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ABSTRACT

Geometric tortuosity is one of the foremost topological characteristics of porous media. Despite the various
definitions in the literature, to our knowledge, they are all linked to an arbitrary propagation direction.
This paper proposes a novel topological descriptor, named M-tortuosity, by giving a more straightforward
definition, describing the data regardless of physicochemical processes. M-tortuosity, based on the concept
of geometric tortuosity, is a scalable descriptor, meaning that information of several dimensions (scalar,
histograms, 3D maps) is available. It is applicable on complex disconnected structures without any arbitrary
definition of entry and exit. Topological information can be represented by aggregation into a unique
scalar descriptor for classification purposes. It is extended by iterative erosions to take into account porous
structure narrowness, especially bottleneck effects. This new descriptor, called M-tortuosity-by-iterative-
erosions, describes tortuosity of the porous part as seen by a spherical particle of given size walking along the
network. Boolean models are used to simulate different porous media structures in order to test the proposed
characterization.

Keywords: geodesic distance transform, geometric tortuosity, Monte Carlo algorithms, multi-scale porous
networks.

INTRODUCTION

Analysis and characterization of the topology of
biphasic materials, in particular porous media (formed
by solid and voids), is of paramount importance. As
their usage properties depend on their microstructure,
intuitive features help to design the porous phase
topology targeting a specific application. Their
complex interconnected capillary network renders
their accurate description, a difficult task. Statistical
modeling of materials by random morphological
models (Matheron , 1975) is an essential tool for
behavior prediction. In particular, Boolean models
(Serra , 1982) and multi-scale Cox Boolean models
(Jeulin , 1996; 2010) are considered in this paper.
Image processing operators quantify porous media
volumes by geometrical and topological features, as
specific descriptors. This paper addresses a topological
description based on the concept of tortuosity, first
introduced by Carman (1937) in the study of
permeability.
The term "tortuosity" is polysemic (Clennell , 1997),
even in the recent literature (Ghanbarian et al., 2013a).
Therefore, it is important to accurately define which
tortuosity is considered to avoid misunderstanding.

The focus here is on the geometric approach of
tortuosity characterization, quantifying porous volume
sinuosity (Clennell , 1997), without taking into account
any physicochemical phenomenon. More precisely a
specific definition is used; geometric tortuosity is
defined between two points as the ratio of their
geodesic and Euclidean distances (Lantuéjoul and
Beucher , 1981; Decker et al., 1998). Despite the
broad range of definitions, up to our knowledge,
geometric tortuosity has always been defined with
respect to a certain propagation direction. This can
be explained by the effort aiming to connect it
with percolation theory (Ghanbarian et al., 2013b).
Theoretical definitions from basic modelizations of
porous structures (Yu and Li , 2004; Yun et al., 2006)
exist. In Lindquist et al. (1996), the probability density
function of the geometric tortuosity is fit by a gamma
distribution for specific porous media. Some original
definitions of morphological tortuosity (Decker et al.,
1998), which stands for geometric tortuosity, have
also been proposed. Morphological dilations, with
different structuring elements, are used for tortuosity
computation in Peyrega and Jeulin (2013). Gommes
et al. (2009) use the morphological recontruction
operator to assess the tortuosity of a porous volume.
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INTRODUCTION

Analysis and characterization of the topology of
biphasic materials, in particular porous media (formed
by solid and voids), is of paramount importance. As
their usage properties depend on their microstructure,
intuitive features help to design the porous phase
topology targeting a specific application. Their
complex interconnected capillary network renders
their accurate description, a difficult task. Statistical
modeling of materials by random morphological
models (Matheron , 1975) is an essential tool for
behavior prediction. In particular, Boolean models
(Serra , 1982) and multi-scale Cox Boolean models
(Jeulin , 1996; 2010) are considered in this paper.
Image processing operators quantify porous media
volumes by geometrical and topological features, as
specific descriptors. This paper addresses a topological
description based on the concept of tortuosity, first
introduced by Carman (1937) in the study of
permeability.
The term "tortuosity" is polysemic (Clennell , 1997),
even in the recent literature (Ghanbarian et al., 2013a).
Therefore, it is important to accurately define which
tortuosity is considered to avoid misunderstanding.

The focus here is on the geometric approach of
tortuosity characterization, quantifying porous volume
sinuosity (Clennell , 1997), without taking into account
any physicochemical phenomenon. More precisely a
specific definition is used; geometric tortuosity is
defined between two points as the ratio of their
geodesic and Euclidean distances (Lantuéjoul and
Beucher , 1981; Decker et al., 1998). Despite the
broad range of definitions, up to our knowledge,
geometric tortuosity has always been defined with
respect to a certain propagation direction. This can
be explained by the effort aiming to connect it
with percolation theory (Ghanbarian et al., 2013b).
Theoretical definitions from basic modelizations of
porous structures (Yu and Li , 2004; Yun et al., 2006)
exist. In Lindquist et al. (1996), the probability density
function of the geometric tortuosity is fit by a gamma
distribution for specific porous media. Some original
definitions of morphological tortuosity (Decker et al.,
1998), which stands for geometric tortuosity, have
also been proposed. Morphological dilations, with
different structuring elements, are used for tortuosity
computation in Peyrega and Jeulin (2013). Gommes
et al. (2009) use the morphological recontruction
operator to assess the tortuosity of a porous volume.
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Notwithstanding that tortuosity is defined with respect
to a path, our goal is to look for a single scalar
value, gathering topological information, able to
describe the whole structure of a porous medium,
for discrimination purposes. This is motivated by
the rationale that the flow direction inside a porous
solid is non predictable in practice. Descriptor
scalability, information of different dimensions (scalar,
histograms, 3D maps), is necessary for a complete
characterization, since a unique scalar is not sufficient.
The resulting operator named M-tortuosity checks
all criteria. An extension is proposed, named M-
tortuosity-by-iterative-erosions, probing the porous
structure with a spherical percolating particle with
given radius.
The first part of this paper deals with theoretical
definitions, determinist and estimator definitions, and
M-tortuosity estimator properties. Numerical methods
are then explained in detail. Finally, the results
obtained on toy cases and Boolean models are exposed
and discussed.

METHODS

Notations used for M-tortuosity descriptor are
first presented. Then theoretical foundations for the
different operators are presented.

M-TORTUOSITY

Notations

We base the notations on the notation system
proposed by Criminisi et al. (2010) and Lohou and
Bertrand (2005). Let I be a binary function, I : R3 →
{0, 1}. Feature points are defined by the set X = {x ∈
R3; I(x) = 1}, X is a bounded set. The complementary
set of X is Xc = {x ∈ R3; I(x) = 0}. Let ∂I be
the convex hull of X , with I a bounded subset of
R3, defined as the smallest convex subset such that
X ⊂ I . Let I be a 3D binary image defined by I and
I , I : I → {0, 1}. In other words, I is the limitation
of I to I . Let c ∈ R3 be the center of mass of X . Let
S = {pi}i∈[[0, N−1]] be a set of N distinct sampled points
such that ∀i ∈ [[0, N − 1]], pi ∈ X . DG(S;X) is the 3D
geodesic distance map and ∀x ∈ X , DG(x,S;X) is the
geodesic distance transform value at the point x from S
restricted to X .

Geodesic Distance Transform

The geodesic distance transform is the equivalent
of the distance transform (Rosenfeld and Pfaltz , 1968;
Borgefors , 1986) in a non-Euclidean space, typically

the distance transform on gray-level images. The gray-
values are seen as "heights", a functional point of
view introduced by Rutovitz (1968); the distance is
propagated on the resulting surface. Geodesy could
also be seen as the restriction of the distance transform
to a subset of the image. This is the viewpoint taken in
this work.
The geodesic distance transform DG(.,S;X) (Criminisi
et al., 2010) of each voxel x ∈ X , from the set S,
restricted to the support X is defined as:

DG(x,S;X) = min
{x′∈S}

dX(x,x′) (1)

with
dX(x,y) = inf

Γ∈γx,y;X

∫ x

y
ds (2)

where γx,y;X is the set of all possible paths in R3

constrained by X , between y ∈ X (starting point) and
x ∈ X (ending point). Γ is one of these paths, and
s ∈ [0,L(Γ)] its curvilinear abscissa, with L(Γ) the
length of the path Γ.
DG(x,y;X) (S = {y}) "is the greatest lower bound of
the lengths of the arcs in X ending at points x and
y, if such arcs exist, and +∞ if not" (Lantuéjoul and
Beucher , 1981).

Geometric tortuosity

For each (x,y) ∈ X2, such that x �= y and x �= c, the
geometric tortuosity between x and y, named τx,y, is
defined as the ratio of the geodesic distance (length of
the shortest path) and the Euclidean distance (length of
the straight path) between these two points (Decker et
al., 1998).

τx,y =
DG(y,x;X)

D(y,x)
(3)

with D(y,x) the Euclidean distance between x, the
starting point, and y, the ending point.

M-coefficient

Given x ∈ X , x �= c, the M-coefficient associated
to x, Cx, is defined as the arithmetic mean of
the geometric tortuosities, τx,y, where the respective
weights are the geodesic distances DG(y,x;X).

Cx =

∫

X\{x}
DG(y,x;X).τx,y dy

∫

X\{x}
DG(y,x;X) dy

(4)

The idea behind the weighting using geodesic
distances (Berrocal et al., 2016) is that, the longer is
the path the more representative it is of the overall
porous structure tortuosity.
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M-scalar

The M-scalar, τM , is defined as the arithmetic
mean of {Cx}x∈X\{c}, where the respective weights are
the Euclidean distances from c, D(x,c).

τM =

∫

X\{c}
D(x,c).Cx dx

∫

X\{c}
D(x,c) dx

(5)

The idea behind this second weighting is close to the
previous one: the more a point is away from the center
of mass of the network, the higher the probability to
get long paths in its corresponding M-coefficient value.

At this step, such a formulation does not take into
account the case of multiple connected components.
It would lead to consider each of them separately.
In fact, it is possible to process simultaneously
all the connected components using the following
formulation.

Redefinition of M-coefficient and M-scalar

With this perspective, we replace Eq. 4 with Eq. 6
and Eq. 5 with Eq. 7. The M-coefficient associated to x
is defined, for a given x ∈ X , x �= c, using the harmonic
mean of the geometric tortuosities τx,y, weighted by the
inverse of the respective geodesic distance DG(y,x;X).

C−1
x =

∫

X\{x}

1
DG(y,x;X)

dy
∫

X\{x}

1
DG(y,x;X).τx,y

dy

if,
∫

X\{x}

1
DG(y,x;X).τx,y

dy �= 0

(6)

The harmonic mean is defined as the reciprocal of the
arithmetic mean of the reciprocals of the values, here
the geometric tortuosities. The denominator is equal to
zero only if x is isolated, i.e. connected to no point of
X . In this case, we impose Cx = 0.
For the same purpose, τM , the M-scalar, is defined as
the harmonic mean of {C−1

x }x∈X\{c}, weighted by the
inverse of the respective Euclidean distance from c,
D(x,c).

τM =

∫

X\{c}

1
D(x,c)

dx
∫

X\{c}

1
D(x,c).C−1

x
dx

if,
∫

X\{c}

1
D(x,c).C−1

x
dx �= 0

(7)

This formulation handles the disconnections
corresponding to an infinite geodesic distance. The
integral of the denominator is equal to zero only if
each point of X \{c} is disconnected from the others.

Unfortunately, this deterministic way to define the
M-tortuosity descriptor, TM, is difficult to apply on
large volumes in practice. Therefore, an estimator of
the M-tortuosity, T̂M , is necessary, and this will be
done using a skeletonization step and a point sampling
approach. The next section introduces the various
steps which define T̂M, the M-tortuosity estimator, and
its extension, the M-tortuosity-by-iterative-erosions
estimator.

M-TORTUOSITY ESTIMATOR

Skeletonization
Most numerical methods have to balance accuracy

and computation time efficiency. Skeletonization, used
as a pre-processing of X , allows first to decrease the
computation time. A skeleton can be defined in several
ways (Tagliasacchi et al., 2016). In this paper, the
thinning method of Lohou and Bertrand (2005), using
the notion of P-simple point, is chosen. The obtained
skeleton, named Sk, is the smallest homotopic subset
of X .
Obviously, skeleton computation biases the results, but
this bias is intentional. Let us recall that we attempt to
define a global geometric tortuosity, for discrimination
of complex networks. Fig. 1 displays a basic situation.
Intuitively, we would like a significant difference of
geometric tortuosity between the straight pore and the
sinuous pore in Fig. 1.

Fig. 1: Two pores (black lines); a straight one (dashed
lines) and a sinuous one (curved lines). The skeleton
of both pores is represented: the dashed straight blue
line for the straight pore, and the curved red line for
the sinuous one.

Computing the geometric tortuosity on the
skeleton enhances the difference between the two
pores of Fig. 1. In the section "Explanation on the
use of Monte Carlo method on the skeleton", a
specific case illustrates this assumption by comparing
the distribution of distances of both cases, with
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and without skeletonization. Skeletonization provides
a less scattered distribution of distances too (Fig.
2). Moreover, homotopic skeleton allows to have a
stability with respect to morphological erosion, defined
below. This characteristic matters, as we would like an
equal geometric tortuosity coefficient for two sinuous
pores of identical shape, but with distinct narrowness.
This is of particular interest for the M-tortuosity-by-
iterative-erosions operator.
For all this reasons, M-tortuosity operator T̂M is defined
on Sk, and not on X .

Sampling

1D sampling:
This sampling strategy corresponds to a uniform

sampling in the pore phase skeleton. Sk can be
rewritten as Sk = {xi}i∈[[0, |Sk|−1]], which can be seen
as an indexing of Sk, with |Sk| its number of
elements. Uniform distribution U([0, |Sk|−1]) allows
to randomly draw N distinct points in Sk\{c} defining
S.

Stratified sampling:
This sampling strategy corresponds to a uniform

density of sampled points in Sk (Neyman , 1934). Let
{Wi}i∈[[0, K−1]] be a set of K sub-images of I with
K = k3, k ∈ N and 3 corresponds to the dimension
of the space. If Sk ∩Wi �= /0, as before, one point is
uniformly drawn in Sk∩Wi \{c}. N points are sampled
in Sk \{c}, with N ≤ K, defining S.

Geometric tortuosity
Given S, the geometric tortuosity (Decker et al.,

1998) between pn ∈ S and pm ∈ S, m �= n, named τn,m,
is defined as

τn,m =
DG(pm, pn;Sk)

D(pm, pn)
(8)

with D(pm, pn) the Euclidean distance between pn,
starting point, and pm, ending point.

M-coefficient
Given n ∈ [[0, N − 1]], the estimated M-coefficient

Ĉn is defined as

Ĉ−1
n =

N−1

∑
m=0, m�=n

1
DG(pm, pn;Sk)

N−1

∑
m=0, m�=n

1
DG(pm, pn;Sk).τn,m

if,
N−1

∑
m=0, m�=n

1
DG(pm, pn;Sk).τn,m

�= 0

(9)

More details about the weighting are given in the
"Numerical Methods" section ("Geodesic Distance
Transform").

M-scalar

The estimated M-scalar, τ̂M , is defined as

τ̂M =

N−1

∑
n=0

1
D(pn,c)

∑N−1
n=0

1
D(pn,c).Ĉ−1

n

if,
N−1

∑
n=0

1
D(pn,c).Ĉ−1

n
�= 0.

(10)

The M-tortuosity descriptor, T̂M , applied to a
porous network skeleton Sk, is defined by the previous
steps; skeletonization, sampling, geodesic distance
transforms, Euclidean distance transforms, geometric
tortuosities, M-coefficients and M-scalar. A numerical
definition of this descriptor is given below.

Morphological erosion

Let εr(X) be the eroded set (Serra , 1982) of X by
a sphere of radius r ∈ N defined as

εr(X) = {x ∈ X ,D(x,Xc)> r} (11)

with D(x,Xc) the value of the distance transform
(Rosenfeld and Pfaltz , 1968; Borgefors , 1986),
D(.,Xc), to the complementary set of X , at point x.

D(x,Xc) = min
{x′∈Xc}

d(x,x′) (12)

with,

d(x,y) = inf
Γ∈γx,y

∫ x

y
ds (13)

where γx,y is the set of all possible paths in R3, between
y (starting point) and x (ending point). Γ is one of these
paths, and s ∈ [0,L(Γ)] its curvilinear abscissa, with
L(Γ) the length of the path Γ.
Morphological erosion is used for defining the
M-tortuosity-by-iterative-erosions estimator, T̂M,r,
assessing tortuosity for a percolating particle of a given
size.
In the next section, a realization of a Boolean model is
used to illustrate the use of homotopic skeletonization.
We show that the conditions of the use of Monte Carlo
method are fulfilled, justifying the definition of T̂M.
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EXPLANATION ON THE USE OF
MONTE CARLO METHOD ON THE
SKELETON

A realization of a Boolean model of size 3003,
with volume fraction Vv = 0.7 of spheres with constant
radius r = 10, is generated to illustrate our purpose (see
section "Results" for details about Boolean models).
The following calculations are done on the spheres
network and on the skeleton of this network, for
comparison purposes.
Let us consider two locations belonging to the pore
phase skeleton of the given microstructure. The two
values d and g, their Euclidean distance and their
geodesic distance, respectively, can be represented
as a point (d,g) in a coordinate system. Doing that
for several point pairs (see example in Fig. 2), we
obtain a kind of directional "jet" above neutral line
d = g, corresponding to nearby locations. The results
with and without skeletonization step are presented
for exactly the same point pairs (Fig. 2). Differences
are highlighted for 3 point pairs (black spheres,
squares and triangles in Fig. 2). Skeletonization
allows to increase the geometric tortuosity value, and
especially allows to increase the difference between
two microstructures, by being more sensitive to small
variations. Clearly, the more tortuous is the network,
the steepest will be this cloud of points; a first
candidate for being a "coefficient of tortuosity" could
be the average of the different slopes g / d. In fact,
as we have seen above, it is more interesting to work
with the inverse ratios d / g. The problem is that
these calculations rely on samplings. Will coefficients
obtained with two different samplings be reasonably
close? Instead of considering an underlying "abstract"
bivariate density, that could serve as a reference on
which various samplings are operated, we prefered to
operate on simulations with a very good degree of
reproductibility, as we are going to see it.
Fig. 2 (b) displays a cloud of points which can be seen
as a probability density function. A digital operator,
based on Monte Carlo method, can be a good estimator
of such a density, if and only if some conditions are
fulfilled (Caflisch , 1998). First, we are in a bounded
set, Sk. Secondly, our estimator can be integrated
on this subset if and only if at least two points are
connected. Practically, we generate 100 realizations
of a Boolean schemes of size 2003 and of volume
fraction Vv = 0.7 of spheres of constant radius r =
3. We compute the homotopic skeleton (Lohou and
Bertrand , 2005) of the complementary set of the set of
spheres, for prooving the decreasing of the variance as
1/N, with N the number of sampled points, using 1D-
sampling. Fig. 3 displays the variation of Nσ 2, with
σ2 the variance, as a function of N. The stabilisation

of this curve validates the fact that we are in an
asymptotic domain and the convergence is reached.

Fig. 2: Cases without skeletonization (a) and with
skeletonization (b). Scatterplot of coordinates (d, g):
d (resp. g) is the Euclidean distance (resp. geodesic
distance) of a point pair. 520 locations are sampled,
each pair of locations is processed. The linear
regression of the scatterplot is displayed (orange
line) with its equation, and the reference line g =
d corresponds to geometric tortuosity equal to one.
Three point pairs are represented by a black square
(resp. circle and triangle).

Fig. 3: Evolution of N times the variance of τ̂M (Eq.
10), σ2, over the 100 realizations of Boolean models
of size 2003 and of volume fraction Vv = 0.7 of spheres
of constant radius r = 3, as a function of N.
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M-TORTUOSITY DESCRIPTOR
PROPERTIES

M-tortuosity estimator, as a topological
descriptor, should verify some invariance properties.
Due to its definition, the geodesic distance transform
is already invariant by translation and rotation. In this
section, M-tortuosity estimator invariance properties
and stability on a periodic structure, are established.

Translational invariance
Let T be the translation defined by vector t ∈ R3.

T : R3 → R3

x �→ x+ t

Let It be the translated set of I by vector t. Let
St and Skt be the translated sets of S and Sk,
respectively. By definition, the geodesic distance
transform, DG(.,S;Sk), is invariant with respect to
translation. This result is obviously true for the
Euclidean distance transform too. The geometric
tortuosity is then translation invariant. Whatever x∈ Sk
and t ∈ R3,

τy+t,x+t =
DG(x+ t,y+ t;Skt)

D(x+ t,y+ t)

=
DG(x,y;Sk)

D(x,y)
= τy,x.

(14)

Eq. 9 and 14 allow us to say that the M-coefficients
are translation invariant. As Euclidean distance is
translation invariant itself, τ̂(t)M is equal to τ̂M .
Finally the M-tortuosity descriptor, T̂M, is translation
invariant.

Rotational invariance
Let R be the rotation transform with Euler angles

(θ , φ ) defined by matrix Mθ ,φ ∈ M3,3(R),

R : R3 → R3

x �→ Mθ ,φ .x .

Let Iθ ,φ be the rotated version of angles (θ , φ ) of I. It
follows, Sθ ,φ and Skθ ,φ , representing the rotated sets
of S and Sk, respectively. Due to its definition, the
geodesic distance transform, DG(.,S;Sk), is invariant
with respect to rotation. As before, there is no difficulty
proving that M-tortuosity descriptor, T̂M , is rotation
invariant.

Homothety invariance
Let H be the homothety transform defined by its

center O ∈ R3 and its ratio λ ∈ R∗.

H : R3 → R3

x �→ O+λ �Ox

Let IO,λ be the homothetic set of I by an homothety
of center O and ratio λ . Let SO,λ and SkO,λ be the
homothetic sets of S and Sk, respectively. Whatever
(x,y) ∈ Sk2, ∀O ∈ R3 and ∀λ ∈ R∗

DG(xO,λ ,SO,λ ;SkO,λ ) = λ .DG(x,S;Sk). (15)

Euclidean distance respects this relation too. Then the
geometric tortuosity between xO,λ and yO,λ ,

τyO,λ ,xO,λ =
DG(xO,λ ,yO,λ ;SkO,λ )

D(xO,λ ,yO,λ )

=
λ .DG(x,y;Sk)

λ .D(x,y)
= τy,x.

(16)

Eq. 9 and 16 allow us to say that the M-coefficients are
homothety invariant. Then the M-scalar,

τ̂M,O,λ =

N−1

∑
n=0

1
D(pn,O,λ ,cO,λ )

N−1

∑
n=0

1
D(pn,O,λ ,cO,λ ).Ĉ

−1
n

=

N−1

∑
n=0

1
λD(pn,c)

N−1

∑
n=0

1
λD(pn,c).Ĉ−1

n

= τ̂M.

(17)

Finally T̂M is homothety invariant.

Periodic pattern repetition stability

Periodic pattern is here defined by the function I0.
The image I0, defined by I0 and I0, with X0 the feature
points set, is seen in a more practical viewpoint; the
convex hull of X0, ∂I0, is a cube, as shown Fig. 4 and
5. This stability is of paramount interest for crystalline
structures characterization.

Proposition 1. Let I0 be a periodic function in all three
directions. I0 is named here the unit cell. (Tx,Ty,Tz) ∈
N3 are the respective periods which are the size of I0
too. Let I be a repetition of q times I0 in the three
space directions of R3. Then, if q tends to infinity and
N is high enough, the estimated M-scalar, τ̂M, will
converge. In other words, there exists a τ ∈R such that

lim
q→∞

T̂M(Sk) = τ. (18)
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The proof of this proposition of stability of T̂M
uses the fact that the integrality of the topological
information is contained in the unit cell, I0.
For didactic purposes, I is displayed here as a
concatenation of 3 times I0 in the x direction only (Fig.
4). For these same purposes, illustrations are in 2D
(Fig. 4 and 5) and calculations are done in a 2D plan of
R3. Moreover, we will focus on very specific points, as
shown below, for illustration purposes. The results can
be extended to any I, defined as a repetition of q times
I0 in every space directions of R3 and for any points
pair.
Let (p, p0) ∈ Sk2

0 and p1 and p2, two points of Sk, be
defined by

p1 = p0 +(Tx,0,0)
p2 = p0 +2.(Tx,0,0).

(19)

Let pk0 ∈ Sk0 ∩∂I0 be defined by

DG(p1, p;Sk) =DG(pk0 , p;Sk)
+DG(p1, pk0 ;Sk).

(20)

Redefining geodesic distance transform in the specific
case of a periodic image gives

DG(p1, p;Sk) =DG(pk0 , p;Sk)
+DG(p0, pl0 ;Sk)

(21)

with pl0 ∈ Sk0 ∩∂I0, as shown in Fig. 4.
Let us now consider the geodesic distance between p
and p2. Using the same scheme we obtain:

DG(p2, p;Sk) =DG(pk0 , p;Sk)
+DG(pk0 , pl0 ;Sk)
+DG(p0, pl0 ;Sk).

(22)

Fig. 4: Sketch of I, concatenation of 3 times I0 (first
"square"), the black broken lines represent the porous
network skeleton. Possible positions of p and p0, and
the corresponding positions of p1, p2, pk0 and pl0 .
Geodesic paths between p and p1 and between p and
p2, are represented (red broken lines).

Euclidean distance is needed too, for geometric
tortuosity definition. Considering (x,y) ∈ R2 the
orthogonal projections of �pp0, as represented in Fig. 5,

the Euclidean distances between p and p1 and between
p and p2 can be written respectively,

D(p1, p) =
√

y2 +(x+Tx)2

D(p2, p) =
√

y2 +(x+2.Tx)2.
(23)

Fig. 5: Sketch of I, concatenation of 3 times I0
(first "square"), and representation of some possible
positions of p and p0, and the corresponding positions
of p1, p2, pk0 and pl0 . Euclidean distances between p
and p1 and between p and p2, are represented with
their orthogonal projections on x and y directions using
(x,y) ∈ R2 and Tx ∈ R.

Let us generalize these concepts. I is now a
concatenation of q times I0 in the x direction, and
pq ∈ X the point defined by

pq = p0 +q.(Tx,0,0). (24)

The geodesic distance and Euclidean distance between
p and pq are respectively,

DG(pq, p;Sk) = DG(pk0 , p;Sk)
+(q−1).DG(pk0 , pl0 ;Sk)
+DG(p0, pl0 ;Sk)

D(pq, p) =
√

y2 +(x+q.Tx)2.

(25)

We have the following limits,

lim
q→∞

DG(pq, p;Sk)
q.DG(pk0 , pl0 ;Sk)

= 1

lim
q→∞

D(pq, p)
q.Tx

= 1.
(26)

Therefore τq, the geometric tortuosity between p and
pq, is such that,

lim
q→∞

τq = τl0,k0 (27)

This means that for q high enough, using the
previous equivalences, Ĉn,q can be expressed using the
geometric tortuosities of each percolating path of I0,
the unit cell, here in the x direction.

Ĉ−1
n,q =

N−1

∑
i=0

N−1

∑
j=0

1
Ai, j,q.DG(pk j , pli ;Sk)

N−1

∑
i=0

N−1

∑
j=0

1
Ai, j,q.DG(pk j , pli ;Sk).τli,k j

(28)
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where Ai, j,q ∈ N is a coefficient depending on the
ending point pq and on the percolating path (pli , pk j),
and pli and pk j belonging to two different faces of I0,
in this case two opposite ones.
Let I and I′ be two images generated by concatenation
of q and q−1 times I0, respectively. Let Cn,q and Cn,q−1
be two estimated M-coefficients connected to the same
starting points p and the same set of end points. Using
the previous approximations,

lim
q→∞

Ĉn,q−1

Ĉn,q
= 1. (29)

There exists a C ∈ R∗ such that

lim
q→∞

Ĉn,q =C. (30)

As said before, all these calculations are extended to
any image I defined as a concatenation of q times the
unit cell I0 in each space direction of R3 and for any
points pair.
Then using Eq. 30 and 25, for N high enough, there
exists a τ ∈ R such that

lim
q→∞

T̂M(Sk) = τ (31)

meaning that T̂M is stable by periodic pattern
repetition. In practice, N is chosen with respect to the
variance of the estimator (cf., Fig. 3).
Summary: the M-tortuosity descriptor is invariant for
all desirable transformations and stable for periodic
structures. The next part describes the numerical
methods of computation of M-tortuosity and M-
tortuosity-by-iterative-erosions estimators, to assess
the defined characteristics from digital images.

NUMERICAL METHODS
M-tortuosity and M-tortuosity-by-iterative-

erosions can be described in a discrete space. The
descriptors are here the numerical version of the
estimators T̂M and T̂M,r (r ∈ N) defined below (i.e.,
the algorithms or computational methods). Two main
aspects of our methods are presented too: connectivity,
being a central issue of any topological analysis, and
geodesic distance transform, on which our descriptors
are based.

M-tortuosity
M-tortuosity has a certain sampling as its N

random points are sampled in Sk, using one of the
two previous sampling methods, defining the set
S = {pi}i∈[[0, N−1]]. The geodesic distance transform,
DG(., pi;Sk), is computed for each point of S; it means
that each pi will be, only once, the unique starting

point for the geodesic distance map computation. In
the following algorithms (algo. 1 and 3), DG(., pi;Sk)
and D(., pi) will be written DG(pi) and D(pi) for
brevity. Then given pn, the starting point, n ∈ [[0, N −
1]], the geometric tortuosity is computed for each pm,
m ∈ [[0, N − 1]], m �= n, by using Eq. 8. Then the
N − 1 values τn,m allow the computation of Ĉn, the
estimated M-coefficient associated to pn (Eq. 9). These
operations are iterated N times on S, in order to get N
M-coefficients, each one corresponding to a point of S.
Finally, the M-scalar, τ̂M, is computed using Eq. 10.
This computation process defines the estimator T̂M ,
called M-tortuosity descriptor. The following pseudo-
code (algo. 1) gives a detailed description of the whole
computation process.
Details about M-tortuosity main step, geodesic
distance transform, are given below. Sketches
are done in 2D for didactic purposes.

Algorithm 1: M-tortuosity

Result: M-scalar τ̂M

Skeleton computation Sk;
Definition of S = {pi}i∈[[0, N−1]] set of N
sampling points of Sk;

for n ∈ [[0,N −1]] do
Computation of:
Geodesic distance map DG(pn);
Euclidean distance map D(pn);
for m ∈ [[0,N −1]] with m �= n do

Geometric tortuosity computation:

τn,m = DG(pm,pn;Sk)
D(pm,pn)

;
end
M-coefficient computation:

Ĉ−1
n =

∑N−1
m=0, m�=n

1
DG(pm,pn;Sk)

∑N−1
m=0, m�=n

1
DG(pm,pn;Sk).τn,m

;

end
M-scalar computation:

τ̂M =
∑N−1

n=0
1

D(pn,c)

∑N−1
n=0

1
D(pn,c).Ĉ−1

n

;

M-tortuosity-by-iterative-erosions
Extension of T̂M, by using iterative erosions of

X , allows to take into account local narrowness
of X , and especially the bottleneck effect. M-
tortuosity-by-iterative-erosions is then connected to
the constrictivity concept (Petersen (1958); Holzer
et al. (2013) cited in Neumann et al. (2018)). The
idea behind this new descriptor, T̂M,r, is to assess the
tortuosity of the visible porous part for a given probe
size, the radius r of the spherical percolating particle
used for erosions.

8
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The principle is the following; the M-tortuosity
descriptor is applied on εr(X), the eroded set of X by
a sphere of radius r (Eq. 11). T̂M,r is defined for any
integer r by,

T̂M,r(X) = T̂M(εr(X)). (32)

In the following pseudo-code (Algo. 2), D(X) stands
for the distance map to the complementary set D(.,Xc)
(Eq. 12) for all x ∈ X , for brevity.
The stopping condition could as well be defined using
the number of connected points in S, or the number
of connected components, or the volume of εr(X) etc.

Algorithm 2: M-tortuosity-by-iterative-
erosions

Result: M-scalar vector τ̂M,r

Computation of distance map D(X);
while Condition is false do

M-tortuosity computation:
T̂M(X);
Erosion by sphere of radius r:
X = εr(X);
Condition computation;
r = r+1;

end

Connectivity

The connectivity degree, as it has been considered,
has a non-negligible impact on digital image
processing computation methods. It is well known that
3D connectivity considers either 6, 18 or 26 neighbor
voxels (sharing either a face, at least an edge or at least
a vertex only). Using the definitions from (Lohou and
Bertrand , 2005), let x ∈ Z3 defined by (x1,x2,x3) be
the current point, three neighborhoods can be defined:
N26(x) = {x′ ∈Z3 : Max[|x1−x′1|, |x2−x′2|, |x3−x′3|]≤
1}\{x}, N6(x) = {x′ ∈Z3 : |x1−x′1|+ |x2−x′2|+ |x3−
x′3| ≤ 1} \ {x}, and N18(x) = {x′ ∈ Z3 : |x1 − x′1|+
|x2−x′2|+ |x3−x′3| ≤ 2}\{x}∩N26(x). The connected
components are then directly defined by the choice
of the foreground and background neighborhoods.
In this paper, we take the most usual choice: N26-
neighborhood for the foreground and N6-neighborhood
for the background.

Geodesic Distance Transform

The geodesic distance transform is a very powerful
tool for connectivity issues (Lantuéjoul and Beucher ,
1981) and is at the very basis of our descriptors. Fig.
6 shows the difference between Euclidean distance
transform on X and geodesic distance transform for the
same set X and starting point s. X has two connected

components and the second one, the disk, is not
reached by the geodesic propagation from s unlike
the Euclidean propagation. Moreover, the propagation
itself is completely different too.

Fig. 6: Differences between Euclidean distance
transform (left) on X and geodesic distance transform
(right) restricted to X . s is the starting point used for
both maps.

The purpose of the weighting of Eq. 9, as
said above, is to promote long paths which are
more representative of the porous structure for a
global tortuosity assessment. Moreover, the inverse
of the geometric tortuosity and the respective
geodesic distance allows to deal with disconnected
components. This comes from a geodesic distance
transform characteristic; the geodesic distance of two
nonconnected points of X (i.e., belonging to two
distinct connected components, as in Fig. 6) is infinite.
Indeed, in such a case, there is no path, totally
included in X , connecting the two points. Using
the inverse of the geodesic distance annihilates the
contribution of such paths. Then, given n ∈ N, Ĉn, the
M-coefficient associated to the starting point pn, will
take into account only paths belonging to the same
connected component of pn; nonconnected points will
not interfere in the computation.
Raster-scanning algorithm, used for geodesic distance
computation, is presented next.

Raster-scanning algorithm:

This algorithm iterates image scans until
stabilization (i.e., idempotence). A similar algorithm
can be found in Toivanen (1996) for grayscale images.
An iteration is composed of two raster scans; the
forward scan -from top to bottom, and from left to
right- and the backward scan -from bottom to top, and
from right to left-. For each scan a specific mask is
used, as shown in Fig. 7.
First, voxels belonging to S, the starting voxels,
are initialized to 0 and all the others to infinity.
The forward scan starts from the top left voxel.
Computation and update, if necessary, of the geodesic
distance value of each voxel of X is done if

DG(x)> DG(ni)+W (ni) (33)
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with x the current voxel (gray pixel in Fig. 7), ni
stands for a neighbor (colored pixels in Fig. 7) and
W (ni) is the weight corresponding to the neighbor.
The backward scan is done in a very same way with
an appropriate neighborhood. These scans are iterated
until idempotence is reached, which means that no
update has been done in DG at the final iteration. We
have gathered these explanations in the pseudo-code
(algo. 3).

Fig. 7: The two scans used for the raster method, the
starting voxel is represented by a black point.

RESULTS AND DISCUSSION

M-tortuosity describes the sinuosity of capillary
networks. Information at various dimensions can be
extracted from this scalable topological descriptor.
For instance, distributions of geometric tortuosities
τn,m and M-coefficients Ĉn, characterize the porous
structure. Heterogeneity can be described by
scatterplots of geometric tortuosities or geodesic
distances, at the points of S, according to Euclidean
distances. 3D geometric tortuosity maps can also
be extracted from M-tortuosity estimator and its
extension. In this paper, the focus is mainly on τ̂M,r,
for classification purposes. Before proceeding to our
results, we are going to present some numerical details
and choices about the descriptors.

Algorithm 3: Raster-scanning algorithm
(see Fig. 7)

Result: Geodesic Distance Map DG

Initialization:
∀x ∈ I ,
DG(x) = 0 if x ∈ S,
DG(x) = ∞ otherwise;
while idempotence not reached do

Forward Scan:
for all x ∈ X do

if DG(x)> DG(ni)+W (ni) then
DG(x) = DG(ni)+W (ni);

end
end
Backward Scan:
for all x ∈ X do

if DG(x)> DG(ni)+W (ni) then
DG(x) = DG(ni)+W (ni);

end
end

end

PRACTICAL DETAILS ABOUT
NUMERICAL ESTIMATORS

Sampling
As said above, two sampling methods are

considered, 1D-sampling and stratified sampling. Fig.
8 exhibits the difference between the two sampling
methods.

Fig. 8: Examples of skeleton Sk, represented by
the broken lines, with the (a) 1D-sampling and (b)
stratified sampling methods. S is the set of red or blue
dots.

Due to its faster convergence (Baddeley and Jensen
, 2005), stratified sampling has been chosen for the
results exposed below. The targeted number of points
in Sk is 50 then k = 4 in our case. This choice is
motivated by the convergence study (Fig. 3). Although
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stability is reached for N = 50 with 1D-sampling, N =
64 (N = K) with stratified sampling is chosen (true
only for the cases of Boolean models with adapted
volume fraction) for safety purposes.

Neighborhood weights

As said above we use the 26-connectivity for the
foreground and the 6-connectivity for the background.
Weights used for the geodesic distance propagation
have a key role in the extraction of information from
M-tortuosity and M-tortuosity-by-iterative-erosions
descriptors.
Indeed different well-known weights exist (Borgefors
, 1986). For example; Chessboard: {1,1,1}, City-
Block: {1,2,3}, Quasi-Euclidean: {1,1.41,1.73} and
Borgefors: {3,4,5}. The first value is for direct
neighbors, the second for 2D-diagonal neighbors and
the third for the 3D-diagonal neighbors (Lohou and
Bertrand , 2005). City-Block weights ({1,2,3}) are
chosen for the geodesic distance propagation. First,
they provide a good balance between dicriminative
power and efficient time computation. Last but not
least, these neighboring weights allow to get the
closest result to the diffusive tortuosity values (results
from Chen et al. (2014)).

Geodesic distance

Geodesic distance transform, at the basis of our
descriptors definitions, has a geometric meaning
for porous network charaterization. It describes the
length of the percolating path of a spherical particle,
throughout the capillary system. Indeed, percolation
theory can be seen here; not between two faces of the
cube representing I, but between two random points
drawn inside the network. It is connected to the travel
time.

TOY CASES

The generation of the toy cases, for validation
purposes, is based on random connected voxels. Let I
be an image of size 3003. Let (x,y,z) be the generic
voxel coordinates. A broken path line, v0v1...vn, is
generated from a face to the opposite face. The
first voxel v0 is always taken at the center of a
face, say (0,150,150). Then, each voxel vk+1 is
obtained from vk by a random draw of the parameters
φ , θ and L, from Eq. 34, each bounded by the
given parameters pairs (φlim,down,φlim,up), (0,2π) and
(Llim,down,Llim,up), respectively. Fig. 9 shows the two
"limiting cones" in order to control the tortuosity of
the generated path.

x′ = Lcos(φ)
y′ = Lcos(θ)sin(φ)
z′ = Lsin(θ)sin(φ)

(34)

Fig. 9: The direction cones used for toy cases
generation.

This operation stops when the opposite plane,
defined by x = 299, is reached. The resulting broken
path line will be named "pore" in the following.
The first broken path line P1 is simply a concatenation
of two pores (cf., Fig. 10). The last voxel of the
first pore defines the first voxel for the second pore.
P1 is then defined by random parameters (φ 1,φ 2),
(θ 1,θ 2) and (L1,L2). The first parameter of each pair
corresponds to the first pore, and the second to the
second pore.

Fig. 10: Example P1 with φ 1
lim,down = π/8, φ 1

lim,up =

3π/16, φ 2
lim,down = 3π/8 and φ 2

lim,up = 7π/16.

For the cases presented next, (Llim,down,Llim,up)

is set to (20,30) and (φ 1
lim,down,φ

1
lim,up) is set

to (π/8,3π/16). (φ 2
lim,down. φ 2

lim,up) takes the
values (π/16,π/8), (π/8,3π/16), (3π/16,π/4),
(π/4,5π/16), (5π/16,3π/8), (3π/8,7π/16),
(7π/16,π/2), with the corresponding index ind =
1,2,3,4,5,6,7 (abscissas in Fig. 11, 13), for studying
the evolution of τ̂M . 10 realizations are generated for
each index, the average of the 10 τ̂M are represented in
Fig. 11. The number of points N is between 7 and 14;
N increases with tortuosity.
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Fig. 11: τ̂M values according to the index of
(φ 2

lim,down,φ
2
lim,up) for the P1 case. Confidence

intervals, with confidence level at 95 % (see definition
below), are represented by vertical bars.

As expected, τ̂M increases when limited angles
increase.
The generation of the second toy case, P2, is based
on 3D-crosses made of 3 pores. The same limiting
parameters are used for pores’ generation. Each pore
of a cross (see Fig. 12) starts and ends at the center of
the two opposite faces perpendicular to its propagation
direction, and passes through the center of the cube I of
size 3003 voxels. P2 is composed of 8 cubes or images
I; 4 of them defined by φ 1, θ 1 and L1, the other 4 cubes
by φ 2, θ 2 and L2. The 8 cubes are organized following
a simple rule; a cube cannot have a common face with
an identical cube. An example is given in Fig. 12. The
number of points N is between 42 and 57; N increases
with tortuosity.

Fig. 12: Different pores with a 3D-cross structure;
example of P2 with φ 1

lim,down = π/8, φ 1
lim,up = 3π/16,

φ 2
lim,down = 5π/16 and φ 2

lim,up = 3π/8.

(φ 1
lim,down,φ

1
lim,up) are fixed at the same values

(π/8,3π/16). (φ 2
lim,down,φ

2
lim,up) are varying using the

same values as for P1. The results of the average of the
10 realizations, with its associated confidence interval,
as before, are presented in Fig. 13.

Fig. 13: τ̂M values according to the index of
(φ 2

lim,down,φ
2
lim,up) for the P2 case. Confidence

intervals, with confidence level at 95 % (see definition
below), are represented by vertical bars.

The behavior of τ̂M corresponds to the expectations
for both cases (P1 and P2). The only difference between
the two cases is that the values taken by τ̂M are
higher in the second case, P2. This comes from the
fundamental structure of the "porous networks", in
other words, their lowest scale. For P1, this is simply
a straight line whereas it is 8 3D-crosses for P2.

BOOLEAN MODELS AND MULTI-SCALE
COX BOOLEAN MODELS GENERATION

Boolean models

Boolean models (Matheron , 1975; Serra , 1982)
are based on a Poisson Point process of intensity
θ (Kingman , 1993). The number of points to be
placed, U , is a random variable, following a Poisson
distribution of parameter θV (W ), U ∼ Poi(θV (W )),
W being the bounded domain and V (W ) its volume.
Random primary grains A′ (overlapping allowed) are
located at Poisson points xk. A′ and intensity θ define
Boolean model A (Eq. 35).

A =
⋃
xk

A′
xk

(35)

Eq. 36 shows dependency of θ with respect to the
average volume V̄ (A′) of the primary grains of the
material A′ and on the volume fraction Vv.

1−Vv = exp(−θV̄ (A′)) (36)

For more details about Boolean models, please refer to
Matheron (1975); Serra (1982); Chiu et al. (2013).
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Multi-scale Cox Boolean models

A multi-scale microstructure can be modelized by
using multi-scale Cox Boolean model (Jeulin , 1996).
This process is defined by intersections and unions
between objects and points, generated by several
Poisson point processes, named Cox point processes
(Jeulin , 1997). This way to model multi-scale
complex microstructures gives more realistic results
than intersections and unions of several Boolean
models (Savary et al., 1999), in particular no grains
are cut. This difference is illustrated in Fig. 14.

Fig. 14: Top figures: Boolean model of platelets
and Boolean model of spheres denoting aggregate
scale. Bottom figures: intersection of the two Boolean
models, by standard operation or using Cox point
process yielding a more realistic microstructure
(Moreaud et al., 2018).

In this paper, the focus is mostly on three-
scale models defined by three volume fractions;
Vv,inc volume fraction of inclusion areas (defining
aggregates), Vv volume fraction of grains inside
inclusion areas and Vv,out volume fraction of grains
outside of inclusion areas. Exclusion zones, free of
any grain, can be used for the characterization of more
complex microstructures (Moreaud , 2006), but these
models are not considered here.
Results on Boolean models and on multi-scale Cox
Boolean models are presented in the next part. The
stopping condition is "when each point of S is
disconnected to the others". This is the least restrictive
condition. In practice, we stop the display of curves
when uncertainty exceeds 2. The confidence level is at
95 %; therefore the uncertainty is defined as twice the
standard deviation divided by the square root of N.

BOOLEAN MODELS SPHERES AND
SPHEROCYLINDERS

The degree of impact of grains’ morphology has
been studied by comparing Boolean models of spheres
and spherocylinders with random orientations (cf.,
Fig. 15). A spherocylinder is a cylinder with two
hemispherical caps at each end, thus defined by two
parameters; L the length of the cylinder and R the
radius of the hemispheres. The first Boolean model of
spheres is defined by parameters R = 10 and Vv = 0.7.
The Boolean model of spherocylinders is defined by
R = 5, L = 47 and Vv = 0.7. Grains parameters are
chosen to have similar grain average volume V̄ (A′).
n = 20 realizations for each scheme are generated and
M-tortuosity-by-iterative-erosions is applied on them.
The focus is on the M-scalar, τ̂M,r, as a function of r,
radius of the percolating sphere.

Fig. 15: Realizations of Boolean models of (a)
spheres and (b) spherocylinders. Volumes generated
and rendered using "plug’im!" (2018).

Fig. 16: M-tortuosity-by-iterative-erosions results,
focus on τ̂M,r, for Boolean models of spheres (blue)
and spherocylinders (orange). Confidence intervals,
with confidence level at 95 %, are represented by
vertical bars.

Results highlight the shape effects (Fig.
16). Indeed, τ̂M,r increases faster in the case
of spherocylinders than in the case of spheres.
The percolation threshold of Boolean models of
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spherocylinders is lower than for Boolean models
of spheres (Jeulin and Moreaud , 2006), the porous
volume is disconnected faster, which explains that τ̂M,r
increases faster, with respect to r.

MULTI-SCALE COX BOOLEAN MODELS
OF SPHERES

Let us now consider multi-scale Cox Boolean
models of spheres with constant radius. Fig. 17
displays a realization of each model. Two scales are
used; aggregate scale, defining non-empty areas, and
grain scale inside aggregates, inclusion spheres. Space
outside inclusion spheres is kept empty. Radius of
spheres, i.e., grains, is given, R = 3, and is part of
constant parameters, as well as grain volume fraction
Vv = 0.7 and Vv,out = 0. Only aggregate sphere radii
Rinc and volume fractions Vv,inc vary; Vv,inc = 0.4 and
Rinc = 10 for the first model, and Vv,inc = 0.6 and
Rinc = 20 for the second (Fig. 17).

Fig. 17: Realizations of a multi-scale Cox Boolean
model of spheres (a) Rinc = 10, Vv,inc = 0.4 and
(b) Rinc = 20, Vv,inc = 0.6. Volumes generated and
rendered using "plug’im!" (2018).

M-tortuosity-by-iterative-erosions results are
presented in Fig. 18. As expected the model with a
higher volume fraction Vv,inc is more tortuous than
the other one. Indeed, the larger the radius r of the
spherical percolating particule, the more the model’s
low scales prevails. Hence, the gap between two
models increases with r.

MULTI-SCALE COX BOOLEAN MODELS
OF PLATELETS

The final application focuses on a specific
modelization using multi-scale Cox Boolean models
of platelets, simulating alumina catalysts (Wang et al.,
2015) (cf., Fig. 19).

Fig. 18: The results of M-tortuosity-by-iterative-
erosions, with a focus on τ̂M,r, for multi-scale Cox
Boolean models of spheres; Rinc = 10, Vv,inc = 0.4
(blue), Rinc = 20, Vv,inc = 0.6 (orange). Confidence
intervals, with confidence level at 95 %, are
represented by vertical bars.

Fig. 19: Realizations of multi-scale Cox Boolean
models of platelets (a) Rinc = 15, Vv,inc = 0.3 and
(b) Rinc = 25, Vv,inc = 0.4. Volumes generated and
rendered using "plug’im!" (2018).

Platelets (Chiche et al., 2008) are defined by the
parameters H, L, l′ and l (Fig. 20). Two models
are compared with constant parameters; platelets’
parameters (H = 3, L = 105, l′ = 5, l = 7), Vv = 0.4,
Vv,out = 0.2, and different parameters; Vv,inc = 0.3 and
Rinc = 15 for the first model, and Vv,inc = 0.4 and
Rinc = 25 for the second.
The M-scalar τ̂M,r increases faster in the higher
volume fraction model again, as shown in Fig. 21.
The final radius, r = 2, is lower than in the previous
application because of the non-empty space outside
inclusion spheres.

M-tortuosity-by-iterative-erosions, especially τ̂M,r,
allows to separate very similar multi-scale Cox
Boolean models (cf., Fig. 18 and 21). This is partially
done by consideration of narrowness, thanks to the use
of morphological erosion. Moreover, shape effect is
also highlighted by our descriptor (see Fig. 16).
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Fig. 20: The shape of a platelet grain and its parameters
(Chiche et al., 2008).

Fig. 21: M-tortuosity-by-iterative-erosions results,
focus on τ̂M,r, of multi-scale Cox Boolean models
of platelets; Rinc = 15, Vv,inc = 0.3 (blue), Rinc =
25, Vv,inc = 0.4 (orange). Confidence intervals, with
confidence level at 95 %, are represented by vertical
bars.

CONCLUSION AND
PERSPECTIVES

We have proposed a new descriptor, T̂M , named
M-tortuosity, based on geometric tortuosity. It
characterizes porous media sinuosity. T̂M is a scalable
descriptor which can have a proper dimensionality
and is applicable on very complex and disconnected
porous microstructures. Unlike definitions found in
the litterature, our method, using stochastic points
sampling (Monte Carlo method), does not use any
arbitrary entry and exit planes or points. Translational,
rotational and homothety invariances have been proven
together with periodic pattern repetition stability.
Extension of M-tortuosity, named M-tortuosity-by-
iterative-erosions, improves the discriminative power
by taking into account narrowness, especially the
bottleneck effect, connecting it conceptually to
constrictivity. Application to basic toy cases validates

M-tortuosity behavior. Boolean models of spheres and
spherocylinders highlight consideration of shape effect
characteristic by M-tortuosity-by-iterative-erosions.
Finally, discriminations of multi-scale Cox Boolean
models of spheres first, then platelets, account for the
good discriminative power of our descriptor.
M-tortuosity is characterized, among other things, by
its scalability. This notion means here that information
of different dimensions can be extracted from our
descriptor. In this paper, the focus is on the final
M-scalar, τ̂M , for discrimation purposes. Such a
description is not exhaustive. Information of higher
dimensions, for instance M-coefficients distribution or
the 3D map of mean geometric tortuosity, can improve
the accuracy of the characterization. The 3D map of
mean geometric tortuosity is defined thanks to the N
geometric tortuosity 3D maps (one per starting point),
on which an arithmetic mean is computed for each
point of Sk over the N maps. This complete description
using all available information of the M-tortuosity
descriptor will be discussed in a further paper.
Moreover, characterization of a large set of zeolites
(catalysts with crystalline structure) will be performed
and 3D nano volumes of alumina catalyst supports,
obtained by nanotomography (Tran et al., 2014),
too. Correlations with experimental physicochemical
characteristics will be looked for. Finally based on
this method, two novel topological descriptors will
be proposed by first extending M-tortuosity to gray-
level images, in order to avoid a segmentation step,
which can be very delicate in some applications,
and second, adapting the M-tortuosity formalism to
quantify heterogeneity at small scale.
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