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M-scalar

The M-scalar, � M, is de�ned as the arithmetic
mean of� Cx� x�X ��c� , where the respective weights are
the Euclidean distances fromc, D�x� c�.

� M �

�

X��c�
D�x� c��Cx dx

�

X��c�
D�x� c� dx

(5)

The idea behind this second weighting is close to the
previous one: the more a point is away from the center
of mass of the network, the higher the probability to
get long paths in its correspondingM-coef�cientvalue.

At this step, such a formulation does not take into
account the case of multiple connected components.
It would lead to consider each of them separately.
In fact, it is possible to process simultaneously
all the connected components using the following
formulation.

Rede�nition of M-coef�cient and M-scalar

With this perspective, we replace Eq. 4 with Eq. 6
and Eq. 5 with Eq. 7. TheM-coef�cientassociated tox
is de�ned, for a givenx � X, x �� c, using the harmonic
mean of the geometric tortuosities� x�y, weighted by the
inverse of the respective geodesic distanceDG�y� x;X�.

C�1
x �

�

X��x �

1
DG�y� x;X�

dy
�

X��x �

1
DG�y� x;X��� x�y

dy

if�
�

X��x �

1
DG�y� x;X��� x�y

dy �� 0

(6)

The harmonic mean is de�ned as the reciprocal of the
arithmetic mean of the reciprocals of the values, here
the geometric tortuosities. The denominator is equal to
zero only if x is isolated, i.e. connected to no point of
X. In this case, we imposeCx � 0.
For the same purpose,� M, theM-scalar, is de�ned as
the harmonic mean of� C�1

x � x�X ��c� , weighted by the
inverse of the respective Euclidean distance fromc,
D�x� c�.

� M �

�

X��c�

1
D�x� c�

dx
�

X��c�

1

D�x� c��C�1
x

dx

if�
�

X��c�

1

D�x� c��C�1
x

dx �� 0

(7)

This formulation handles the disconnections
corresponding to an in�nite geodesic distance. The
integral of the denominator is equal to zero only if
each point ofX � � c� is disconnected from the others.

Unfortunately, this deterministic way to de�ne the
M-tortuosity descriptor,TM, is dif�cult to apply on
large volumes in practice. Therefore, an estimator of
the M-tortuosity, T̂M, is necessary, and this will be
done using a skeletonization step and a point sampling
approach. The next section introduces the various
steps which de�neT̂M, theM-tortuosityestimator, and
its extension, theM-tortuosity-by-iterative-erosions
estimator.

M-TORTUOSITY ESTIMATOR

Skeletonization

Most numerical methods have to balance accuracy
and computation time ef�ciency. Skeletonization, used
as a pre-processing ofX, allows �rst to decrease the
computation time. A skeleton can be de�ned in several
ways (Tagliasacchiet al., 2016). In this paper, the
thinning method of Lohou and Bertrand (2005), using
the notion of P-simple point, is chosen. The obtained
skeleton, namedSk, is the smallest homotopic subset
of X.
Obviously, skeleton computation biases the results, but
this bias is intentional. Let us recall that we attempt to
de�ne a global geometric tortuosity, for discrimination
of complex networks. Fig. 1 displays a basic situation.
Intuitively, we would like a signi�cant difference of
geometric tortuosity between the straight pore and the
sinuous pore in Fig. 1.

Fig. 1: Two pores (black lines); a straight one (dashed
lines) and a sinuous one (curved lines). The skeleton
of both pores is represented: the dashed straight blue
line for the straight pore, and the curved red line for
the sinuous one.

Computing the geometric tortuosity on the
skeleton enhances the difference between the two
pores of Fig. 1. In the section "Explanation on the
use of Monte Carlo method on the skeleton", a
speci�c case illustrates this assumption by comparing
the distribution of distances of both cases, with
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EXPLANATION ON THE USE OF
MONTE CARLO METHOD ON THE
SKELETON

A realization of a Boolean model of size 3003,
with volume fractionVv � 0�7 of spheres with constant
radiusr � 10, is generated to illustrate our purpose (see
section "Results" for details about Boolean models).
The following calculations are done on the spheres
network and on the skeleton of this network, for
comparison purposes.
Let us consider two locations belonging to the pore
phase skeleton of the given microstructure. The two
values d and g, their Euclidean distance and their
geodesic distance, respectively, can be represented
as a point�d � g� in a coordinate system. Doing that
for several point pairs (see example in Fig. 2), we
obtain a kind of directional "jet" above neutral line
d � g, corresponding to nearby locations. The results
with and without skeletonization step are presented
for exactly the same point pairs (Fig. 2). Differences
are highlighted for 3 point pairs (black spheres,
squares and triangles in Fig. 2). Skeletonization
allows to increase the geometric tortuosity value, and
especially allows to increase the difference between
two microstructures, by being more sensitive to small
variations. Clearly, the more tortuous is the network,
the steepest will be this cloud of points; a �rst
candidate for being a "coef�cient of tortuosity" could
be the average of the different slopesg � d. In fact,
as we have seen above, it is more interesting to work
with the inverse ratiosd � g. The problem is that
these calculations rely on samplings. Will coef�cients
obtained with two different samplings be reasonably
close? Instead of considering an underlying "abstract"
bivariate density, that could serve as a reference on
which various samplings are operated, we prefered to
operate on simulations with a very good degree of
reproductibility, as we are going to see it.
Fig. 2 (b) displays a cloud of points which can be seen
as a probability density function. A digital operator,
based on Monte Carlo method, can be a good estimator
of such a density, if and only if some conditions are
ful�lled (Ca�isch , 1998). First, we are in a bounded
set, Sk. Secondly, our estimator can be integrated
on this subset if and only if at least two points are
connected. Practically, we generate 100 realizations
of a Boolean schemes of size 2003 and of volume
fraction Vv � 0�7 of spheres of constant radiusr �
3. We compute the homotopic skeleton (Lohou and
Bertrand , 2005) of the complementary set of the set of
spheres, for prooving the decreasing of the variance as
1�N , with N the number of sampled points, using 1D-
sampling. Fig. 3 displays the variation ofN� 2, with
� 2 the variance, as a function ofN. The stabilisation

of this curve validates the fact that we are in an
asymptotic domain and the convergence is reached.

Fig. 2: Cases without skeletonization (a) and with
skeletonization (b). Scatterplot of coordinates�d � g�:
d (resp.g) is the Euclidean distance (resp. geodesic
distance) of a point pair. 520 locations are sampled,
each pair of locations is processed. The linear
regression of the scatterplot is displayed (orange
line) with its equation, and the reference lineg �
d corresponds to geometric tortuosity equal to one.
Three point pairs are represented by a black square
(resp. circle and triangle).

Fig. 3: Evolution ofN times the variance of̂� M (Eq.
10), � 2, over the 100 realizations of Boolean models
of size 2003 and of volume fractionVv � 0�7 of spheres
of constant radiusr � 3, as a function ofN.
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The proof of this proposition of stability of̂TM
uses the fact that the integrality of the topological
information is contained in the unit cell,� 0.
For didactic purposes,� is displayed here as a
concatenation of 3 times� 0 in the x direction only (Fig.
4). For these same purposes, illustrations are in 2D
(Fig. 4 and 5) and calculations are done in a 2D plan of
� 3. Moreover, we will focus on very speci�c points, as
shown below, for illustration purposes. The results can
be extended to any� , de�ned as a repetition ofq times
� 0 in every space directions of� 3 and for any points
pair.
Let � p� p0� � Sk20 and p1 and p2, two points ofSk, be
de�ned by

p1 � p0 � � Tx� 0�0�
p2 � p0 � 2��Tx� 0�0��

(19)

Let pk0 � Sk0 � � � 0 be de�ned by

DG� p1� p;Sk� � DG� pk0� p;Sk�
� DG� p1� pk0;Sk��

(20)

Rede�ning geodesic distance transform in the speci�c
case of a periodic image gives

DG� p1� p;Sk� � DG� pk0� p;Sk�
� DG� p0� pl0;Sk�

(21)

with pl0 � Sk0 � � � 0, as shown in Fig. 4.
Let us now consider the geodesic distance betweenp
andp2. Using the same scheme we obtain:

DG� p2� p;Sk� � DG� pk0� p;Sk�
� DG� pk0� pl0;Sk�
� DG� p0� pl0;Sk��

(22)

Fig. 4: Sketch of� , concatenation of 3 times� 0 (�rst
"square"), the black broken lines represent the porous
network skeleton. Possible positions ofp and p0, and
the corresponding positions ofp1, p2, pk0 and pl0.
Geodesic paths betweenp and p1 and betweenp and
p2, are represented (red broken lines).

Euclidean distance is needed too, for geometric
tortuosity de�nition. Considering�x� y� � � 2 the
orthogonal projections of�pp0, as represented in Fig. 5,

the Euclidean distances betweenp andp1 and between
p andp2 can be written respectively,

D� p1� p� �
�

y2 � � x� Tx� 2

D� p2� p� �
�

y2 � � x� 2�Tx� 2�
(23)

Fig. 5: Sketch of � , concatenation of 3 times� 0
(�rst "square"), and representation of some possible
positions ofp andp0, and the corresponding positions
of p1, p2, pk0 and pl0. Euclidean distances betweenp
and p1 and betweenp and p2, are represented with
their orthogonal projections on x and y directions using
�x� y� � � 2 andTx � �.

Let us generalize these concepts.� is now a
concatenation ofq times � 0 in the x direction, and
pq � X the point de�ned by

pq � p0 � q��Tx� 0�0�� (24)

The geodesic distance and Euclidean distance between
p andpq are respectively,

DG� pq� p;Sk� � DG� pk0� p;Sk�
� � q� 1��DG� pk0� pl0;Sk�
� DG� p0� pl0;Sk�

D� pq� p� �
�

y2 � � x� q�Tx� 2�

(25)

We have the following limits,

lim
q��

DG� pq� p;Sk�
q�DG� pk0� pl0;Sk�

� 1

lim
q��

D� pq� p�
q�Tx

� 1�
(26)

Therefore� q, the geometric tortuosity betweenp and
pq, is such that,

lim
q��

� q � � l0�k0 (27)

This means that forq high enough, using the
previous equivalences,̂Cn�q can be expressed using the
geometric tortuosities of each percolating path of� 0,
the unit cell, here in thex direction.

Ĉ�1
n�q �

N�1

�
i�0

N�1

�
j�0

1
Ai� j�q�DG� pkj � pli ;Sk�

N�1

�
i�0

N�1

�
j�0

1
Ai� j�q�DG� pkj � pli ;Sk��� li �k j

(28)
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The principle is the following; theM-tortuosity
descriptor is applied on� r �X �, the eroded set of X by
a sphere of radiusr (Eq. 11).T̂M�r is de�ned for any
integerr by,

T̂M�r �X � � T̂M�� r �X ��� (32)

In the following pseudo-code (Algo. 2),D�X � stands
for the distance map to the complementary setD��� Xc�
(Eq. 12) for allx � X, for brevity.
The stopping condition could as well be de�ned using
the number of connected points inS, or the number
of connected components, or the volume of� r �X � etc.

Algorithm 2: M-tortuosity-by-iterative-
erosions

Result: M-scalarvector�̂ M�r

Computation of distance mapD�X �;
while Condition is falsedo

M-tortuositycomputation:
T̂M�X �;
Erosion by sphere of radiusr:
X � � r �X �;
Condition computation;
r � r � 1;

end

Connectivity

The connectivity degree, as it has been considered,
has a non-negligible impact on digital image
processing computation methods. It is well known that
3D connectivity considers either 6, 18 or 26 neighbor
voxels (sharing either a face, at least an edge or at least
a vertex only). Using the de�nitions from (Lohou and
Bertrand , 2005), letx � � 3 de�ned by �x1� x2� x3� be
the current point, three neighborhoods can be de�ned:
N26�x� � �x � � � 3 : Max��x1 � x�

1�� �x2 � x�
2�� �x3 � x�

3�� �
1� � � x�, N6�x� � �x � � � 3 : �x1 � x�

1� � �x2 � x�
2� � �x3 �

x�
3� � 1� � � x�, and N18�x� � �x � � � 3 : �x1 � x�

1� �
�x2 � x�

2� � �x3 � x�
3� � 2� � � x� � N26�x�. The connected

components are then directly de�ned by the choice
of the foreground and background neighborhoods.
In this paper, we take the most usual choice:N26-
neighborhood for the foreground andN6-neighborhood
for the background.

Geodesic Distance Transform

The geodesic distance transform is a very powerful
tool for connectivity issues (Lantuéjoul and Beucher ,
1981) and is at the very basis of our descriptors. Fig.
6 shows the difference between Euclidean distance
transform onX and geodesic distance transform for the
same setX and starting points. X has two connected

components and the second one, the disk, is not
reached by the geodesic propagation froms unlike
the Euclidean propagation. Moreover, the propagation
itself is completely different too.

Fig. 6: Differences between Euclidean distance
transform (left) onX and geodesic distance transform
(right) restricted toX. s is the starting point used for
both maps.

The purpose of the weighting of Eq. 9, as
said above, is to promote long paths which are
more representative of the porous structure for a
global tortuosity assessment. Moreover, the inverse
of the geometric tortuosity and the respective
geodesic distance allows to deal with disconnected
components. This comes from a geodesic distance
transform characteristic; the geodesic distance of two
nonconnected points ofX (i.e., belonging to two
distinct connected components, as in Fig. 6) is in�nite.
Indeed, in such a case, there is no path, totally
included in X, connecting the two points. Using
the inverse of the geodesic distance annihilates the
contribution of such paths. Then, givenn � �, Ĉn, the
M-coef�cient associated to the starting pointpn, will
take into account only paths belonging to the same
connected component ofpn; nonconnected points will
not interfere in the computation.
Raster-scanning algorithm, used for geodesic distance
computation, is presented next.

Raster-scanning algorithm:

This algorithm iterates image scans until
stabilization (i.e., idempotence). A similar algorithm
can be found in Toivanen (1996) for grayscale images.
An iteration is composed of two raster scans; the
forward scan -from top to bottom, and from left to
right- and the backward scan -from bottom to top, and
from right to left-. For each scan a speci�c mask is
used, as shown in Fig. 7.
First, voxels belonging toS, the starting voxels,
are initialized to 0 and all the others to in�nity.
The forward scan starts from the top left voxel.
Computation and update, if necessary, of the geodesic
distance value of each voxel ofX is done if

DG�x� � DG�ni � � W�ni � (33)
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stability is reached forN � 50 with 1D-sampling,N �
64 (N � K) with strati�ed sampling is chosen (true
only for the cases of Boolean models with adapted
volume fraction) for safety purposes.

Neighborhood weights

As said above we use the 26-connectivity for the
foreground and the 6-connectivity for the background.
Weights used for the geodesic distance propagation
have a key role in the extraction of information from
M-tortuosity and M-tortuosity-by-iterative-erosions
descriptors.
Indeed different well-known weights exist (Borgefors
, 1986). For example;Chessboard: �1� 1�1�, City-
Block: �1� 2�3�, Quasi-Euclidean:�1� 1�41�1�73� and
Borgefors: �3� 4�5�. The �rst value is for direct
neighbors, the second for2D-diagonal neighborsand
the third for the3D-diagonal neighbors(Lohou and
Bertrand , 2005).City-Block weights (�1�2�3�) are
chosen for the geodesic distance propagation. First,
they provide a good balance between dicriminative
power and ef�cient time computation. Last but not
least, these neighboring weights allow to get the
closest result to the diffusive tortuosity values (results
from Chenet al. (2014)).

Geodesic distance

Geodesic distance transform, at the basis of our
descriptors de�nitions, has a geometric meaning
for porous network charaterization. It describes the
length of the percolating path of a spherical particle,
throughout the capillary system. Indeed, percolation
theory can be seen here; not between two faces of the
cube representing� , but between two random points
drawn inside the network. It is connected to the travel
time.

TOY CASES

The generation of the toy cases, for validation
purposes, is based on random connected voxels. Let�
be an image of size 3003. Let �x� y� z� be the generic
voxel coordinates. A broken path line,v0v1���vn, is
generated from a face to the opposite face. The
�rst voxel v0 is always taken at the center of a
face, say �0� 150�150�. Then, each voxelvk�1 is
obtained fromvk by a random draw of the parameters
� , � and L, from Eq. 34, each bounded by the
given parameters pairs�� lim�down� � lim�up�, �0� 2� � and
�L lim�down� Llim�up�, respectively. Fig. 9 shows the two
"limiting cones" in order to control the tortuosity of
the generated path.

x� � Lcos�� �

y� � Lcos�� � sin�� �

z� � Lsin�� � sin�� �

(34)

Fig. 9: The direction cones used for toy cases
generation.

This operation stops when the opposite plane,
de�ned by x � 299, is reached. The resulting broken
path line will be named "pore" in the following.
The �rst broken path lineP1 is simply a concatenation
of two pores (cf., Fig. 10). The last voxel of the
�rst pore de�nes the �rst voxel for the second pore.
P1 is then de�ned by random parameters�� 1� � 2�,
�� 1� � 2� and�L 1� L2�. The �rst parameter of each pair
corresponds to the �rst pore, and the second to the
second pore.

Fig. 10: ExampleP1 with � 1
lim�down � � �8, � 1

lim�up �
3� �16, � 2

lim�down � 3� �8 and � 2
lim�up � 7� �16.

For the cases presented next,�L lim�down� Llim�up�
is set to �20� 30� and �� 1

lim�down� �
1
lim�up� is set

to �� �8� 3� �16�. �� 2
lim�down. � 2

lim�up� takes the
values �� �16� � �8�, �� �8� 3� �16�, �3� �16� � �4�,
�� �4� 5� �16�, �5� �16� 3� �8�, �3� �8� 7� �16�,
�7� �16� � �2�, with the corresponding indexind �
1�2�3�4�5�6�7 (abscissas in Fig. 11, 13), for studying
the evolution of�̂ M. 10 realizations are generated for
each index, the average of the 10�̂ M are represented in
Fig. 11. The number of pointsN is between 7 and 14;
N increases with tortuosity.
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Multi-scale Cox Boolean models

A multi-scale microstructure can be modelized by
using multi-scale Cox Boolean model (Jeulin , 1996).
This process is de�ned by intersections and unions
between objects and points, generated by several
Poisson point processes, named Cox point processes
(Jeulin , 1997). This way to model multi-scale
complex microstructures gives more realistic results
than intersections and unions of several Boolean
models (Savaryet al., 1999), in particular no grains
are cut. This difference is illustrated in Fig. 14.

Fig. 14: Top �gures: Boolean model of platelets
and Boolean model of spheres denoting aggregate
scale. Bottom �gures: intersection of the two Boolean
models, by standard operation or using Cox point
process yielding a more realistic microstructure
(Moreaudet al., 2018).

In this paper, the focus is mostly on three-
scale models de�ned by three volume fractions;
Vv�inc volume fraction of inclusion areas (de�ning
aggregates),Vv volume fraction of grains inside
inclusion areas andVv�out volume fraction of grains
outside of inclusion areas. Exclusion zones, free of
any grain, can be used for the characterization of more
complex microstructures (Moreaud , 2006), but these
models are not considered here.
Results on Boolean models and on multi-scale Cox
Boolean models are presented in the next part. The
stopping condition is "when each point ofS is
disconnected to the others". This is the least restrictive
condition. In practice, we stop the display of curves
when uncertainty exceeds 2. The con�dence level is at
95 %; therefore the uncertainty is de�ned as twice the
standard deviation divided by the square root ofN.

BOOLEAN MODELS SPHERES AND
SPHEROCYLINDERS

The degree of impact of grains’ morphology has
been studied by comparing Boolean models of spheres
and spherocylinders with random orientations (cf.,
Fig. 15). A spherocylinder is a cylinder with two
hemispherical caps at each end, thus de�ned by two
parameters;L the length of the cylinder andR the
radius of the hemispheres. The �rst Boolean model of
spheres is de�ned by parametersR� 10 andVv � 0�7.
The Boolean model of spherocylinders is de�ned by
R � 5, L � 47 andVv � 0�7. Grains parameters are
chosen to have similar grain average volumeV̄�A��.
n � 20 realizations for each scheme are generated and
M-tortuosity-by-iterative-erosionsis applied on them.
The focus is on theM-scalar, �̂ M�r , as a function ofr,
radius of the percolating sphere.

Fig. 15: Realizations of Boolean models of (a)
spheres and (b) spherocylinders. Volumes generated
and rendered using "plug’im!" (2018).

Fig. 16: M-tortuosity-by-iterative-erosionsresults,
focus on�̂ M�r , for Boolean models of spheres (blue)
and spherocylinders (orange). Con�dence intervals,
with con�dence level at 95 %, are represented by
vertical bars.

Results highlight the shape effects (Fig.
16). Indeed, �̂ M�r increases faster in the case
of spherocylinders than in the case of spheres.
The percolation threshold of Boolean models of
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Fig. 20: The shape of a platelet grain and its parameters
(Chicheet al., 2008).

Fig. 21: M-tortuosity-by-iterative-erosionsresults,
focus on �̂ M�r , of multi-scale Cox Boolean models
of platelets; Rinc � 15, Vv�inc � 0�3 (blue), Rinc �
25, Vv�inc � 0�4 (orange). Con�dence intervals, with
con�dence level at 95 %, are represented by vertical
bars.

CONCLUSION AND
PERSPECTIVES

We have proposed a new descriptor,T̂M, named
M-tortuosity, based on geometric tortuosity. It
characterizes porous media sinuosity.T̂M is a scalable
descriptor which can have a proper dimensionality
and is applicable on very complex and disconnected
porous microstructures. Unlike de�nitions found in
the litterature, our method, using stochastic points
sampling (Monte Carlo method), does not use any
arbitrary entry and exit planes or points. Translational,
rotational and homothety invariances have been proven
together with periodic pattern repetition stability.
Extension of M-tortuosity, namedM-tortuosity-by-
iterative-erosions, improves the discriminative power
by taking into account narrowness, especially the
bottleneck effect, connecting it conceptually to
constrictivity. Application to basic toy cases validates

M-tortuositybehavior. Boolean models of spheres and
spherocylinders highlight consideration of shape effect
characteristic by M-tortuosity-by-iterative-erosions.
Finally, discriminations of multi-scale Cox Boolean
models of spheres �rst, then platelets, account for the
good discriminative power of our descriptor.
M-tortuosity is characterized, among other things, by
its scalability. This notion means here that information
of different dimensions can be extracted from our
descriptor. In this paper, the focus is on the �nal
M-scalar, �̂ M, for discrimation purposes. Such a
description is not exhaustive. Information of higher
dimensions, for instanceM-coef�cientsdistribution or
the 3D map of mean geometric tortuosity, can improve
the accuracy of the characterization. The 3D map of
mean geometric tortuosity is de�ned thanks to theN
geometric tortuosity 3D maps (one per starting point),
on which an arithmetic mean is computed for each
point ofSkover theN maps. This complete description
using all available information of theM-tortuosity
descriptor will be discussed in a further paper.
Moreover, characterization of a large set of zeolites
(catalysts with crystalline structure) will be performed
and 3D nano volumes of alumina catalyst supports,
obtained by nanotomography (Tranet al., 2014),
too. Correlations with experimental physicochemical
characteristics will be looked for. Finally based on
this method, two novel topological descriptors will
be proposed by �rst extendingM-tortuosity to gray-
level images, in order to avoid a segmentation step,
which can be very delicate in some applications,
and second, adapting theM-tortuosity formalism to
quantify heterogeneity at small scale.
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