even if our numerical results plot is slightly shifted to higher values for high The agreement between the IP and our numerical results is better for the lift coefficienty, as illustrated in Figs. 23beh, than for the drag coefficient. The IP gives results of comparable accuracy to [START_REF] Auguste | Bifurcations in the wake of a thick circular disk[END_REF]. The law [START_REF] Fabre | Bifurcations and symmetry breaking in the wake of axisymmetric bodies[END_REF] based on geometric arguments slightly underpredicts the lift coefficient. This is due to the fact that (15) overpredicts the parallel force for

C T z θ(deg) (g) 0.4 0.5 0.6 0.7 0.8 0.9 1 1 
C D θ(deg) (h) -0.5 -0.4 -0.3 -0.2 -0. 
50 • ≤ θ ≤ 80 • .
The torque coefficient is still well approximated by [START_REF] Gao | Flow around an inclined circular disk[END_REF] based on ( 22) and ( 15) even if we observe that the maximum of C T z is slightly underpredicted for the three values of Re = 150, 200 and 250. This underprediction is attributed to an underprediction of the hydrodynamic centre position x hc .

General outcome and further comments on force and torque laws The overall picture of force and torque laws is as follows. The laws obtained in the Stokes regime or the Oseen regime for the drag and lift coefficients give a good agreement for Re ≤ 100. At higher Reynolds numbers [START_REF] Esteghamatian | Particle resolved simulations of liquid/solid and gas/solid fluidized beds[END_REF] and ( 18) should be preferred. The torque is well approximated by [START_REF] Gao | Flow around an inclined circular disk[END_REF], provided the normal force and the hydrodynamic centre position are properly modelled as a function of Re. The value of θ for which the torque is maximal increases from 45 • to 55 • when Re increases. as Re -1/2 (not shown here). This is in line with the scaling of the viscous stress in the boundary layer approximation [START_REF] Batchelor | An introduction to fluid dynamics[END_REF]. However the maximum lift force as a function of θ remains approximatively constant as Re increases. This kind of behaviour has also been observed for the lift force exerted on a sphere immersed in a linear shear flow Kurose and Komori [START_REF] Kurose | Drag and lift forces on a rotating sphere in a linear shear flow[END_REF].

CONCLUSION

We investigated the inertial flow past a 3D cylinder of aspect ratio 3 by particle-resolved simulation. The ranges of Reynolds number Re and yaw angle θ examined are [START_REF] Hölzer | Lattice boltzmann simulations to determine drag, lift and torque acting on non-spherical particles[END_REF]250] and [0 • , 90 • ], respectively. We analysed the wake structure and the hydrodynamic force and We plotted the hydrodynamic force and torque as a function of Re and θ and attempted to fit these plots with force and torque correlations. This is an important result of this study as these correlations are meant to be later used in higher scale models as, e.g., Euler/Lagrange and Euler/Euler models, for the simulation of dilute suspensions of cylinders. The correlation given by Rosendahl [START_REF] Rosendahl | Using a multi-parameter particle shape description to predict the motion of non-spherical particle shapes in swirling flow[END_REF] based on the IP is shown to be poorly accurate to describe the drag force exerted on a yawed cylinder. For the aspect ratio L/D = 3 studied and 25 Re 100, a law derived in the Stokes regime seems to be better suited. We proposed simple laws derived in the Stokes regime that do not explicitly require the drag coefficient when the cylinder is aligned with the flow direction. These laws give reasonable agreement with numerical results for both the drag force and the lift force. The IP is also shown to be poorly accurate to describe the drag force on a yawed cylinder for 100 Re 200. Instead, we derived an empirical relationship that gives better agreement with our numerical results.

Based on a symmetry assumption, we also derived a law for the torque that explicitly involves the normal force. For all Re examined, our torque law matches well our numerical results as long as we can predict properly the position of the hydrodynamic centre. We showed that this can done using a fit that involves trigonometric functions. Based on the results of Cox [START_REF] Cox | The steady motion of a particle of arbitrary shape at small reynolds numbers[END_REF] and our numerical results, we suggested 2 different laws in the ranges Re ∈ [START_REF] Hölzer | Lattice boltzmann simulations to determine drag, lift and torque acting on non-spherical particles[END_REF]150] and

Re ∈ [150, 250], respectively. The resulting predictions of these 2 laws give full satisfaction.

The range of validity of the IP as a function of L/D needs further investigation. Indeed for very high Re and L/D, the IP supplies accurate predictions [START_REF] Hoerner | Fluid-dynamic drag: practical information on aerodynamic drag and hydrodynamic resistance[END_REF][START_REF] Zhao | Direct numerical simulation of three-dimensional flow past a yawed circular cylinder of infinite length[END_REF]. We can hence redo a similar study for higher L/D if we wish to further challenge the IP. Therefore the flow map shown in Fig. 3 would be enriched with a third parameter, the aspect ratio L/D.

This would also give us the opportunity to compare our numerical results to the results of Ramberg [START_REF] Ramberg | The effects of yaw and finite length upon the vortex wakes of stationary and vibrating circular cylinders[END_REF]. Another interesting perspective is the physical explanation of the agreement between the Stokes based laws and the numerical results even for moderate Reynolds number.

Distinguishing viscous and pressure contributions in the loads will be a key factor in better Finally, we intend to investigate the problem of a freely moving 3D cylinder as, e.g., a heavy cylinder settling in a quiescent light fluid. We already performed such a study for angular polyhedra in Rahmani and Wachs [START_REF] Rahmani | Free falling and rising of spherical and angular particles[END_REF]. Our numerical method is actually better suited to moving particles than to flows past fixed obstacles (see [START_REF] Esteghamatian | Particle resolved simulations of liquid/solid and gas/solid fluidized beds[END_REF][START_REF] Rahmani | Free falling and rising of spherical and angular particles[END_REF][START_REF] Wachs | A dem-dlm/fd method for direct numerical simulation of particulate flows: Sedimentation of polygonal isometric particles in a newtonian fluid with collisions[END_REF] among other references), although it can be used (as here) for the flow past a single or multiple obstacles [START_REF] Dorai | Fully resolved simulations of the flow through a packed bed of cylinders: Effect of size distribution[END_REF]. While improvements to our numerical method are always suitable (higher order schemes, enhanced parallel performance), particle-resolved simulations are computationally demanding. The finest mesh selected in this work comprised 100 millions of grid cells. The corresponding computation ran for several days/weeks on 512 cores. However, as shown in this paper, inertial regimes lead to thin boundary layers around freely moving or fixed particles that need to be captured properly. This puts some stress on the mesh size, which consequently increases the number of cells, in particular in a constant grid size approach as ours. An alternative would be to re-develop our Fictitious Domain method in an octree/adaptive mesh refinement [START_REF] Popinet | A quadtree-adaptive multigrid solver for the Serre-Green-Naghdi equations[END_REF] framework that would give us the ability to refine the mesh wherever required and to loose it away from solid particles and/or from regions of the flow with strong velocity gradients.

while the convective term is treated with a total variation diminishing (TVD) scheme and a Superbee flux limiter. Without any immersed solid body in the flow domain, the overall space accuracy of the fluid discretization scheme is 2nd order. However due to the presence of the immersed boundary solid bodies, the method is not fully second order in space [START_REF] Wachs | Accuracy of finite volume/staggered grid distributed lagrange multiplier/fictitious domain simulations of particulate flows[END_REF].

In order to enforce the zero velocity constraint inside the cylinder, we use a collocation point method in which the basis functions for the distributed Lagrange multiplier are delta Dirac functions [START_REF] Glowinski | A distributed Lagrange multiplier/fictitious domain method for particulate flows[END_REF][START_REF] Wachs | Accuracy of finite volume/staggered grid distributed lagrange multiplier/fictitious domain simulations of particulate flows[END_REF]. A set of Lagrangian points is distributed along the surface and inside the cylinder. Interior points are distributed on the staggered grid at the location of velocity points. Distributing points uniformly along the cylinder surface, called boundary points, is much more challenging. The detailed method developed in the PeliGRIFF code is described in SM [SMd]. To summarize, we divide the cylinder in two main areas : its length and its two end disks. The surface area defined along the cylinder length is mapped using a diamondshaped mesh while the two end disks are mapped with a specific spiral distribution. This methodology ensures that boundary points are close to uniformly distributed. Regardless of the body shape, the quasi uniform distribution of boundary points property has proven to be important for the accuracy of the computed solution [START_REF] Wachs | Accuracy of finite volume/staggered grid distributed lagrange multiplier/fictitious domain simulations of particulate flows[END_REF]. Finally, a multi-dimensional 2nd order quadratic reconstruction operator is used to enforce the zero velocity constraint at the Lagrangian points located on the cylinder surface. The construction of the 3D stencil of this operator relies on the orientation of the outward normal vector to the particle boundary and is a key ingredient of the space discretization scheme. It has also proven to significantly improve the accuracy of the computed solution. The accuracy of our scheme with immersed solid bodies is between first and second order, depending on the flow configuration, but the main asset of the multi-dimensional 2nd order quadratic reconstruction operator is that it does not require any hydrodynamic radius calibration neither for spheres nor for any other shape [START_REF] Wachs | Accuracy of finite volume/staggered grid distributed lagrange multiplier/fictitious domain simulations of particulate flows[END_REF], and can hence be safely applied to a cylinder here.

The explicit forcing term f n in (A1a) and (A2a) is computed using the multi-dimensional 2nd order quadratic reconstruction operator for boundary points and is smoothed out for interior points using a simple hat function defined on a support that spans three grid points in each direction. This simple procedure has proven to be efficient in all our previous studies (see Dorai et al. [15], Rahmani and Wachs [START_REF] Rahmani | Free falling and rising of spherical and angular particles[END_REF], Wachs et al. [START_REF] Wachs | Accuracy of finite volume/staggered grid distributed lagrange multiplier/fictitious domain simulations of particulate flows[END_REF] among others) and shares some similarities with the regularized Dirac delta function used by Uhlmann [START_REF] Uhlmann | An immersed boundary method with direct forcing for the simulation of particulate flows[END_REF] and Kempe

and Fröhlich [START_REF] Kempe | An improved immersed boundary method with direct forcing for the simulation of particle laden flows[END_REF], although in these works a regularized Dirac delta function is employed range of existence of this mode as a function of Re is narrow (Fig. 3, ). Moreover one may note that the amplitude of the oscillation of C Lz in that regime keeps increasing even after a time 500. Those two remarks in mind, this regime can be interpreted as a transitional one between a steady regime and the periodic regime described hereafter. The Strouhal number associated with the oscillation of the lift in this regime is a slowly increasing function of the Reynolds number (Fig. 30). Its value stays close to St z ≈ 0.12 and is comparable to the one encountered for larger aspect ratio [START_REF] Inoue | Vortex shedding from a circular cylinder of finite length at low reynolds numbers[END_REF] and in the wake of other bluff body such as spheres [START_REF] Johnson | Flow past a sphere up to a reynolds number of 300[END_REF].

The by Ramberg [START_REF] Ramberg | The effects of yaw and finite length upon the vortex wakes of stationary and vibrating circular cylinders[END_REF] and past long pointed-end cylinders at high Reynolds numbers and small yaw angles by [START_REF] Fiechter | Vortex systems on slender rotating bodies and their effect on the aerodynamic coefficients[END_REF]. This pattern is also called bifid wake by [START_REF] Ghidersa | Breaking of axisymmetry and onset of unsteadiness in the wake of a sphere[END_REF] in the case of the flow past a sphere. In Fig. 33a, the region below the cylinder also presents a distinctive bulge of opposite vorticity contours. The entire wake keeps a (x, y) reflectional planar symmetry. Fig. 33b shows the streamlines of the projected velocity in a plane perpendicular to the streamwise direction located a few diameters downstream of the cylinder for (θ = 45 • , Re = 75). We can clearly see two opposite longitudinal vortices. The length of the recirculation region l r increases with Re as plotted in Fig. 36. We also plot in Fig. 36 the recirculation length as a function of Re for an aspect ratio L/D = 1.

For both aspect ratios, l r increases as √ Re. In the case of the flow past a sphere, l r versus Re follows a logarithmic law [START_REF] Tomboulides | Numerical investigation of transitional and weak turbulent flow past a sphere[END_REF], while a linear law has been found in the case of the flow past an infinite cylinder [START_REF] Coutanceau | Experimental determination of the main features of the viscous flow in the wake of a circular cylinder in uniform translation. part 1. steady flow[END_REF]. The mathematical form of the relationship between l r and Re thus depends on the geometry of the obstacle.

The transition from the steady recirculating eddy regime to a periodic or unsteady vortex shedding regime for the flow past a L/D = 3 cylinder is expected to occur for higher Reynolds [SMd] See Supplemental Material attached for a description of the distribution of lagrangian points at the surface of a cylinder.

  FIG.1: Sketch of the computational domain.

  eddy l r given by our numerical method and the boundary-fitted method used in the SM [SMf] for 25 ≤ Re ≤ 200. The number of cells distributed along the cylinder diameter varies from 16 to 32. E(C D ) and E(l r ) represent the relative error on the drag coefficient and the relative error on the length of the standing eddy, respectively.

FIG. 2 :

 2 FIG. 2: Wake pattern past a L/D = 1 cylinder aligned with the streamwise direction at Re = 360. 96 cells are distributed along the cylinder diameter. The wake is visualized using the Q criterion. Isosurfaces of Q = 10 -3 are shown and are coloured by the longitudinal vorticity ranging from -0.2 to 0.2.

3 .

 3 FLOW PAST A YAWED L/D = 3 CYLINDER We now investigate the flow past a L/D = 3 cylinder for Reynolds numbers Re ∈ [25, 250] and yaw angles θ ∈ [0 • , 90 • ]. In total, more than eighty well resolved simulations are performed.

3 :

 3 Wake patterns past a L/D = 3 cylinder as function of θ and Re. Coloured areas represent regimes by symmetry and unsteadiness. Blue : steady axisymmetric wake, yellow : steady symmetric wake with respect to the (x, y) plane, purple : steady wake with two symmetry planes ((x, y) and (x, z)), green : periodic wake with one symmetry plane (x, y), red : periodic wake with one symmetry plane (x, z), brown : periodic shedding of quasi-symmetric double-sided hairpin vortices, cyan : 3D unsteady wakes. : steady standing eddy or toroidal vortex, × steady shedding of one counter-rotating vortex pair, + steady shedding of 2 counter-rotating vortex pairs, steady shedding of 2 symmetric counter-rotating vortex pairs, periodic shedding of 2 counter-rotating vortex pairs ((x, y) symmetry plane), periodic shedding of one counter-rotating vortex pair ((x, y) symmetry plane), periodic shedding of 2 counter-rotating vortex pairs ((x, z) symmetry plane), periodic shedding of single-sided hairpin shaped vortices, • periodic shedding of symmetric double-sided hairpin shaped vortices ((x, z) symmetry plane), * unsteady shedding of asymmetric double-sided hairpin shaped vortices, periodic shedding of quasi-symmetric double-sided hairpin vortices.

3 .

 3 In the following most of the regimes and their associated transitions are detailed and discussed. As pointed out in Section 1, regimes for θ = 90 • and θ = 0 • are well documented in the literature, while regimes for 60 • ≤ θ < 70 • do not show any features markedly different from other regimes

  Both cylinder and cube have a trivial state with two perpendicular symmetry planes. The cube wake keeps two perpendicular planes of symmetry up to Re = 216. Beyond Re = 216, the wake undergoes a steady bifurcation and loses one symmetry plane. This bifurcation was not found in the present study but could be identified by selecting additional Reynolds numbers in the range [100:125] [Note3]. The cube wake experiences a Hopf bifurcation at Re = 270

3.2. 70 •

 70 ≤ θ < 90 • Two pairs of steady counter-rotating vortices For θ ∈ [70 • ; 90 • [ and for Re ∈ [25; 125] (Fig. 3, +), we observe two steady pairs of counter-rotating vortices past the yawed cylinder[Note4]. Unlike the θ = 90 • cases, the horizontal symmetry is intrinsically broken by the body inclination. The bifurcation associated with this symmetry loss appears

FIG. 4 :FIG. 5 :

 45 FIG. 4: Two pairs of asymmetric counter-rotating vortices at (θ = 75 • , Re = 100). (a) Q = 0.01 isosurfaces are coloured by the longitudinal vorticity ranging from -0.2 to 0.2. The dark lines starting at the centre of the cylinder indicate the cylinder axis and the streamwise direction. (b) Streamlines in a (y, z) plane perpendicular to the x streamwise direction located at 5D from the x coordinate of the cylinder mass centre.

  FIG. 6: Periodic shedding of single-sided hairpin vortices at (θ = 75 • , Re = 150). Q = 0.004 isosurfaces are coloured by the longitudinal vorticity ranging from -0.2 to 0.2. The dark lines starting at the centre of the cylinder indicate the cylinder axis and the streamwise direction. Top: view in the (x, y) plane, bottom : view in the (x, z) plane, from bottom.

Fig. 5 FIG. 7 :

 57 Fig.5is still present just above the hairpin shaped vortex nearest to the cylinder and is still attached to the farthest hairpin in Fig.6. The lowest pair of Fig.5of strong amplitude gives rise to the hairpin shaped vortex of Fig.6. This mechanism can be more clearly understood if we connect together the two hairpins vortices of Fig.6. This connection relates to the fact that these two hairpins have the same rotational direction. Doing so we obtain a pair of streamwise vortices with (x, y) symmetry. The mechanism of transition between these two regimes shares some similarities with the mechanism of transition between the two pairs of symmetric counter-rotating vortices and the symmetric shedding of double-sided hairpin shaped vortices for θ = 90 •[START_REF] Inoue | Vortex shedding from a circular cylinder of finite length at low reynolds numbers[END_REF].

FIG. 9 :FIG. 11 :FIG. 12 :

 91112 FIG. 9: Force and torque coefficient diagrams for the 3D unsteady regime dominated by the shedding of asymmetric double-sided hairpin vortices at (θ = 85 • , Re = 175).

3. 3 .For 60 •

 360 FIG. 13: The "accordion fold" regime or periodic shedding of quasi-symmetric double-sided hairpin vortices at (θ = 60 • , Re = 200). Q = 0.008 isosurfaces are coloured by the longitudinal vorticity ranging from -0.2 to 0.2. The dark lines starting at the centre of the cylinder indicate the cylinder axis and the streamwise direction.

Fig. 13 showsFIG. 14 :FIG. 15 :

 131415 Fig.13shows two perpendicular views of the typical wake pattern observed for 60 • ≤ θ < 65 • and Re > 175, i.e., in the brown region in Fig.3. The 3D vortex structures are well organized even if no symmetry plane can be rigorously defined. The hairpins shed from both sides of the cylinder are parallel. Moreover the hairpin cores are alternatively transported on two parallel longitudinal and rectilinear paths. This regime is thus called periodic shedding of quasi-symmetric double-sided hairpin vortices. To the authors knowledge this regime has not been observed so far.

3. 4 . θ = 55 •

 455 FIG. 16: Original periodic shedding of single-sided hairpin vortices at (θ = 55 • , Re = 250). Q = 0.008 isosurfaces are coloured by the longitudinal vorticity ranging from -0.2 to 0.2. The dark lines starting at the centre of the cylinder indicate the cylinder axis and the streamwise direction.

Fig. 16 displays

 16 Fig. 16 displays another original wake pattern for (θ = 55 • , Re = 250) that exhibits single-sided hairpin vortices with vertical planar symmetry. However some differences are noticeable in comparison with the shedding of single-sided hairpin vortices observed for 70 • ≤ θ ≤ 85 • . The size of vortices is visibly smaller in Fig. 16 than in Fig. 7. Hairpin vortices are shed not only along x but also along y, since the vortices monotonously move away from the x axis in the cylinder wake. Furthermore the hairpin vortices nearest to the cylinder are connected between each other by longitudinal vortices. We also observe a pair of counter-rotating vortices at the bottom of the cylinder that was not present for 70 • ≤ θ ≤ 85 • . Finally the dimensionless vortex shedding frequency is St y ≈ 0.17. This value is at least twice larger than the largest dimensionless frequency obtained in the range 70 • ≤ θ ≤ 85 • and relates to the larger number of vortices observed in Fig. 16 compared to Fig. 7. The C D -C Lz diagram shows a simple closed loop of very small amplitude (not shown here) as observed in the range 70 • ≤ θ ≤ 85 • .

3 .

 3 Comparison with the freely falling cylinder Toupoint et al.[START_REF] Toupoint | Freely falling cylinders at moderate reynolds numbers; part 1: kinematics and wake[END_REF] experimentally investigated the fall of cylinders of density close to the fluid density for 2 ≤ L/D ≤ 20 and various Reynolds numbers. For L/D = 3 and Re ≈ 120, where the Reynolds number is based on the terminal vertical velocity, they observed a steady and rectilinear fall. They also identified two pairs of counter rotating vortices in the cylinder wake in agreement with the results of Inoue and Sakuragi[START_REF] Inoue | Vortex shedding from a circular cylinder of finite length at low reynolds numbers[END_REF] and the present results. For higher Reynolds numbers (Re ≈ 270) a second regime is observed named irregular 2 in their paper. This regime is characterized, among other features, by oscillations of the cylinder inclination angle in the range 80 • θ 90 • as it falls. The main frequency associated with this fluttering motion is St ≈ 0.05. Furthermore the cylinder undergoes oscillations of its velocity in the gravity direction with a frequency St x ≈ 0.2. We have seen in Section 3 3.1 that the cylinder undergoes strong torque oscillations in z direction. The associated frequency is 0.05. This frequency is very close to the frequency encountered during the fluttering motion. The loss of planar symmetry in the θ = 90 • fixed case might be the root of the apparition of fluttering motion in the case of free fall. However the drag oscillations, i.e., C x oscillations in the present configuration, for Re = 250 have a dominant dimensionless frequency smaller

FIG. 18 :

 18 FIG. 18: Perpendicular and parallel force coefficients for Re = 50: × + numerical results, ---(2) and (3).

FIG. 19 :

 19 FIG. 19: Pressure as a function of the distance along the perimeter of a rectangle contained in the (x, y) plane for different value of θ. -θ = 90 • , -θ = 0 • ,θ = 30 • , + linear theory for θ = 30 • .

)FIG. 20 :

 20 FIG. 20: Perpendicular and parallel force coefficients for Re = 250: × + numerical results, ---(2) and (3), --(13) and (14), ---(15) and (16). The error bars indicate the magnitude of the unsteady modes.

FIG. 21 :

 21 FIG. 21: Position of the hydrodynamic centre normalized by the length as a function of the yaw angle: + Re = 50, • Re = 100, × + Re = 150, Re = 200, • Re = 250, ---(21)

Fig. 21 aims

 21 Fig. 21 aims to give some answers to these questions. It plots the variation of x hc as a function of θ for different Re. The hydrodynamic centre position is computed as:

Fig. 22c ,

 22c Fig. 22c, Fig. 22f, Fig. 22i and Fig. 22l show the torque coefficient for Re = 25, Re = 50, Re = 75 and Re = 100, respectively, and compare the law (20) derived by assuming a

FIG. 22 :

 22 FIG. 22: Drag, lift and torque coefficients for: a-c Re = 25, d-f Re = 50, g-i = 75, j-l Re = 100. × + numerical results,empirical relation (10) of Rosendahl [49], ---(4) and (5) for the force / (20) based on (21) and (2) for the torque, ----(11) and (12).

FIG. 23 :

 23 FIG. 23: Drag, lift and torque coefficients for: a-c Re = 150, d-f Re = 200, g-i Re = 250.× + numerical results,empirical relation[START_REF] Chrust | Parametric study of the transition in the wake of oblate spheroids and flat cylinders[END_REF] of Rosendahl[START_REF] Rosendahl | Using a multi-parameter particle shape description to predict the motion of non-spherical particle shapes in swirling flow[END_REF], ---(4) and (5), ----IP, ---(17) and[START_REF] Fabre | Bifurcations and symmetry breaking in the wake of axisymmetric bodies[END_REF] for the force / (20) based on (22) and (15) for the torque. The error bars indicate the magnitude of the unsteady modes.

Figs. 22

 22 Figs. 22 and 23 also show that C Dθ=90 • and C Dθ=0 • decrease significantly as Re increases

  torque exerted on the cylinder. Ten different regimes and corresponding wake patterns were observed depending on θ and Re spanning standing toroidal eddy, one or two steady counterrotating vortex pairs, periodic shedding of single-sided hairpin vortices, quasi-symmetric shedding of double-sided vortices nicknamed accordion fold, periodic shedding of one or two pairs of counter-rotating vortices, and unsteady shedding of asymmetric double-sided hairpin vortices. When the cylinder is perpendicular to the flow direction, we confirm the transition scenario observed by Inoue and Sakuragi[START_REF] Inoue | Vortex shedding from a circular cylinder of finite length at low reynolds numbers[END_REF]. A slight inclination of the cylinder with respect to the perpendicular configuration modifies dramatically the steady and first unsteady states through a loss of one symmetry plane. For sufficiently high Reynolds numbers, we observed similar wake structures (unsteady shedding of double-sided hairpin shaped vortices) for all high yaw angles. A new wake structure was discovered for θ = 60 • and Re ≥ 175.It is characterized by the periodic shedding of double-sided hairpin shaped vortices along a straight horizontal line. Although the comparison between the freely falling cylinder and the fixed inclined cylinder was limited to a few configurations, a good agreement was generally observed. The most surprising feature was the good agreement between the torque oscillation frequency in the fixed case and the yaw angle oscillation frequency during fluttering motion in the freely falling case.

  explaining the observed agreement. The specific configuration of the cylinder aligned with the flow also deserves further investigation, first to provide a lower bound for the drag coefficient, second to investigate the impact of L/D on boundary layer detachment and third to study the bifurcation scenario. For instance, Ern et al.[START_REF] Ern | Wake-induced oscillatory paths of bodies freely rising or falling in fluids[END_REF] gave a threshold value for the Reynolds number Re c associated with the first bifurcation for a disk L/D ≤ 1 aligned with the flow. It is estimated as Re c = 116.5(1 + L/D).

FIG. 24 :FIG. 25 :

 2425 FIG. 24: L/D = 3, Re = 150, θ = 90 • . Above : C Lz as a function of time. Below : Power spectra density (PSD) of C Lz .

Figure 25

 25 Figure 25 displays the lift force oscillations along z for L/D = 3, Re = 250, θ = 75 • .

FIG. 28 :FIG. 29 :FIG. 30 :

 282930 FIG. 28: Periodic shedding of double-sided horizontal hairpin vortices at (θ = 90 • , Re = 150). Q = 0.008 isosurfaces are coloured by the longitudinal vorticity ranging from -0.2 to 0.2. The dark lines starting at the centre of the cylinder indicate the cylinder axis and the streamwise direction.

Fig. 28

 28 Fig. 28 shows the flow structure obtained for Re = 150. The hairpins are double-sided in the sense that alternated vortices of opposite rotational direction but of similar intensity are shed periodically. The C D -C Lz diagram for Re = 150 presented in Fig. 29b shows an attractor displaying an "eight" shape. The lift force mean value in the z direction is C Lz = 2.5 • 10 -4 and remains small. This implies, as observed on the wake pattern, that the hairpin vortices shed from both sides of the cylinder have approximatively the same intensity. The C Lz oscillations amplitude is large in comparison to the C D oscillations amplitude. Moreover, the C Lz oscillations amplitude is one order of magnitude larger than the C Lz oscillations amplitude observed for (θ = 90 • , Re = 125). The emergence of hairpin vortices is related to an increase of the vortex intensity and is a distinguishable signature of the unsteady mode. The C D and C Lz oscillations are slightly out of phase since the extrema of C D occurs slightly shifted with respect to the extrema of C Lz . C D oscillates with a dimensionless frequency equal to twice the leading dimensionless frequency in agreement with the symmetry observed for the wake pattern. The amplitude of oscillations of C D is negligible in comparison with the C D mean value. The lift force in the y direction is almost negligible in that case.

FIG. 32 :

 32 FIG. 31: 3D unsteady regime dominated by the shedding of horizontal double-sided hairpin vortices at (θ = 90 • , Re = 250). The time interval between two frames is ∆t = 5. Q = 0.008 isosurfaces are coloured by the longitudinal vorticity ranging from -0.2 to 0.2. The dark lines starting at the centre of the cylinder indicate the cylinder axis and the streamwise direction.

FIG. 33 :

 33 FIG. 33: One steady counter-rotating vortex pair at (θ = 45 • , Re = 75): (a) Q = 0.004 isosurfaces are coloured by the longitudinal vorticity ranging from -0.2 to 0.2. The dark lines starting at the centre of the cylinder indicate the cylinder axis and the streamwise direction. (b) Streamlines in a (y, z) plane perpendicular to the x streamwise direction located at 5D from the x coordinate of the cylinder mass centre.

FIG. 34 :

 34 FIG. 34: Periodic shedding of one counter-rotating vortex pair at (θ = 65 • , Re = 135). The time interval between two frames is ∆t = 5. Q = 0.004 isosurfaces are coloured by the longitudinal vorticity ranging from -0.2 to 0.2. The dark lines starting at the centre of the cylinder indicate the cylinder axis and the streamwise direction.

FIG. 35 :

 35 FIG. 35: Steady toroidal vortex downstream of a θ = 0 • cylinder at Re = 50. Streamlines pattern (x, y) plane perpendicular to the z transverse containing the cylinder axis are coloured by the dimensionless axial velocity (dark blue u x = 0, red u x = 1).

3 .

 3 Cylinder oriented parallel to the flow direction Standing toroidal eddy The aligned cylinder case completes the flow map shown in

Fig. 3 .

 3 Fig.3. Due to the specific symmetry of this configuration, the wake stays axisymmetric for all considered Re. The wake is characterized by a steady recirculating eddy as illustrated in Fig.35for (θ = 0 • , Re = 50). This is a distinguishable feature of the flow past a bluff body at Reynolds numbers higher than 10 [7, p. 259]. When the body is angular with salient edges, the detachment of the boundary layer usually occurs at the edge of the body[7, p. 329].

FIG. 36 :

 36 FIG. 36: Recirculation length l r of an aligned cylinder with the flow direction with respect to the square root of the Reynolds number. + : L/D = 3 cylinder. × : L/D = 1 cylinder (see SM [SMf]). The solid lines correspond to fits of our numerical results of the aRe 1/2 + b form, where a and b are the fitting parameters.

TABLE I :

 I Drag coefficient C D = F x /(1/2ρU 2 LD) and Strouhal number St = f D/U for two domain sizes. The medium domain is the one shown in Fig. 1. The large domain is 1.5 larger in all directions. Data of Inoue and Sakuragi

TABLE II :

 II Comparison of the drag coefficient C D and length of standing

TABLE III :

 III Comparison of the drag coefficient C D and Strouhal number St given by our Tab. III shows C D and St for Re = 360 as a function of grid size. For the coarsest grid (16 grid points per cylinder diameter) the error on C D is close to 40%. Moreover, vortices are shed randomly and prevent from defining a characteristic vortex shedding frequency, and hence St. The error on C D is less than 20% for a grid size corresponding to 32 grid points

	per cylinder diameter. The wake (not shown here) consists of hairpin vortices which are not
	shed periodically. Indeed a second frequency manifests in the wake (close to one fourth of
	the expected frequency) and is a pure numerical artefact. It remains possible to define St
	based on the highest frequency, the resulting error is less than 5%. The spurious frequency
	disappears when using a grid size corresponding to 64 grid points per cylinder diameter. For
	that case, Tab. III shows that the error on C D is about 5% while the error on St is of the
	order of a few per cents. For the finest grid corresponding to 96 grid points per cylinder
	diameter, the error on C D is less than 3.5%.
	To summarize the findings of our mesh sensitivity analysis on cases representative of our
	physical analysis in the rest of this paper, it is necessary to distribute at least 3-4 grid points
	in the boundary layer around the cylinder (estimated as D/Re 1/2 ) to accurately describe
	the flow regimes we are interested in. When this condition is satisfied, our fictitious domain
	method yields accurate results for the flow past a yawed cylinder. Thereby, for the range
	of Re ∈ [25, 250] we intend to investigate in this paper, we use either 32 grid points per
	cylinder diameter for the low 25 ≤ Re ≤ 100 cases, 48 grid points per cylinder diameter for
	the moderate 100 < Re < 150 cases, and 64 grid points per cylinder diameter for the high
	Re ≥ 150 cases. Corresponding meshes comprise between 10 to 100 millions of grid cells.
	numerical method and the boundary-fitted method used the SM [SMf] for Re = 360. The
	number of cells distributed along the cylinder diameter varies from 16 to 96. E(C D )
	represents the relative error on the drag coefficient.
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Appendix A: Technical aspects of the numerical procedure

Solution algorithm

The three-dimensional unsteady incompressible Navier-Stokes equations with appropriate initial conditions and boundary conditions subject to the rigid body motion (motionless in the particular case of the flow problem examined in this paper) constraint in the region occupied by the cylinder denoted P (and filled with fictitious fluid) are solved by a first-order Marchuk-Yanenko time splitting solution algorithm. We use a simple two-step splitting: at each discrete time, we (i) solve the incompressible Navier-Stokes equations and then (ii) solve the fictitious domain problem to enforce the rigid body motion constraint. Problem (i) is solved with a classical L 2 -projection scheme while Problem (ii) is a saddle-point problem solved by a Uzawa/conjugate gradient algorithm [START_REF] Glowinski | A distributed Lagrange multiplier/fictitious domain method for particulate flows[END_REF][START_REF] Wachs | Accuracy of finite volume/staggered grid distributed lagrange multiplier/fictitious domain simulations of particulate flows[END_REF]. While the solution of Problem (i) is second-order accurate in time, the whole solution algorithm is first-order accurate in time only due to the first-order Marchuk-Yanenko splitting. Please note that the presence of the explicit forcing term ±f n on the right-hand side of (A1a) and (A2a) significantly enhances the coupling of the two sub-problems [START_REF] Wachs | Accuracy of finite volume/staggered grid distributed lagrange multiplier/fictitious domain simulations of particulate flows[END_REF]. f is simply a smoothed equivalent of the distributed Lagrange multiplier λ n associated to the constraint u = 0 in P [START_REF] Wachs | Accuracy of finite volume/staggered grid distributed lagrange multiplier/fictitious domain simulations of particulate flows[END_REF]. At each discrete time t n+1 where n refers to the discrete time index, we know the fluid velocity u n , the pressure p n and the distributed Lagrange multiplier λ n in P , and solve the following equations for u n+1 , p n+1 and λ n+1 as follows:

• A classical L 2 -projection scheme for the solution of the Navier-Stokes problem: find u n+1/2 and p n+1 such that

where ρ denotes the fluid density, µ the viscosity and ψ n+1 the auxiliary potential. In (A1a), the advection and viscous terms are discretized in time by an Adams-Bashford scheme and a Crank-Nicholson scheme, respectively.

• A fictitious domain problem: find u n+1 and λ n+1 such that

It can easily be shown [START_REF] Rahmani | Free falling and rising of spherical and angular particles[END_REF] that the hydrodynamic force F and torque T exerted on the cylinder can be expressed as volume integrals over the cylinder P of the distributed Lagrange multiplier λ as follows:

where σ = -pI +2µe is the Newtonian stress tensor, I the identity tensor, e = 1 2 (∇u+∇u t ) the strain-rate tensor, ∇u the velocity gradient tensor, r the position vector relative to the solid mass centre and n the unit vector normal to the cylinder surface S.

Space discretization scheme

(A1a)-(A1d) are solved on a cartesian grid with a Finite Volume approach. The pressure is cell-centered while the velocity component i is located at the cell face perpendicular to direction i. A second order central discretization scheme is employed for the diffusion term in an IBM fashion to enforce the no-slip boundary condition on boundary points only, leaving interior points free to flow as a fluid. In our method, since the distributed Lagrange multipliers λ n+1 that implicitly enforces the zero velocity contraint in the cylinder use actual Dirac delta functions as basis functions, the a posteriori computation of the hydrodynamic force F and torque T exerted on the cylinder is rather straightforward. In fact, computing F and T at time t n+1 translates into summing the distributed Lagrange multipliers as:

where N i and N b denote the number of interior points and number of boundary points, respectively.

Appendix B: Details on the computation of the Strouhal numbers using Discrete Fourier Transform

In this appendix we give a detailed explanation on the way Strouhal numbers are computed. Once the temporal signal of the lift coefficient is obtained we perform a Discrete Fourier Transform (DFT) of the signal using the python scipy library. The DFT is performed from at least t = 100 (in order to avoid the temporary regime) and until at least t = 200. Moreover we also check that the signal reaches at least 10 periods. A long simulation time is a necessary requirement in order to obtain a good estimate of the dimensionless frequency. Indeed the dimensional spectral resolution is 1/(n∆t) where n is the number of simulated time steps used in the DFT and ∆t the time step [START_REF] Bergé | Order within chaos[END_REF]. The error made when performing the DFT is estimated as ±1/2 × D/U × 1/(n∆t). A single frequency appears in the wake which is confirmed by the DFT (figure 24). Indeed a single peak is visible in the frequency space. The Strouhal number is estimated as

When a single frequency appears in the wake its identification is straightforward as shown above. The identification of dominants frequencies becomes much more difficult when the signal is quasi-periodic or chaotic [START_REF] Bergé | Order within chaos[END_REF]. For the later case the Fourier spectrum becomes Compared to figure 24, the amplitudes of the oscillations are not constant. However a dominant frequency is visible in the Fourier space with a peak at St = 0.143 ± 0.002. This frequency is not the only which appears : a smaller one also is visible (St = 0.040 ± 0.002) and one can note that the spectrum is almost continuous. This feature means that many frequency appears in the wake and the flow is thus quasi-steady or close to be chaotic [START_REF] Bergé | Order within chaos[END_REF].