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SUMMARY

Seismic imaging of geological structures with severe lateral velogity variations requires
pre-stack depth migration of the seismic data. Such processing requires itself an
accurate determination of the distzibution of the propagation velocities. Reflection
tomography turns out to be quite attractive for this purpose. Furthermore, migration
velocity analysis can complete this technique whenever complexity of wave propagation
makes the picking of reflection traveltimes very cumbersome, if not impossible. Two
different subsurface representations can he used to perform these methods: the blocky
medel representation and the smooth model representation. In reflection tomography,
using blocky models with finite velocity jumps can create shadow zones and the
possible non-definition of the forward problem. Smooth models, on the other hand,
are created such that they do not have such shadow zones but require specific
techniques to integrate a priori geological information Alse, use of blocky models for
migration brings, in general, artificial dicontinuities to migrated seismic events, thus
making almost impossible the interpretation of these events which is the basis of
migration velocity analysis Should we use smooth models, such an interpretation
becomes possible Thus, in spite of some inherent limitations, smooth models are well
adapted to run reflection tomography coupled with migration velocity analysis for the

imaging of complex geological structures.

Key words: inverse problem, ray tracing, reflection seismology, seismic velocities.

1 INIRODUCIION

In this paper, we are interested in seismic imaging of complex
geological structures invoiving severe lateral velocity vari-
ations A typical example is given in Fig 1. Fig 2 shows a
seismic section of the same geological siructure: the geometries
of the different layers are cleaily seen, except for times greater

than 15s and swiface locations ranging between 20 and

22 km, where we are not able to identify significant seismic
events. The lateral velocity variations do not allow coherent
summation of the seismic events during CMP stacking
Obtaining a good seismic image of such a structure requires
pre-stack depth migration, which itself calls for the accurate
determination of the distribution of propagation velocities. In
particulas, for well-known reasons that we will recall below,
the velocity model to be used for pre-stack depth migraiion
must be kinematically consistent with the seismic data.
Reflection tomography or traveltime inversion (see eg Chiu
& Stewart 1987; Bording er ol 1987; May & Covey 1983;
Hatlan 1992) is designed to obtain such a model. As picking
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of reflection traveltimes can be very cumbersome on complex
geological structures, it can be replaced or completed by
migration velocity analysis. For the sake of simplicity (and
because 3-D migration velocity analysis is not in general use
today), we will only consider 2-D problems in this paper
Migration velocity analysis can, in principle, be implemented
in the context of common-shot-record migration {Jacobs et al
1992), but, from a practical point of view, this apptoach is
cumbersome and a common-ofiset implementation is much
moze preferable (eg. Wang et al. 1991; Williams, Cowley &
Notfors 1992; Wiliams & Cowley 1993). Common-oifset
migration gives, for each offset, a migrated image of the
recorded reflections: the result is thus a cube of migrated
images {(Fig 3) If the velocity model used for migration is
correct, the migiated images associated with the different
oflsets are expected to be identical. The stack of all of these
common-offset migrated sections will be refetred to as the
post-migration stacked section. If the migration velocity model
is correct, the events that are added during the post-migration
stack are consistent with each other: the events in migration
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Figure . An example of a salt sfructure at a passive margin. The
sediments have slid on a basement that consists of flat layers slightly
dipping from the right to the left This has given rise to a listric fault
that juxtaposes materials with very different propagation velocities
The salt may have flowed away, but a salt body may still exist. The
+ and — signs indicate possible deviations with respect to the
indicated velocities.

coherency panels (vertical cuts taken in the cube at a given
horizontal location, Fig 3) are horizontal. Tf the migration
velocity model is erroneous, the events in migration coherency
panels are not fat, and incoherent information is summed
duzing the post-migration stack

The idea behind migration velocity analysis is to use the
information contained in the deformation of migrated images
from one offset to another to assess the incompatibility between
the migration velocity model and the kinematics of seismic
data Yet we can use this information to update the velocity
model. Migration velocity analysis basically 1elies on an

16 18

interpretation of the cube of migrated images. From such an
interpretation, the model can be updated by different tech-
niques, for instance, the ones of van Trier (1990}, Stork (1992),
and Lailly & Ehinger (1991} The last approach is based on
reflection tomography; migration velocity analysis serves to
access kinematic information on structures whose complexity
makes interpretation of surface sgismic sections very difficult
Migration velocity analysis thus yields additional kinematic
information that can be processed by reflection tomography

To run reflection tomography and migration velocity analy-
sis, different subsurface representations can be envisaged. We
distinguish two main classes: smooth models and blocky
models. The goal of this paper is to examine the role of smooth
velocity models in such applications

2 SURBRSURFACE REPRESENTATION FOR
REFLECTION TOMOGRAPHY

Reflection tomography is an inverse problem. The forward
problem, associated with reflection tomogtaphy, is two-point
ray tiacing between a source and a receiver, which itself relies
on a subsurface representation We will be interested in two
different representations of the subsurface

2.1 The blocky model representation

Blocky models (Lines & Treitel 1983; Chiu & Stewait 1987)
use a layei-based representation of the subsurface, each layer
being associated with a maciosequence in which the velocity
vaties genily Such a representation of the subsurface has a
very natural aspect An example is given in Fig. 4 If x and =
denote the horizontal coordinate and the depth, respectively,
the mathematical definition of a blocky model requires the
definition of:

20 22 (km)

Figure2 The CMP-stacked section of real data associated with the geological structure in Fig 1 The arrows indicate the fault (1) and the base

of the salt {2)
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Figure 3. Cube of common-offset migrated images and coherency panels Common-offset migration gives one common-offset migrated image per
offset (a) A migration coherency panel (b) is a vertical cut taken in the cube of migrated images for a given horizontal location. Examples of

coherency panels are given in Figs 10 and 12
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Figure 4. Blocky model associated with the geological structure in Fig 1. The layer velocities have been chosen as constant, but velocities are

generally allowed to vary gentle within each layer

(1) a (slowly varying)' velocity distribution V.(x, z) within
each layer i; and

(2) the interfaces separating the different layers For the
sake of simplicity, we only consider structures with moderate
complexity, thus allowing an explicit representation of the
interfaces. They are described by a smooth! depth function
Z {x), the subscript j referring to the interface considered

Finally, for reflection tomogtaphy we need to define reflec-
tors: for a blocky model, reflectors are some of the previously

! We require C? regularity fo allow the use of paraxial ray techniques,

which are very useful for the solution of the two-point ray-tracing
problem

© 1996 RAS, GJT 124, 349-362

defined interfaces? In the following, we denote by M5 the
set of blocky models built up of I layers and J interfaces.

2.2 The smooth model representation

In reflection tomography, smooth velocity models with a non-
natural character have met with considerable interest {Bishop
et al. 1985; Bording et al 1987; Harlan 1992; Jacobs et al

2Note that not imposing afl interfaces to be reflectors increases the
generality of the definition of blocky models. Imposing reflectors to
be interfaces is not restrictive whenever we allow layers separated by
some interfaces to have the same properties
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Figure 5. Smooth model associated with the geological structure in Fig 1. The reflectors are imbedded in the globally defined velocity distribution
and are allowed to cross each other. They go from the left to the right of the model To keep this display clear, we have not drawn the extreme
right-hand side of the reflectors to the Ieft of the fault, or the extreme left-hand side of the reffectors to the right of the fault

1992} In such models, the riotion of layers disappeats and the
velocity distribution is defined globally by a (single} smooth?
function V(x,z} In smooth models, reflectors are defined by
smooth! depth functions Z,(x) imbedded within the velocity
distribution F(x, z). An example of such a model is given in
Fig. 5. Contrary to blocky models, and for reasons that will
be explained later, we allow reflectors in smooth moedels to
cross each other. Thus, a reflector is allowed to cross a fault
{Fig 5). In the following, we denote by M™% the set of
smooth models built up of J reflectors

23 The associated forward problems

Having defined the two types of models, we can now define

the associated forward problems We denote by A; the set of

source-receiver pairs (s, 7} for which we want to calculate the
arrival time of the reflection on reflector j3

For a given model m e MY, two-point ray tracing allows
us to compute the arrival times F7°*(m) of the reflection on
reflector f,j e J, for all source—receiver pairs in A; Similatly,
we denote by Fm9°™" () the arrival times of reflection j, where
model m e M5EootR

We have thus introduced the forward-modelling operator
associated with the reflection tomography problem. Note that
the modelling operator FU* may be undefined for some
models in M35 this happens whenever there exists a pair
(s,1} € A;for which no ray leaving source s can reach receiver
r after reflection on reflector j, a common situation, since
discontinuous models generate, in general, discontinuous ray
families. In contiast, as a consequence of the continuity of ray
families for smooth models, the forward modeiling operator

3Note that 4; can be empty (case of a blocky model where interface j
is not considered as a reflector)

Femeeth s except for rare geometrical situatioms, defined for
i P g
all models in Fmeoth 4

2.4 The associated inverse problems

For the inverse problem, the data are, for a certain number of
reflections j,j € .J, the multi-offset arrival times T%* of each
reflection for the different couples (source, receiver) for which
this data is available, thus defining the set of measurements
A;. These multi-offset arrival times can be obtained by picking
on pre-stack seismic sections The inverse problem is formu-
lated as a classic least-squares problem. Having defined a norm
| |I; in the space of arrival times associated with reflection j,
we want to find the model that best matches this data according
to the norms | [f; We are thus led to the following
formulations

{1} Blocky model reflection tomography.
Find riye © MY9% that minimizes
Cblock(m) — Z “‘F?IDCk(m) o —[-];ick ”5. (1)
jeJ
(2) Smooth model reflection tomography
Find Mypoom € MM that minimizes
Csmuoth(m) = 2 H F;mooth(m) _ T?ick sz (2}
jer

Delprat-Tannaud & Lailly (1993) show that the above

4 Difficulties resulting from possible muitivalued traveltimes can be
overcome either by using a special formulation of reflection tomogra-
phy (Delprat-Jannaud & Lailly 1993) o1 by considering the smallest
of these traveltimes to define the forward modelling operator. In cur
paper, we make use of this second sirategy
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problems are ill-posed but can be made well-posed by introduc-
ing curvature regularization We thus obtain part {3)

(3) Blocky model reflection tomography with curvature
regularization.
Find g, € ME9% that minimizes

C?é;ck (m) = Cblock(m)
' 62V 2 62V 2 an 2
v i ! -
x| (G () () Joe

+ ¥ &7 [(a;xzzj)z dx, (3)

jes

where D; is the domain associated with layer i, and &f and &f
are regularization weights

(4) Smooth model reflection tomography with curvature
regularization.
Find fgpem = M that minimizes

Cigéoohh(m) — Csmnom(m)
" 62V 2 6217 2 aZV 2
g - -
¥ H(a) () () Je

v raz N2
vy af[(%x—zz) x, (4

jer

where Dy is the domain of the overall velocity distribution ¥,
and ¢¥ and ¢f are again regulaiization weights.

Minimization of this objective function in reflection tom-
ography is performed classically by an iterative Gauss-Newton
algorithm. Note that reflection tomography basically requires
the possibility of evaluating how good a model is, by comparing
the reflection traveltimes it generates [for all different pairs
{s,7) € 4,;,j € J] with the observed times 'T‘}’i"k. This funda-
mental requirement is far from fulfiled in blocky-model reflec-
tion tomography since the forward modelling operator may
be undefined. Reflection tomography is understood as a non-
linear inverse problem, the associated objective function often
having several local minima (e g Whiting 1991} Non-definition
of the forward modelling operator simply increases the chance
of being trapped in some local minimum This is not only a
theoretical difficulty but, indeed, a practical one For the
example in Fig. 4, at some stage of the tomography iterative
process, there will not be any 1ay path joining some sources
and receivers lying on either side of the fault This amounts to
attributing no importance to the associated picked traveltimes,
whereas they contain valuable information when velocity vari-
ations in the vicinity of the fault are to be retrieved

On the other hand, the definition of the forward modelling
operators F™°® assures that a traveltime exists for each
couple {(s,7} € 4;,j € J, so that we expect the objective func-
tion CiZ°M o be well-behaved. Although we do not claim
that local minima do not exist, our many experiments with
smooth-model reflection tomogiaphy have always provided us
with a model that at least matches the data *

Application of smooth-model reflection tomography with
curvature regularization in our study example produces the

 HBven though the model is not the one we were looking for, we point
out here the very different nature of underdetermination and of
convergence towards local minima, ie, situation in which the
computed model does not match the data.
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result shown in Fig. 6. The fit of calculated aund picked travel-
times is very good. However, the model is not satisfying In
particular, the distribution of isovelocity lines is rather strange.
This should not be surprising and is, in fact, the result of
underdetermination FEven though smooth-model reflection
tomography with curvature regularization is a well-posed
problem (in particular, it has a unique solution which is
mathematically stable), it is in practice very unstabie as a result
of: (1) sparse kinematic data (in particular, when we have no
traveltime data from the uninterpretable parts of the seismic
sections); and (2) the low value given to the regularization
weight &

Thus, there exists a very wide variety of smooth models with
moderate curvature that match the traveltime data with satis-
factoty accuracy The solution in Fig. 6 is nothing but an
arbitrary representation of all these possible solutions,

Increasing the value of the regularization weight ¥ would
improve quantitative stability (Delprat-Jannaud & Lailly
1993), but imposing zero curvature a prieri (large &) would
be contradictory with what we know a priori about the velocity
(it can vary rapidly, for instance, in the vicinity of the fault)
and, in turn, with the kinematics of the seismic data Instead
of this inadequate approach, we have to reduce under-
determination by integrating relevant a priori geological
information

We thus reach the following conclusions.

(1) Blocky-model reflection tomography can lead to a
local minimum but offers the advantage of straightforward
integration of a priori geological information The solution
will meet the a priori geological information implicitly con-
tained in the model with the velocity distributions varying
gently within a given layer, and with discontinuities at the
macrosequence boundaries.

(2) Use of smooth models in reflection tomography assures
the convergence to a global minimum. Most importantly, we
can expect to take correctly into account the traveltimes
associated with rays that travel in the vicinity of, and are most
sensitive to velocity vatiations across, the fault The output of
smooth-model reflection tomography with curvature regulariz-
ation is of limited inferest in the case of complex geological
structures. The problem is not the use of a smooth model, but
the use of global curvature regularization in such situations
In other words, use of smooth models for such applications
requires the design of an adequate technique for integrating
relevant « priori geological information into reflection tomogra-
phy In the next section we re-introduce the concept of layers
in smooth models

3 MAKING REFLECTION TOMOGRAPHY
WORK WITH SMOOTH MODELS

Integrating a priori geological information is essential to reduce
the underdetermination inherent in reflection tomography In
this section, we examine a variety of geological information
and how to integrate it into reflection tomogiaphy.

3.1 A prioriinformation on the structure of the velocity
field

With the exception of turbidites and volcanics, the Eaith’s
subsurface is not chaotic; rather it is governed by processes of
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Figure 6. Application of smooth model reflection tomography with curvature regularization. The traveltime data have been obtained by picking
seven reflections in the interpretable part of the common-offset seismic sections, associated with the CMP-stacked section of Fig 2 No traveltime
data were available for tienes larger than 15 ms and surface locations ranging between approximately 20 and 22 km, because the sections were not
interpretable in this area The parts of the reflectors represented by a dashed line are not illuminated by rays; their geomstry is therefore onty
determined by the integrated zero-curvature a priori information This also indicates those areas that are not crossed by rays, and thus where the
velocity is not determined by kinematic data The RMS traveltime misfit is about 15ms

sedimentary deposition and tectonic deformation, such that a
given velocity structure results from its geological history, We
use two types of geological information on the velocity field:
information on the regularity of the velocity and on the
anisotropy of regulazity due to sedimentation (Sinoguet 1993},

As far as the regularity of the velocity is concerned, we deal
only with macroscopic phenomena; very slight velocity vari-
ations will not be determined by traveltime inversion. Versteeg
(1991} showed that only velocity-field wavelengths of greater
than 100 metres are of importance for pre-stack migration
Accordingly, this defines the objective for complex structure
tomography. Additionally, geology tells us that velocity is
more regular in some places than in others Fig 1 shows the
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Figure 7. Possible disiribution of isovelocity lines according te
sedimentation effects for the geological structure in Fig 1

possible velocity variations in our study example: we expect
large velocity variations in the vicinity of the fault, whereas
the velocity should be more regular within the claystone/
sandstone formations Sedimentation results in regular, roughly
horizontal deposits, such that velocity varies little along those
reflectors that are geological isochrons (Fig. 7). Sedimentation
thus gives 1ise to some anisotiopy in the velocity regularity

To integrate the above-desciibed a priori information into
reflection tomography, we add penalization terms to the
original objective function eq (2). We obtain

Cominrt(m)

- Csmooth(m) + Z faf(m, )C)2 v V()C, ZJ) ' tj{x)]z dx
—_— jed.

tomography N - y

velocity guide

an 2 BZV 2 62V 2
v ? — — ) |dxd
o (5] (2 (3 e

N v 4 f
velocity regularization
_ AL
+ 3 gy j (ax;) dx, (5)
jeJ .
\ )

reflector reglarization
where V I is the gradient of velocity and t,(x) is the normalized
tangent vector to the reflector j.
The velocity guide tetm constrains the velocity to vary little
along certain reflectors by forcing the gradient of the velocity
to be orthogonal to the reflectors: it integrates the a priori
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