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Reservoir simulation model calibration methodology

with polymer flooding based on laboratory experiments

C. Preuxa, I. Malinouskayaa

aIFP Energies Nouvelles
1 et 4 avenue de Bois-Préau, 92852 Rueil-Malmaison Cedex, France

Abstract

Due to its high apparent viscosity, polymer is considered as an alternative to
water as injection fluid in hydrocarbon reservoirs. The mobility of the water-
polymer mixture is much smaller than that of water alone, which helps pre-
vent undesirable viscous fingering. Nevertheless, the selection of a polymer
process involves a procedure for assessing the performance of the polymer in
terms of mobility reduction. This procedure involves laboratory experiments
in which the pressure losses are measured during polymer displacement, as
well as during water displacement. In the next step of the procedure, a
model is calibrated by simulation in order to predict the efficiency of the
polymer. Although the polymer models traditionally used at this stage are
relatively simple, their calibration from the results of the laboratory tests
is much more intricate, insofar as the mobility reduction generated by the
polymer depends not only on the concentration but also on the temperature,
the salinity and the shear rate. In this paper, we put forward a new approach
to this multivariate problem and propose a rigorous calibration methodology
which allows for a fast physical representativity, thus limiting the number of
laboratory experiments. This methodology is the subject of a pending patent
application (FR 18/58547).

Keywords: polymer flooding, simulation, mobility reduction

1. Introduction

In order to improve the oilfield recovery factor, many oil companies resort
to adding polymer in injected water. The idea is to take advantage of the
large viscosity of the polymer in order to reduce the mobility of the water-
polymer mixture. Numerous experimental studies show that the mobility
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of the latter strongly depends on various parameters such as the polymer
concentration c, the shear rate due to the polymer flooding velocity γ̇, the
temperature T and the salinity or ionic strength Iµ in case of salted water
[15], [17], [19]. For example, a high impact of the low salinity on the polymer
behavior, in particular, on the mobility reduction, was demonstrated by [2].
In [21], the study of the slug-based compositionally-tuned polymer flooding
reveals that the polymer viscosity can be controlled through the mixture
salinity. In most theoretical studies, summarized by [20], the analyses are
carried out only for one or two parameters at a time. For example, in [1], the
authors use calibrated model to consider polymer concentration and salinity
effect, but neglect the temperature effects.

For the calibration of the reservoir simulation model to take into account
all of the mentioned physical effects, we have to conduct a large number
of experiments corresponding to all possible combinations of the chosen pa-
rameters {c, γ̇, T, Iµ}. This turns out to be expensive and impractical to
implement.

The present work addresses this calibration issue by introducing a method-
ology that requires as few laboratory experiments as possible. This method-
ology enables us to obtain a complete description of the mobility reduction
as a function of any set of parameters {c, γ̇, T, Iµ}. After describing a gen-
eral polymer model in Section 2, we provide full details of the calibration
methodology in Section 3. Step by step, the dependencies on the polymer
concentration, the salinity/ionic force, the shear rate and the temperature
are taken into account and the required measurements associated with these
parameters are stated. Then, in Section 4, we apply the methodology to
an experimental data set [15, 17] and compute the corresponding mobility
reduction function. Finally, we draw some conclusions on the efficiency of
this methodology and discuss some prospects of the present work in Section
5.

2. Polymer model formulation

The polymer displacement model is based on the assumption that the
polymer-added water has a reduced mobility. The derivation of this model,
used by many reservoir simulators, relies on a modification of the water
viscosity which is expressed as

µwp = Rm(c, Iµ, γ̇, T )µw, (1)
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where µw is the viscosity of the injection water, µwp the viscosity of the
water containing polymer and Rm(c, T, Iµ, γ̇) the mobility reduction. The
latter is a function of the polymer concentration c, the temperature T , the
salinity/ionic strength Iµ and the shear rate γ̇. The determination of the mo-
bility reduction function Rm(c, Iµ, γ̇, T ) from experimental data is the object
of model calibration for the purpose of predicting polymer displacements.
Notice that the total mobility reduction from polymer injection is caused by
two effects:

– the increase in polymer viscosity,

– the reduction in permeability presumably by polymer retention, ad-
sorption, and inaccessible pore volume.

In this paper, we consider only the increase in polymer viscosity. The per-
meability reduction Rk, which appears in the phase velocity such as

~uw = − Kkr
RkRmµw

(~∇pw + ρwg) (2)

is not studied in this paper.
In practice, the laboratory measurements allow us to obtain the solvent

viscosity µwp and to deduce the corresponding value of Rm as a relative
viscosity µwp/µw. On the other hand, these results can be considered in
terms of the reduced specific viscosity (µwp − µw)/(cµw), where µw is the
water viscosity. This gives rise to the intrinsic viscosity

[µ] = lim
c→0

µwp − µw
µw c

. (3)

The well-known formulation for the polymer concentration dependence
proposed by Huggins [10] is written as

Rm(c) = 1 + [µ] c+ k′ ([µ] c)2 , (4)

where [µ] is defined by (3) and k′ is the Huggins coefficient. This formula
is treating bulk polymer solutions but is used by default in different models
of polymer flooding ([24, 18, 13, 9]). The intrinsic viscosity of the polymer
mixture [µ] characterizes its so-called viscosifying power. This quantity rep-
resents the expansion volume of the polymer in a water of a given salinity at
a given temperature and a shear rate, and is expressed in cm3/g or in L/g.
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Figure 1: Reduced specific viscosity function of polymer concentration. (Reduced specific
viscosity in blue and linear part of the specific viscosity in red.)

The Huggins coefficient k′ is a dimensionless number; for the hydrolyzed poly-
acrylamide polymers (HPAM) in a good solvent, its value is about 0.4± 0.1
[15].

Using definition (3) and formulation (4), [µ] and k′ result from the best fit
of a linear part of the specific viscosity (reduced to low concentration values)
as shown in Figure 1. The dependences on the temperature, the salinity and
the shear rate will be managed through these two parameters. Finally, we
search a formulation based on these dependances:

Rm(c, Iµ, γ̇, T ) = 1 + [µ] (Iµ, γ̇, T )c+ k′(Iµ, T ) ([µ] (Iµ, γ̇, T )c)2 , (5)

The principal assumption in this methodology is that the different param-
eters (c, Iµ, γ̇, T ) are constant with respect to others (salt, shear rate and
temperature). We search also the intrinsic viscosity and the Huggins coeffi-
cient in an uncoupling form:

[µ] (Iµ, γ̇, T ) = [µ]Iµ (Iµ). [µ]γ̇ (γ̇). [µ]T (T ) (6)

k′(Iµ, T ) = k′Iµ(Iµ).k′T (T ) (7)

It remains a simplifying assumption to limit the number of experimental
data and to limit the variables and we show in the last section that this
assumption gives a correct match.
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3. Calibration methodology of the mobility reduction function

In order to calibrate the polymer model described above, we can use
polymeric water displacements results, obtained under given displacement
conditions (polymer concentration, injection rates, temperature and salin-
ity). Usually, these displacements are carried out on cores initially saturated
with a liquid phase (water and/or oil), which is mobile or residual depending
on the core history and the purpose of the measurements. The considered
displacements are the drainage processes with the increasing water satura-
tion.

For each displacement, the laboratory must provide the following mea-
surements:

– the evolution of the pressure drop along the core: the ratio between the
two stabilized pressure losses measured at the end of each displacement
is the main result of a couple of displacements and is called mobility
reduction;

– the liquid phase (water and/or oil) and gas productions.

Less accurate but faster, we can determine rheological properties of polymer
by viscosimeter. In this case we treat only bulk solution polymer viscosity
without taking into account the porous media effect. We obtain finally a
correlation which can be considered as a starting point for the coreflood
history match.

The calibration of the mobility reduction of a given rock-fluids-additive
system involves the displacement measurements for any possible combination
of parameters {c, Iµ, γ̇, T}.

As shown before, the dependence on the concentration is expressed by
(4) and the dependence on the ionic strength Iµ, the shear rate γ̇ and the
temperature T is contained in the intrinsic viscosity [µ] and the Huggins
coefficient k′. Therefore, the calibration methodology consists of the following
steps. First, we choose a reference set of parameters {Iµ,1, γ̇1, T1} and use
them for the first series of measurements with various polymer concentrations
ci (i = 1, . . . , N) to deduce the intrinsic viscosity and Huggins coefficient as
described before (Figure 1). Schematically,

S1 :
{
{ci}Ni=1, Iµ,1, γ̇1, T1

}
→ {[µ]1 , k

′
1} . (8)

It should be noted that for further application of the methodology, it is
convenient to restrict the shear rate γ̇1 to very small values, namely, γ̇1 → 0.
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Then, in order to study the influence of the ionic strength, we modify the
reference value of Iµ. We perform the same series of measurements as before
to deduce the corresponding values of [µ] (Iµ) and k′(Iµ). This procedure can
be repeated several times to obtain the curves of the intrinsic viscosity and
Huggins coefficient as functions of Iµ. However, we will demonstrate that
our methodology only needs one additional series of experiments with a new
value of the ionic strength.

Similarly, changing the shear rate and the temperature in the reference
set of parameters, we get the corresponding intrinsic viscosities [µ] (γ̇) and
[µ] (T ) and Huggins coefficients k′(γ̇) and k′(T ), respectively. Again, we will
demonstrate that only one additional series of measurements per parameter
is required to obtain a full description of the intrinsic viscosity as a function
of this parameter. Nevertheless, the dependence of the Huggins coefficient on
the temperature in presence of a variable salinity appears to be more com-
plex and requires one additional series of measurements with simultaneously
modified values of Iµ and T .

3.1. Determination of salinity/ionic strength dependence

We consider here the dependence on the ionic strength Iµ, keeping in mind
that the dependence on the salinity s can be determined exactly in the same
way since Iµ depends on the salinity s = TDS (for Total Dissolved Salts).
For example, considering 3 pseudo-ions, we use modified ionic strength which
can be estimated according to the composition of the salt as

Iµ(s) =
C+

M+

+ αµ
C++

M++

+ βµ

(
C++

M++

)2

, (9)

where the molar masses M+,++,− and the mass concentrations C+,++,− corre-
spond to the 3 groups of pseudo-ions: 2 pseudo-cations I+, I++ and 1 pseudo-
anion I-. This formula (9) is based on the reservoir simulator

∑
COREPOL

presented in [11] and [12]. Then, this modified ionic strength was adopted in
the reservoir simulator SARIPCH and PumaFlowTM . It take into account
the fact that divalent ions have a strong influence on polymer viscosity. In
[7], the author show that the effect of divalent ions is observed by a significant
reduction in the viscosity of the polymer solution. It seems that the divalent
ions are tightly bind to anions along the polyelectrolyte chain because it has
a higher charge, causing the polymer chain to contract to its minimum size.
For polymer type HPAM, the reservoir simulator

∑
COREPOL adviced to
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choose αµ = 10.5 and βµ = 216. The intrinsic viscosity is prescribed as a

linear function of I
−1/2
µ [14, 19], that is,

[µ] (Iµ) = [µ0] + bII
−1/2
µ , (10)

where [µ0] is the intrinsic viscosity when Iµ → ∞. There are two unknown
parameters [µ0] and bI . Therefore, one additional series of measurements is
required. For this, we use the reference set S1 (8), set an ionic strength to
Iµ,2 and proceed to a new series of measurements

S2 :
{
{ci}Ni=1, Iµ,2, γ̇1, T1

}
→ {[µ]2 , k

′
2} . (11)

The results of S1 and S2 are inserted into formulation (10) and yield a system
of two linear equations in two unknowns. The solution of this system provides
the parameters [µ0] and bI as

bI =
[µ]1 − [µ]2

I
−1/2
µ,1 − I

−1/2
µ,2

, (12)

[µ0] = [µ]2 −
[µ]1 − [µ]2

I
−1/2
µ,1 − I

−1/2
µ,2

I
−1/2
µ,2 . (13)

Thus, the intrinsic viscosity as a function of the ionic strength is obtained by

[µ] (Iµ) = [µ]2 +
[µ]1 − [µ]2

I
−1/2
µ,1 − I

−1/2
µ,2

(
I−1/2µ − I−1/2µ,2

)
. (14)

According to [23], the Huggins coefficient depends on the salt composition
and the concentration range. The lineary dependance seems better adapted
to weak ionic forces. For high ionic strengths, however, there is too few
experimental results to be more affirmative. In this paper, at first approxi-
mation, we decide to consider the Huggins coefficient as a linear function of
Iµ

k′(Iµ) = αIIµ + βI . (15)

Similarly to the intrinsic viscosity, the results of the two sets of measurements
S1 and S2 provide the parameters αI and βI in the form

αI =
k′1−k′2

Iµ,1−Iµ,2 ,

βI = k′2 −
k′1−k′2

Iµ,1−Iµ,2 Iµ,2.
(16)
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The definition of the intrinsic viscosity [µ] (Iµ) and the Huggins coefficient
k′(Iµ) through analytical formulas involving two parameters ([µ0] and bI for
viscosity and αI and βI for k′) implies two series of experiments corresponding
to the two different values of Iµ for any ionic strength, but for the same
conditions on the temperature and shear rate.

3.2. Determination of shear rate dependence

Very often the power law is used to fit the viscosity measurements as a
function of the shear rate in the case of non-Newtonian fluids [14, 15]. The
Cross model [6] was found more efficient for a wide range of the shear rates as
well as in Newtonian fluids at small shear rate. The most generalized model
proposed in the literature is the Carreau model [4], which reads

µ(γ̇)− µγ̇∞
µγ̇0 − µγ̇∞

=
[
1 + (λγ̇)2

](n−1)/2
, (17)

where µγ̇∞ and µγ̇0 are the Newtonian viscosities corresponding to γ̇ → ∞
and γ̇ → 0, respectively; here, λ is a time constant that corresponds to a
characteristic shear rate, i.e.,

λ = (γ̇c)
−1, (18)

where γ̇c depends on the type of media. For example, in [5], it is defined as

γ̇c = a
4u

rh
, (19)

where a is a form factor that can be obtained experimentally, u = Q/φS with
Q the flow rate, S the section area and φ the porosity, and rh is a specific
pore size rh =

√
8K/φ with K the permeability.

The viscosity µγ̇∞ can be set to the viscosity of the solvent without poly-
mer [15]. Therefore, the Carreau model can be written in terms of intrinsic
viscosity as

[µ] (γ̇) =
[µγ̇0][

1 + ( γ̇
γ̇c

)2
](1−n)/2 . (20)

Since the imposed shear rate in the reference set of parameters S1 (8) is very
small, we can write

[µγ̇0] = [µ] (Iµ), (21)
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where [µ] (Iµ) is obtained by (14).
A series of measurements, say S3, with a new value of the shear rate, γ̇2,

is required in order to determine the parameter n in (20). In other words,

S3 :
{
{ci}Ni=1, , Iµ,1, γ̇2, T1

}
→ {[µ]3 , k

′
3} . (22)

Similarly to the previous case, the results of S1 and S3 are plugged into
formulation (20) and lead to a system of equations from which we obtain n
under the form

n = 1−
2 log

(
[µ]1
[µ]3

)
log

(
1 +

[
γ̇2
γ̇c

]2) . (23)

Then, the intrinsic viscosity as a function of the shear rate and the ionic
strength is inferred as

[µ] (Iµ, γ̇) =
[µ] (Iµ)

[
1 + ( γ̇

γ̇c
)2
] log

(
[µ]1
[µ]3

)
log

(
1+[ γ̇2γ̇c ]

2
)
. (24)

Let us remind that (21) has been obtained under condition γ̇ → 0. How-
ever, it can be generalized for any value of γ̇ as

[µγ̇0] = [µ] (Iµ)

[
1 + (

γ̇1
γ̇c

)2
](1−n)/2

, (25)

with the same value of n as found by (23). Therefore, the generalized formu-
lation will differ from (24) by multiplier [1 + (γ̇1/γ̇c)

2](1−n)/2. The Huggins
coefficient as a function of shear rate is generally defined as a constant.

3.3. Determination of temperature dependence

The intrinsic viscosity dependence on the temperature can be expressed
under the form

[µ] (T ) = [µT0 ]M
α
(

1
T
− 1
T0

)
, (26)

such as proposed by [3]. In (26), [µT0 ] is the intrinsic viscosity at reference
temperature T0, M is the molecular weight and α is a constant. Setting the
reference temperature T0 = T1, the intrinsic viscosity [µT0 ] is determined as
a function of the ionic strength and the shear rate obtained by (24), that is,

[µT0 ] = [µ] (Iµ, γ̇). (27)
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Then, a new series of measurements is required to deduce the second
parameter α. These measurements are performed using the reference set of
parameters and setting a new temperature T2. In a manner similar to the
previous ones, by varying the polymer concentration c we are in a position
to obtain the intrinsic viscosity and the Huggins coefficient for this new set
of parameters

S4 :
{
{ci}Ni=1, Iµ,1, γ̇1, T2

}
→ {[µ]4 , k

′
4} . (28)

Solving the system of equations obtained substituting (8) and (28) into the
formulation (26), we end up with the coefficient

α =
log
(

[µ]1
[µ]4

)
logM

(
1

T1
− 1

T2

)−1
. (29)

Consequently, the intrinsic viscosity [µ] is expressed as a function of the ionic
strength, the shear rate and the temperature as

[µ] (Iµ, γ̇, T ) = [µ] (Iµ, γ̇)

(
[µ]1
[µ]4

)−T2(T−T1)
T (T2−T1)

, (30)

where [µ] (Iµ, γ̇) was obtained by (24).
The Huggins coefficient dependence on the temperature is imposed as a

linear function
k′(T ) = αTT + βT . (31)

Similarly to the ionic strength dependence, two series of measurements, S1
and S4, are sufficient to determine the parameters αT and βT . However,
they are found only for a given value of the ionic strength, Iµ,1. Taking into
account the dependence on Iµ indicated by (13), we can turn the Huggins
coefficient into the form

k′ = (α1Iµ + α2)T + (β1Iµ + β2) . (32)

These cross-dependence on the ionic strength and the temperature implies
a system of four equations in four parameters, while the measurements S1,
S2 and S4 yield only three equations. Thus, one additional series of mea-
surements is required with the ionic strength Iµ,2 (as in series S2) and the
temperature T2 (as in series S4), namely,

S5 :
{
{ci}Ni=1, Iµ,2, γ̇1, T2

}
→ {[µ]5 , k

′
5} . (33)
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Solving (31) for measurements S1 and S4, we obtain the two parameters
αT = αT,1 and βT = βT,1 as

αT,1 =
k′1 − k′4
T1 − T2

,

βT,1 = k′4 −
k′1 − k′4
T1 − T2

T2.

(34)

Similarly, for S2 and S5, the parameters in (31) are αT = αT,2 and βT = βT,2
and they are obtained by

αT,2 =
k′2 − k′5
T1 − T2

,

βT,2 = k′5 −
k′2 − k′5
T1 − T2

T2.

(35)

Therefore, it follows from (31)–(32) a system of four equations in the four
parameters α1, α2, β1 and β2. Solving this system and invoking the results
(34)–(35), we end up with

α1 =
(k′1 − k′4)− (k′2 − k′5)
(Iµ,1 − Iµ,2) (T1 − T2)

,

α2 =
Iµ,1(k

′
2 − k′5)− Iµ,2(k′1 − k′4)

(Iµ,1 − Iµ,2) (T1 − T2)
,

β1 =
T1(k

′
4 − k′5)− T2(k′1 − k′2)

(Iµ,1 − Iµ,2) (T1 − T2)
,

β2 =
Iµ,1T1k

′
5 − Iµ,1T2k′2 − Iµ,2T1k′4 + Iµ,2T2k

′
1

(Iµ,1 − Iµ,2) (T1 − T2)
.

(36)

Inserting the parameters (36) into (32), we can deduce the Huggins coefficient
as a function of the ionic strength and the temperature.

3.4. Determination of mobility reduction

The five above-mentioned series of measurements (8), (11), (22), (28) and
(33) allow us to obtain a full description of the intrinsic viscosity and the
Huggins coefficient as functions of the ionic strength, the shear rate and the
temperature, [µ] (Iµ, γ̇, T ) and k′ (Iµ, T ).
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Dependence Experiments Results Parameters
[µ] k′ for [µ] for k′

Salinity/ S1 :
{
{ci}Ni=1, Iµ,1, γ̇1, T1

}
[µ]1 k′1 bI , αI ,

ionic strength S2 :
{
{ci}Ni=1, Iµ,2, γ̇1, T1

}
[µ]2 k′2 [µ0] βI

Shear rate S1 :
{
{ci}Ni=1, Iµ,1, γ̇1, T1

}
[µ]1 n -

S3 :
{
{ci}Ni=1, Iµ,1, γ̇2, T1

}
[µ]3

Temperature S1 :
{
{ci}Ni=1, Iµ,1, γ̇1, T1

}
[µ]1 k′1 α αT ,

S4 :
{
{ci}Ni=1, Iµ,1, γ̇1, T2

}
[µ]4 k′4 βT

Temperature S2 :
{
{ci}Ni=1, Iµ,2, γ̇1, T1

}
k′2 α1, α2

+ Salinity S5 :
{
{ci}Ni=1, Iµ,2, γ̇1, T2

}
k′5 β1, β2

Table 1: The summary of the experiments required to determine each of dependence of
[µ] on Iµ, γ̇, and T and the parameters to deduce for this.

Using the formulations (14), (24) and (30), the complete dependence of
the intrinsic viscosity on the ionic strength, the shear rate and the tempera-
ture can now be written as

[µ] (Iµ, γ̇, T ) =

[
[µ]2 + ([µ]1 − [µ]2)

I
−1/2
µ −I−1/2

µ,2

I
−1/2
µ,1 −I

−1/2
µ,2

](
[µ]1
[µ]4

)−T2(T−T1)
T (T2−T1)

[
1 + ( γ̇

γ̇c
)2
] log

(
[µ]1
[µ]3

)
log

(
1+[ γ̇2γ̇c ]

2
)

. (37)

As far as the Huggins coefficient is concerned, it becomes equal to

k′(Iµ, T ) =
(k′1 − k′4)− (k′2 − k′5)
(Iµ,1 − Iµ,2) (T1 − T2)

IµT +
Iµ,1(k

′
2 − k′5)− Iµ,2(k′1 − k′4)

(Iµ,1 − Iµ,2) (T1 − T2)
T

+
T1(k

′
4 − k′5)− T2(k′1 − k′2)

(Iµ,1 − Iµ,2) (T1 − T2)
Iµ

+
Iµ,1T1k

′
5 − Iµ,1T2k′2 − Iµ,2T1k′4 + Iµ,2T2k

′
1

(Iµ,1 − Iµ,2) (T1 − T2)
(38)

Plugging these expressions into formulation (4), the mobility reduction Rm

can be deduced for any set of parameters {c, Iµ, γ̇, T} without performing
any new laboratory experiment.

Table 1 summarizes the measurements required to determine the depen-
dence on each parameter. It should be noted that depending on the consid-
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ered case, some measurements may turn out to be useless. For example, if
there is no temperature variations in the reservoir, the series of experiments
S4 and S5 are not necessary. The intrinsic viscosity and the Huggins coeffi-
cient are obtained directly from (24) and (15)–(16), respectively, imposing in
the reference set of parameters T1 equal to the temperature of the reservoir.

4. Application to experimental data

We now apply our calibration methodology to the experimental data set
provided by [15], in order to obtain a full reduction mobility description as
a function of the salinity (or ionic strength), the shear rate, the temperature
and the polymer concentration.

For the experimental data, a hydrolyzed polyacrylamide (HPAM) refer-
enced as FLOPAAM 3630S with molecular weight Mw = 20× 106 daltons is
used. The measurements are performed in nano-filtered seawater (NF-SW)
of salinity 10 g/L and synthetic seawater (SSW) of salinity 33.5 g/L at a
temperature T = 20◦C.

In [15], the author use viscosimeter to determine rheological properties
of polymer. All bulk viscosities were measured using an Antan Paar MCR
301 rheometer. As detailed at the beginning of section 3, it would be better
to have polymer viscosity obtained by coreflood but by default, we use these
data available in the litterature.

The temperature dependence was not studied in [15]. Therefore, we will
use an analytical formula for the viscosity dependence on the temperature [22]
and apply it to the measurements of viscosity [15] at low shear rate for various
polymer concentrations. Thus, we will obtain the so-called synthetic data
that will then be used for the purpose of demonstration of our methodology.

The parameters for five series of measurements (S1-S5) required to deter-
mine Rm are given in Table 2.

4.1. Ionic strength/salinity dependence

According to the composition of the saline water, NF-SW and SSW,
the three groups of ions are determined: two pseudo-cations I+, I++ and
one pseudo-anion I-. Their molar mass M+,++,− and mass concentration
C+,++,− are calculated and inserted into (9) to deduce the corresponding
ionic strength Iµ. All data are given in Table 3.

The results of measurements performed with NF-SW by [15] provide the
intrinsic viscosity [µ]1 = 6.4 L/g and the Huggins coefficient k′1 = 0.32 and
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s, [g/L] γ̇, [s−1] T , [◦K] c, [g/L]
S1 10 0.1 293.15 {0.1, 0.25, 0.5, 0.75, 1, 1.5, 2}
S2 33.5 0.1 293.15 {0.1, 0.25, 0.5, 0.75, 1, 1.5, 2}
S3 10 130 293.15 {0.1, 0.25, 0.5, 0.75, 1, 1.5, 2}
S4 10 0.1 343.15 {0.1, 0.25, 0.5, 0.75, 1, 1.5, 2}
S5 33.5 0.1 343.15 {0.1, 0.25, 0.5, 0.75, 1, 1.5, 2}

Table 2: Series experiments used to determine Rm(c, Iµ, γ̇, T ) where Iµ depends on the
salinity s (9).

M+ M++ M− C+ C++ C− s Iµ
NF-SW 23 28.17 35.75 3.85 0.05 6.10 10 4.3
SSW 23.35 27.83 36.63 10.78 1.61 21.16 33.5 41.96

Table 3: The saline water characteristics: molar mass M+,++,− [g/mol], concentration
C+,++,− [g/L], salinity s [g/L], ionic strength Iµ [g/L].

the measurements with SSW provide [µ]2 = 2.066 L/g and k′2 = 0.35. Thus,
we can calculate bI and [µ0] (13) and find [µ] (Iµ) by (14) as

[µ] (Iµ) = 13.21I−1/2µ + 0.027. (39)

If there is no thermal effects, then the Huggins coefficient k′(Iµ) can be
deduced from (15) as

k′(Iµ) = 0.0008Iµ + 0.32. (40)

Finally, we compare our correlation with other available experimental
data from [15]. For the two salinities (Nf-SW and SSW) and for a temper-
ature T = 20◦C and a shear stress γ̇ = 0.1s−1 we obtain a good agreement
between analytical and experimental data as shown in Figure 2.

It should be noted that formulation (4) is done for a low polymer con-
centration. To adapt (4) for ”semi-diluted” regime, we must add a fourth
order term. Since this higher order term is not considered in our model, there
are light differences for high polymer concentration, especially for NF-SW.
However, the data match is pretty good for ”diluted regime”.

4.2. Shear rate dependence

Based on the results obtained by [15] for various shear rates, we could
estimate the intrinsic viscosity [µ]3 = 3.75 L/g. Since we consider that the

14



Figure 2: Reduction mobility Rm
(
c, Iµ, γ̇ = 0.1s−1, T = 20◦C

)
function of polymer con-

centration. The points are experimental data, the plain curve is the correlation presented
in this paper.

Huggins coefficient is a constant as function of the shear rate, the estimation
of k′3 is not required.

The characteristic shear rate γ̇c is evaluated by (19) with the flow rate
Q = 2.88 × 10−4 m3/d and the shape factor a = 2.5 which corresponds to
the experimental value obtained for granular media by [5]. Thus, we obtain

γ̇c = 15.08 s−1. (41)

The power n in (20) is obtained by (23), which results in

n = 0.75. (42)

Thus, the intrinsic viscosity as a function of the shear rate and the ionic force
can be expressed as

[µ] (Iµ, γ̇) =
[µ] (Iµ)

(1 + 0.0044γ̇2)0.124
. (43)

If in the case considered there is no variations of the salinity, then [µ] (Iµ) =
[µ]1; otherwise, using (39) we obtain

[µ] (Iµ, γ̇) =
13.21I

−1/2
µ + 0.027

(1 + 0.0044γ̇2)0.124
. (44)
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Figure 3: Reduction mobility Rm (c, Iµ, γ̇, T = 20◦C) function of polymer concentration
for different salinities and different values of shear stress. The points are experimental
data, the plain curve is the correlation presented in this paper.

Let us notice that using Iµ = Iµ,2 = 41.96 g/L and γ̇ = γ̇1, which corre-
spond to series of measurements S2, the expression (44) yields the intrinsic
viscosity [µ] (Iµ,2, γ̇1) = 2.066 g/L. It is in agreement with the intrinsic vis-
cosity obtained directly from the measurements S2, [µ]2 = 2.066 g/L.

Now, we compare our correlation with other available experimental data
from [15]. For the two salinities (NF-SW and SSW) and for a temperature
T = 20◦C and different values of shear stress, we obtain a good agreement
as shown in Figure 3.

This comparaison shows that the correlation presented in this paper yields
the results close to the experimental values.

4.3. Temperature dependence

For the temperature dependence of the intrinsic viscosity and the Hug-
gins coefficient, two series of measurements S4 and S5 are required (Table
2). However, we did not find the corresponding measurements for the same
polymer and water salinity as used before. In order to demonstrate the rele-
vance of our methodology for the temperature dependencies, we will use the
measurements of series S1 and S2 for T1 and transform them to the data for
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T2 using the exponential dependence on T given by [22], i.e.,

µ(T ) = µ0 exp

{
Ea
R

(
1

T
− 1

T1

)}
, (45)

where Ea = 9300 J·mol is an activation energy, R = 8.314 J·mol−1·K−1 is
the ideal gas universal constant and µ0 is the viscosity obtained by [15] for
γ̇ → 0 for NF-SW (series S1) and SSW (series S2) at temperature T1. It
should be pointed out that the temperature used in the formulas so far is
expressed in ◦K, but for the sake of simplicity, we are switching to the more
common unit ◦C.

The viscosity computed by (45) for the temperature T2 = 70◦C for the
solvent NF-SW yields the data of series S4, and for the solvent SSW yields
the data of series S5. Then, to obtain the intrinsic viscosity by (3), we
use µw equal to the viscosities measured by [15] for NF-SW and SSW and
transformed by (45). Therefore, [µ] and k′ are deduced using the linear fit of
µ(T2) as function of the polymer concentration c (see Section 2). Thus, we
obtain the results for series S4 and S5

[µ]4 = 3.86 L/g, k′4 = 0.52, (46)

[µ]5 = 1.36 L/g, k′5 = 0.37. (47)

Owing to formula (30), the intrinsic viscosity as function of the temper-
ature, shear rate and the salinity/ionic strength is obtained as

[µ] (Iµ, γ̇, T ) = [µ] (Iµ, γ̇) exp

{
6.86

(
293.15

T
− 1

)}
. (48)

If in the case considered there is no salinity effects, then [µ] (Iµ, γ̇) is obtained
by (43) with [µ] (Iµ) = [µ]1. Similarly, if there is no shear rate dependence
to account for, then [µ] (Iµ, γ̇) can be computed by (39). Otherwise, the full
description of the intrinsic viscosity [µ] (Iµ, γ̇, T ) is deduced as

[µ] (Iµ, γ̇, T ) =

(
0.41I

−1/2
µ + 0.0008

)
exp

(
1017.85
T

)
(1 + 0.0044γ̇2)0.124

. (49)

Finally, for the Huggins coefficient k′ as a function of the salinity and the
temperature (32), we obtain

α1 = −0.00009, α2 = 0.0044, β1 = 0.0286, β2 = −0.959. (50)
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Figure 4: Reduction mobility Rm (c, Iµ, γ̇ = 0.1s−1, T ) function of polymer concentration
for different salinities and different values of temperature. The points at T = 20◦C are
experimental data, the points at T = 70◦C are synthetic data and the plain curve is the
correlation presented in this paper.

Since we assume that k′ does not depend on the shear rate, the Huggins
coefficient k′(Iµ, T ) can be written as

k′(Iµ, T ) = −0.959 + 0.0286Iµ + 0.0044T − 0.00009IµT. (51)

Finally, we compare our correlation with experimental data from [15] for
a temperature T = 20◦C and with synthetic datas derived from [15] and
obtained by the formula 45. For the two salinities (NF-SW and SSW) and
for a shear stress γ̇ = 0.1s−1, we obtain a good agreement as shown in Figure
4.

Let us notice that if there is no salinity dependence, the series S5 is
not necessary, and the Huggins coefficient can be deduced by (31) with the
coefficients found by (34).

4.4. Mobility reduction

The mobility reduction dependence Rm (c, Iµ, γ̇, T ) on the polymer con-
centration, the salinity/ionic strength, the shear rate and the temperature is
expressed by the Huggins formula (4) using the intrinsic viscosity [µ] (Iµ, γ̇, T )
(49) and the Huggins coefficient k′(Iµ, T ) (51).
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(a) (b)

(c) (d)

Figure 5: Reduction mobility Rm (c, Iµ, γ̇, T ) for T = 20◦C (a,b) and 90◦C (c,d), and for
the ionic force Iµ = 4.3 g/L (a,c) and 41.96 g/L (b,d).
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In Figure 5, Rm (c, Iµ, γ̇, T ) is shown for T = 20◦C and T = 90◦C, and for
the ionic force Iµ = 4.3 g/L and Iµ = 41.96 g/L. Comparing Rm for different
values of T , it is obvious that the temperature variations play an important
role in the mobility reduction and cannot be neglected. For example, in-
creasing the temperature from 20◦ to 90◦, the mobility reduction factor may
decrease up to three times, as illustrated in Figure 5, panels (a) and (c).

Similarly, Iµ, γ̇ and c have a significant impact on the variations of Rm.
In Figure 5, panels (a) and (b), for instance, increasing the ionic strength
from 4.3 g/L to 41.96 g/L, Rm has the effect of decreasing nearly seven times
at the most extreme case (c = 2 g/L, γ̇ = 1 s−1). Therefore, when deal-
ing with a reservoir that is supposed to have variable temperature, and/or
salinity, and/or shear rate and/or polymer concentration, the mobility re-
duction function should be correctly calibrated according to each presented
phenomenon as summarized in Table 1.

5. Conclusions

We have presented a new methodology that enables us to completely
determine the mobility reduction function Rm as a function of the salinity,
the temperature and the shear conditions for various polymer concentrations.
The most remarkable feature of this determination is that it is achieved by
means of a limited number of laboratory experiments, more specifically by
using at most five sets of measurements given in Table 1. Application to
a literature experimental data set [15] has testified to the relevance of this
methodology was testified. This also served to highlight the importance of
accounting for each of the mentioned-above dependences in estimating the
mobility reduction.
A future work can be to apply this methodology on coreflood experimental
results instead of bulk viscosities, with complete thermal results.
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