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ABSTRACT. We propose a thermodynamically consistent methodology to parameterize 

interactions between charged particles inside the dissipative particle dynamics (DPD) formalism. 

We have used experimental data of osmotic pressure as a function of the salinity in order to 

optimize the required interaction parameters. Our results for NaCl aqueous solution show that the 

use of mean osmotic coefficient, as well as the activity coefficient of individual ions, allow to 

unambiguously determine the Na+-water, cr-water and Na+-cr DPD repulsion parameters. We 

propose a simple linear relationship between the hydration free energies· of ions and the ion­

water repulsion parameters that allows the parameterization of the complete series of halide and 

alkaline ions. Two different strategies have been used to derive the anion-cation interaction 

parameters for halide and alkaline but NaCl. In the first one, parameters are obtained for ail pairs 

of ions based on the numericàl optimization of the anion-cation repulsion parameter with respect 

to experimental osmotic pressure data. The mean absolute relative deviation between simuJated 

and experimental data is then smaller than 4%. Second, we propose a simple, purely predictive 

approach to obtain the anion-cation interaction parameters based on the free energy difference of 

hydration energies of anions and cations in the spirit of the law of matching water affinities 

(LMW A). This approach predict sait properties with a mean absolute relative deviation of the 

order of 13 %, and with an accuracy better than 6% if small ions (Lt and F) are removed. 
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Physical chemistry of aqueous electrolyte is a complex topic. Electrostatic interactions between 

ions and water molecules give rise to specific changes in the water structure with consequences 

on thermodynamics and transport properties of the solution.1 Numerous fondamental processes 

in chemistry and biology are caused by the specific interactions of small alkali and halide ions 

with water molecules. A typical example is given by the sait effect on protein stability, also 

known as Hofmeister effect.2
'
3 Important effects can also be observed at water-oil interfaces4 or 

between electrolytes and air (bubble coalescence) or metals (corrosion processes).5 

In order to predict the behavior of electrolytes, some models based on thermodynamic theories 

can be applied in numerous applications of industrial importance.6 Thermodynamics modeling is 

mostly based on the Specific ion Interaction theory (SIT),7
'
8 or Pitzer framework.9 Pitzer 

equations work well for numerous binary and multicomponent mixtures, as long as there are 

sufficient experimental data of high quality for parameterization. This is a strong limitation as 

the required number of available experimental data is often too low for new applications. 

Molecular simulations can be an alternative to thermodynamic modeling for the study of 

electrolytes. It is a commonplace to emphasize that accurate and predictive molecular 

simulations require i) a good description of interactions ( embedded in a force field expression 

and parameters) and ii) a correct sampling (given by long trajectory time or building of a large 

ensemble of configurations). The accuracy of electrolyte force fields can be severely tested when 

trying to reproduce mixture thermodynamic properties such as ion-water activity coefficient or 

dielectric constant in fonction of ionic concentration. 10 Results are strongly dependent on the 

complexity of the model as well as to the appropriate treatment of the calculations (algorithms, 

sampling, and convergence of the results, etc.). 11 The sampling can become quite complicated 
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when dealing with interfacial properties, due to the long time and length scales involved and also 

due to the different affinities of ions at the aqueous-hydrophobic interfaces. 12
,
13

,
14 

There is a huge amount of work to derive accurate force field for molecular simulations at the 

atomistic level (all-atom force field). Joung and Cheatham have determined a set of parameters 

for alkali and halide monovalent ions for use in biological system simulations. 15 The level of 

description does not include polarization effects and parameters are optimized from hydration 

free energies of ions and also lattice energies and lattice constants of sait crystals. Horinek et 

al., 16 suggest to use the solvation free energy in conjunction with the solvation entropy for the 

simulation of ion specific effects, again neglecting polarization effects. In more recent works, 

multi-body effects are considered by adding explicitly polarization terms in the interaction 

potential. Salanne et al. include dipole-quadrupole terms in the dispersion potential and many­

body interactions through induced dipole interactions.17
'
18 Ab initio (DFT) calculations are used 

to derive and optimize interaction parameters for this force field. Roux et al. have proposed a 

polarizable force field for alkali and halide ions. 19
'
20 The polarizable model is based on the 

classical Drude oscillator and a first set of parameters were derived from binding energies of gas­

phase monohydrates and hydration free energies in the bulk liquid. More recently, the same 

group have developed methods to compute osmotic pressure using molecular dynamics 

simulations.21 To model accurately concentrated ionic solutions, the parameters of the potential 

fonctions are optimized to reproduce osmotic pressure data.22
,
23 

Thanks to the development of efficient codes, optimum atomistic polarizable force fields and the 

availability of large scale parallel computers and software, calculations of surface and interfacial 

tension of water air and water hydrocarbons can be realized.24
·
25 However, the computational 
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time required to compute interfacial phenomena in the presence of ions remains still prohibitive 

with such approaches and insufficient sampling may occurs.4
•
12

•
13

•
26 

An alternative to atomistic simulations is the use of coarse grain or mesoscopic models. In this 

case the reduction of the degrees of freedom of the system (by grouping together several atoms 

or molecules in one particle) extends the boundaries of accessible time and length scales.27
•
28

•
29 

The price to pay with coarse grain approaches is a lack of transferability of the force field. 30
•
31 

There are many types of coarse grain approaches in the literature,32
•
33 among which the 

MARTINI mode) and force field, 34
•
35 and the dissipative particle dynamics (DPD)36 are widely 

used. For electrolyte solutions, a standard procedure was applied to the parametrization of ions in 

the framework of MARTINI. 34 

Mayoral et al. proposed a parameterization for the DPD repulsive parameters for the electrolyte 

using the dependence of the Flory-Huggins x parameter on the concentration and the kind of 

electrolyte added, by means of the activity coefficients.37 However, two facts make their 

approach difficult to use: i) ion-water repulsion parameters become concentration dependent, and 

ii) there is no specific differentiation between anions and cations (both species have the same 

repulsion parameter). In addition, methods available in the literature for the parameterization of 

repulsive parameters in DPD are no longer valid due to the combination of repulsive and 

electrostatic forces. 29 This fact prevents the use of DPD simulations of electrolyte solutions in 

agreement with standard ionic thermodynamic properties, such as activity or osmotic 

coefficients. As recently noted by several authors, up to date, no such approach exists in the DPD 

framework. 38
•
39 
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Our aim here is to check that standard thermodynamic properties of electrolytes can be 

reproduced using classical DPD simulations with charged particles. We focus on osmotic 

pressure and density data for different salts (with monovalent ions) in the range O to 3 M because 

it is a good measure of both ion-water and anion-cation interactions. Two different strategies will 

be used. In a first one, repulsion parameters between anion and cation will be obtained from 

brute force optimization versus experimental osmotic pressure data, thus providing a full set of 

parameters of best parameters. In a second one, anion-cation repulsion parameters will be 

predicted on the basis of free energy of hydration in the spirit of the law of matching water 

affinities (LMW A) proposed by Collins.40 

Two sets of experimental data were used to parameterize ion-ion and ion-water repulsion 

parameters including standard measurements of mean osmotic coefficient,41 as well as the 

activity coefficient of individual ions (which, in principle, give access to information of water-

ion interactions for anions and cations separately).42 Most of the experimental osmotic/activity 

coefficients available in the literature correspond to the "practical" Lewis-Randall (LR) osmotic 

coefficient (</)), which can be defined from a thermodynamic point of view in terms of the 

activity of water (att
2
0), 

(1) 

where m is the mean molality of the solution, v± = v+ + v_ is the number of completely 

dissociated ions of the sait in solution and Mtt
2
o the molar mass of water. According to Bjerrum, 

the osmotic coefficient can be related to the mean activity coefficient (y±) of salts in a single 

solvent as,43
'
44 

7 



2.302585 fm 
tp= 1 + mdlogy± 

m o 
(2) 

This equation is valid in the Lewis-Randall reference framework. Under the incompressibility 

approximation, the osmotic pressure (Il) can be estimated through, 

V+ mMtt2 0RT 
TI = <P ---------"---­

Vttz o 
(3) 

The use of this equation requires the knQwledge of the partial molar volume of water (Vtt
2
o) at 

the same temperature, pressure and molarity and can be cumbersome if no experimental data are 

available. Alternatively, one can use the "McMillan-Mayer" (MM) scaling for thermodynamic 

properties.45 LR and MM scales differ in the choice of independent variables. The LR framework 

is at constant pressure and mole numbers, whereas the MM framework is at constant volume, 

solute mole numbers and solvent chemical potential.46 In this context, the MM osmotic 

coefficient ~MM can be defined as the ratio TI/Il0 (where TI0 is the ideal osmotic pressure 

obtained by the van't Hoff law). In order to compare our simulation results (in the MM 

framework) with the available experimental data (in the LR framework), one can use the 

following thermodynamic relation47 

(4) 

where M is the sait concentration in mol/1 and v5 is the partial molar volume of solute at 

temperature T, pressure P and molality m. We checked for NaCI in water that the term (M · 17s) is 

negligible even close to the saturation concentration (see figure 2 in section 2 of SI) and that 

<P :::::: <PMM is a good assumption. This may change with sait concentration and nature. Thus, it 
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should be a good practice to check that this approximation is satisfied before comparing data 

obtained in different frameworks ( e.g. LR and MM). 

Our methodology relies on different tools and a short description is given below. More 

information are available in sections 1, 2, 3 and 5 of SI. Numerical optimizations were realized 

using the ATOUT software (Advanced Tools for Optimization and Uncertainty Treatment) 

developed by IFP Energies nouvelles.48 We use standard DPD simulations,49 with electrostatic 

interactions treated using the Slater-type charge smearing method as presented in Gonzales­

Melchor et al. paper.50 In molecular simulation it is possible to compute the osmotic pressure in 

the LR framework using equation 5. The procedure is well described in the work of Smith et 

al., 11 and was tested for NaCl aqueous systems. This approach requires the use of an Osmotic 

Ensemble Monte Carlo (OEMC) algorithm,51
,
52

,
53 and a precise knowledge of experimental 

partial molar volumes of the species in solution. This last property can in principle be computed 

directly from simulations when no experimental data is available, however, this requires a set of 

separate calculations and can be difficult to compute when flexible polyatomic ions are present 

(i.e. sulfonates, carbonates, etc.). In this work we use a different approach. We compute the 

osmotic pressure in our DPD simulations following the well-known method proposed by Luo 

and Roux.21 This method to obtain the osmotic pressure follows the MM framework, since ail 

calculations are performed at a fixed "sample" volume with a known ionic concentration where 

solvent molecules are free to enter/leave the sample volume'. This approach has been successfully 

used for the parameterization of ion-water interactions for atomistic as well as coarse grain 

models.23
,
54

,
55

,
56 Numerically, the osmotic pressure is computed by the force exerted by solute 

DPD particles over an hypothetical semi-permeable membrane represented by two planes located 

at Zwall = Zo et Zwall = ZJ according to, 
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(5) 

where (Fwan>i is the force exerted by the l11 particle over the wall of area A placed at Zi inside the 

zone (i.e. lzil > lzwa111), kw is the force constant of 5 kBT!r/ (in DPD units) applied to the ions in 

order to keep them inside the confinement zone and N is the number of simulation time steps. It 

is important to mention that the force is not applied to solvent molecules which are free to cross 

the membrane. Interestingly, this method gives access to osmotic pressure contribution of each 

ion, meaning that a better parameterization can be obtained if single ion activity/osmotic 

coefficients are available. The osmotic pressure of the system (TI) is the sum of the contribution 

of osmotic pressure of each solute (Ili) present in the solution (Nsalutes) inside the control 

volume using the following expression, 

N solutes 'C'N solutes ( ) . 
TI= ~ TI· = L.ï=1 Fwall i 

L i A 
(6) 

i=l 

All simulations are realized with periodical boundary conditions in x, y and z directions. The 

time step value is 0.01 in DPD units. The total momentum is cancelled out between the steps as 

required to compute the osmotic pressure. Density for every system was computed in a separate 

simulation using a cubic box Lx = Ly = L2 with 6000 DPD particles with an initial density of 

p = 3. The density was obtained after an equilibration period of 100000 steps followed by a 

production run of 100000 steps using NPT at imposed pressure P0 . 
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We now tum to the description of the construction of the DPD model. Every water bead cont.ains 

three water molecules, i.e. the degree of coarse graining (Nm) is 3. As it is the case in standard 

DPD simulations, once Nm is chosen, the bead volume ( vm) and the characteristic length scale 

(rc) are imposed. Ions are considered hydrated by a certain number of water molecules nw, 

according to their ionic size, in order to satisfy constraint on Vm (3 for Na+ and 2 Cl} Following 

the procedure proposed by Mayoral et al., where the degree of coarse grain and the isothermal 

compressibility of water at ambient conditions (K-1 = 16 in DPD units) are used, the interaction 

parameter between water beads aww is 78 (in units of k8 T). 57 For simplicity, all pure component 

interactions are assumed to be identical to that of water-water interactions (acation-cation = 

aanion-anion = aww)· 

Our parameterization process begins with the estimation of the full set of DPD repulsion 

parameters for NaCl in water (ion-water and anion-cation parameters) using the A TOUT 

platform.48 The scan for optimum values was set by using 20 simulations, where the initial guess 

for the repulsion parameters were distributed in a grid using a Latin Hypercube Design (LHD).58 

In this case the values of aNa-w, aci-w and aNact have been taken from a uniform distribution 

centered at 78 within the range 56-100. Every simulation set (containing defined values of aNa-w, 

aci-w and aNact) consists of four independent simulations using the protocol described in detail in 

sections 2 and 5 of the SI. The values of the osmotic pressure are the result of the average of 

these four simulations, were we observe that the average deviation for the osmotic pressure is 

less than 1 %. These values are compared with the experimental data of osmotic pressure for the 

NaCl electrolyte,41 plus single ion osmotic pressure values42 to evaluate a least square objective 

fonction (LSOF A). Contributions of single ion osmotic coefficient for Na+ and cr have identical 

\ 

weights inside the LSOFA. Finally, the LSOFA was numerically modelled by a 3D Kriging 
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response surface which was then used to perform a fine steepest descent gradient optimization 

(see section 5 in SI). The optimum values, obtained at the end of the process are 69.47, 80.25 and 

75.00 for the repulsion parameters aNa-w, aci-w and aNa-Cl respectively. The variation of the 

osmotic pressure and density ofNaCl with the salinity obtained with our DPD electrolyte model 

can be observed in Figure 1 and compared with the experimental data.41
•
59 We also compare our 

results with literature data including atomistic simulations using polarizable (PFF), 10
,
11

.24
,
60 and 

non-polarizable (FF) force fields. 61 
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Figure 1. Variation of the a) osmotic pressure (II) and b) density (p) of the aqueous solution of 

NaCl with the molality. Comparison of the DPD results with the experimental data for osmotic 

pressure41 and density59 and several simulation results from the literature, including polarizable 

(PFF), 10
,
11

,
24

,
60 and non-polarizable (FF) force fields.61 The statistical error in the values of the 

osmotic pressure in DPD is Jess than 1 %. 

Results observed in Figure l .a confirm that it is possible to accurately reproduce the 

experimental osmotic pressure over the entire ra~ge ofNaCI solubility with a simple DPD model 

and using a robust parameterization procedure (i.e. mean absolute relative deviation -MARD- of 

5% with respect to experimental results of ref. 41 and ref. 59 in the range of 0-3M). Atomistic 

models compared in Figure 1 were not optimized to reproduce the osmotic pressure; hence the 

results obtained from the literature are pure predictions. Non-polarizable force fields present 

deviations similar to our DPD simulations, whereas polarizable force fields show larger 

deviations. 11 Our DPD model presents a MARD of 1.0 % with respect to the experimental 

density when the concentration of NaCl is increased in the range of 0-3m (3% for the range 

between 3-5m) as can be seen in Figure l .b. Usually, all other atomistic models (polarizable and 

non-polarizable models) tends to underestimate the experimental density, with the exception of 

the flexible SPCFw mode! for water (see supporting information for details) and the couple of 

TIP4P-2005 mode! for water and Reif mode! for ions.61 Overall, the present electrolyte DPD 

mode! is able to reproduce the variation of the osmotic pressure and density of aqueous solution 

of NaCl in the whole range of solubility with an accuracy which is equivalent to other more 

complex, time consuming atomistic simulations. It is important to remark that the obtained 

parameters, though valid exclusively at ambient conditions, do not depend on salinity. 
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It is interesting to notice that aNa-w < ac1-w, in other words, there is a stronger interaction (smaller 

repulsion parameter, higher activity coefficient42
) between the hydrated Na+ and water beads 

than the hydrated cr and water beads. This is similar to the order observed for the free energy of 
' 

hydration (LlGHyd) of ions in water with -404.4 kJ/mol and -323.2 kJ/mol respectively for Na+ 

and cr. 19 In a recent work, Andreev et al. propose a Lennard-Jones coarse grain modèl of 

electrolyte solutions where ion-water inter~ctions were parameterized using the free energy of 

hydration of ions in water.62
,
63 In the spirit of the above mentioned papers, we have used a linear 

relationship between the ion-water repulsion parameter in DPD with the LlGHyd· Thus, water-ion 

parameters can be obtained easily from the knowledge of free energy of hydrations, as presented 

in Figure 2. 
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-~ 80 -3, 
5 70 tû-

60 :u+ .. , • 
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F· .... · .-· 
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Cl . .• ~-·-··' 

-420 -370 -320 -270 

~GHyd (kJ/mol) 
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Figure 2. Assumed relationship between the DPD conservative repulsion parameter between 

ions and water with the free energy of hydration of ions. 19 Proposed values (in red) are based on 

optimum values for Na+ and cr (black points, see text). 
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As mentioned earlier, we have used two different strategies to obtain anion-cation interaction 

parameters. The first one makes use again of the A TOUT software and of experimental osmotic 

pressure data of the concentration range O to 3M: for each salt, the optimization process samples 

the repulsion parameter aanion-cation· The final values of the optimization process are presented 

in 

Table 1. We present in figure 3, the MARD of DPD simulation results with the optimized set of 

parameters. We notice that a good agreement can be obtained between experimental and 

simulated osmotic pressures. The maximum deviation is smaller than 6% and the MARD is 

smaller than 4%. This result is not surprising in the sense that the target property of the 

optimization is the osmotic pressure. Meanwhile, it shows that this property can be re_produced 

using such a standard DPD model plus charges particles with very simple assumptions: repulsion 

parameters between like particles are obtained from the water compressibility, water-ion 

interactions are govemed by free energy of hydration of corresponding ions, and finally, anion-

cation interactions are optimized upon osmotic pressure. 
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Figure 3. Mean average relative deviation (in %) between the osmotic pressure (TI) calculated 

from DPD simulations and the experimental values in the range of 0-3M concentration for the 

complete series of salts containing halide and alkaline ions. Comparison of the predicting method 

of parameters considering the difference between the free energy of hydration of anions and 

cations (LMW A), and the optimal A TOUT values with respect to experiments. 

Table 1. Anion-cation repulsion parameters (in k8 T units) obtained through (a) the ATOUT 

optimization procedure and, (b) from the free energy of hydration between anion and cation 

(values in parenthesis under individual ions are l:lG~~d in kJ/mol obtained from ref. 19, whereas 

those under the repulsion parameters are fll:lGanion-cation)· 

Lt Na+ K+ Rb+ · Cs+ 

(-515.39) (-404.44) (-333.27) (-308.99) (-278.42) 

(a) 60.0 (a) 69.93 (a) 72.01 (a) 79.74 
F-

• (b) 42.2 (b) 49.86 (b) 58.33 (b) 59.20 ---
(-447.15) 

(-42.71) (-113.88) (-138.16) (-168.73) 

cr 67.43~~ 75.0*"' 83.206** 91.17** 92.0** 

(-323.22) (192.17) (81.22) (10.05) (-14.23) (-44.8) 

(a) 81.39 (a) 93.04 (a) 98.35 (a) 107.88 
Br· 82.2° 

(b) 74.63 (b) 90.40 (b) 98.38 (b) 107.92 
(-296.01) (108.43) 

(219.38) (37.26) (12.98) (-17.59) 

r (a) 110.57 (a) 97.41 (a) 102.76 (a) 107.98 (a) 109.11 
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(-260.00) (b) 84.16 (b) 91.73 (b) 99.9 (b) 107.92 (b) 108.73 

(255.39) (144.44) (73.27) (48.99) (18.42) 

·oue to its low limiting solubility in water, we have not simulated LiF. •• Optimized 
reference value for the predictive scaling procedure. 

In addition, we would like to propose a rule to predict anion-cation repulsion parameter. We 

relate the variation of the anion-cation repulsion parameter with the rule of the law of matching 

water affinities (LMWA) proposed by Collins.64 The LMWA suggests that inner sphere ion pairs 

are preferentially formed between oppositely charged ions with matching absolute hydration 

energies. Thus, anion-cation repulsion parameters should be related with the difference of free 

energy difference of hydration between anion and cation (i.e., LlLlGanion-cation = Llch;Ji°n -

LlG~;~on). In this context the anion-cation repulsion parameter can be obtained as follows, 

(aanion-cation)salt = C1 • LlLlGanion-cation + Co (7) 

here c1 and c0 are constants. In this approximation we assume c1 to be the same for all salts 

whereas c0 is different for each series containing the same alkaline ion. In order to determine c1 

we need the repulsion parameter of a Na sait with different anion, we use for example the 

optimal A TOUT value of aNa-Br· The aNa-Br parameter value is 82.2, higher than the one for NaCI, 

as expected from LMWA (~GBr-hyd larger than ~Gct-hyd ). 19 In this case we obtain a value of 

0.265 mol.kf1 for c1• For c0 we use the optimal ATOUT repulsion parameters for different salts 

with the same anion (Cl for instance) but different alkaline ions (LiCI, KCI, RbCI and CsCI with 

optimum anion-cation repulsion parameters of 67.43, 83.206, 91.17 and 92.00 -in units ofk8T-

for each sait respectively, see Table 1 for details). We obtain values of c0 of 16.574, 53.502, 
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80.392, 94.942 and 103.855 (in k8T units) for Li, Na, K, Rb and Cs respectively. It is interesting 

to notice that c0 scales linearly with the free energy of hydration of alkaline ions in water (see 

Figure 8 in section 8 of SI for details). The predicted values of the repulsion parameters obtained 

for the series of monovalent salts can be observed in Figure 4 and in Table 1. 
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. t t 
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• NaBr 
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Figure 4. Relationship between the conservative repulsion parameter '1anion-cation witb the 

difference of free energy difference between anion and cation (MGanion-cation).
19 ATOUT 

optimized repulsion parameters with respect to experimental values of the osmotic pressure are 

represented by full black symbols. Blue symbols represent repulsion parameters predicted using 

the LMW A. Arrows indicate the deviation between optimized and predicted parameters from 

salts containing Lt and F ions. 

The variation of the MARD with respect to experimental data for our simulations for the osmotic 

pressure using the predictive strategy to estimate the anion-cation repulsion parameter can be 

observed in Figure 3. The predictive method based on the LMWA produces a MARD of 12.6% 
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when ail ions are considered in the range of 0-3M concentrations. We observe larger deviations 

for ail salts containing fluorine ions. In comparison, a total MARD of 9% and 5.9% are obtained 

if lithium and fluorine ions are not accounted for the estimation of the MARD, respectively. 

We would like to emphasize that our approach can be easily extended to other coarse grained 

levels (i.e. Nm from 2 to 5), preserving the accuracy of the optimum model observed in Figure 1, 

by applying a lineal rescale of interactions based on the volume of water beads (which in turns is 

determined by Nm). In addition, even if a different choice for the parametrization of the water­

water repulsion parameter is done (for instance, using the original approach proposed by de 

Groot & Warren,49 leading to an aww of 25 k8T), it is possible to apply a simple rescaling factor 

to unambiguously determine ail the water-ion and ion-ion repulsion parameters (see section 6 of 

SI for details). This flexibility on the choice of the coarse graining level is, in our opinion, one of 

the strength of DPD simulations compared with other methods such as MARTINI, where a fixed 

volume of beads is imposed.34 

In conclusion, we have presented a simple and thermodynamically consistent methodology for 

the parameterization of the dissipative particle dynamics (DPD) repulsion parameters of 

electrolytes in aqueous solutions. Our methodology requires the computation of the osmotic 

pressure in order to obtain the required interactions by comparison with the available 

experimental data. Our results for NaCl show that the use of mean osmotic coefficient,41 as well 

as the activity coefficient of individual ions42 allows to unambiguously determine the Na-water, 

Cl-water and Na-Cl repulsion parameters. In this case we were able to obtain a mean relative 

average deviation of 5% and 0.9% for the osmotic pressure and liquid density in the 

concentration range of 0-3M. Moreover, we have seen that in concentrated NaCl solutions the 

19 



present mode] reproduces the expected trend of ion-pairing when compared with experimentaJ 

data and atomistic simulations (see section 8 in SI). 

We propose a simple linear relationship between the hydration free energies of ions and the ion­

water repulsion parameters that allows the parameterization of the complete series of hal ide and 

alkaline ions. In addition, we propose a simple approach to estimate the anion-cation repulsion 

parameters based on the difference of free energy difference of hydration energies of anions and 

cations in the spirit of the law of matching water affinities (LMW A). This predictive approach 

reproduces the variation of the osmotic pressure with the salinity of the complete series of halide 

+ alkaline salts with mean absolute relative deviations of the order of 13 %. The present 

methodology can be straightforwardly applied to other series of ions including bivalent ions as 

well as more complex polyatomic salts such as surfactants and charged polymers. Work is in 

progress to explore this kind of systems. 
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