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S U M M A R Y
Seismic reflection tomography is a method for determining a subsurface velocity model from
the traveltimes of seismic waves reflecting on geological interfaces. From an optimization view-
point, the problem consists in minimizing a non-linear least-squares function measuring the
mismatch between observed traveltimes and those calculated by ray tracing in this model. The
introduction of a priori information on the model is crucial to reduce the under-determination.
The contribution of this paper is to introduce a technique able to take into account geological
a priori information in the reflection tomography problem expressed as inequality constraints
in the optimization problem. This technique is based on a Gauss–Newton (GN) sequential
quadratic programming approach. At each GN step, a solution to a convex quadratic optimiza-
tion problem subject to linear constraints is computed thanks to an augmented Lagrangian
algorithm. Our choice for this optimization method is motivated and its original aspects are
described. First applications on real data sets are presented to illustrate the potential of the
approach in practical use of reflection tomography.

Key words: augmented Lagrangian, constrained optimization, least-squares approach, ray
tracing, seismic reflection tomography, SQP algorithm.

1 I N T RO D U C T I O N

Geophysical methods for imaging a complex geological subsurface

in petroleum exploration requires the determination of an accurate

wave propagation velocity model. Seismic reflection tomography

turns out to be an efficient method for doing this: it determines the

seismic velocity distribution from the traveltimes associated with

the seismic waves reflecting on geological surfaces. This inverse

problem requires the solution to the specific forward problem, which

consists in computing these traveltimes for a given subsurface model

by a ray tracing method (based on a high-frequency approximation

of the wave equation, see Červený 1989; Jurado et al. 1998). The in-

verse problem is formulated as the minimization of the least-squares

function that measures the mismatch between traveltimes calculated

by ray tracing and the observed traveltimes.

The main interests of reflection tomography are

(1) its flexibility for handling various types of traveltime data si-

multaneously (primary reflections but also multiple reflections, trav-

eltimes associated with converted waves—PS data, surface seismic,

well seismic), provided that the ray tracing allows the computation

of such data,

(2) the low computational time of the forward operator, in com-

parison with the time needed for the calculation of the wave equation

solutions,

(3) the reduced number of local minima of the inverse problem,

in comparison with the seismic inversion based on the wave equation

simulation (see for instance Symes 1986 for a study on the choice of

the objective functional in seismic inversion to reduce the number

of local minima), and

(4) its ability to integrate a priori geological information (via a

least-squares formulation).

This method has been successfully applied to numerous real data

sets (Ehinger et al. 2001; Alerini et al. 2003; Broto et al. 2003, among

others). Nevertheless, the underdetermination of the inverse prob-

lem generally requires the introduction of additional information to

reduce the number of admissible models. The Bayesian inversion

allows the introduction of different type of data and a priori infor-

mation, the associated uncertainties being modelled by probability

distributions (see Tarantola 2005, for a detailed description of this

approach). In practice, a classical least-squares formulation (assum-

ing Gaussian probability densities) is used: penalty terms modelling

a priori information are generally added to the seismic terms in the

objective function with a delicate adjustment of the penalty weights

(see Daalen et al. 2004; Krebs et al. 2004, among the most recent

papers on tomography in oil industry).

The standard methodology to invert complex subsurface struc-

tures (model composed of several velocity fields and reflectors),

a top-down layer-stripping approach, may be inadequate. This
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approach consists in inverting separately each velocity layers (with

its associated reflectors) starting from the upper layer to the lower

one. To limit bad data fitting for deeper layers, a global inversion

approach, which consists of simultaneously inverting all the veloc-

ity layers and interfaces of the subsurface model, is recommended.

But, this method is often discarded due to its convergence troubles:

because of the underlying underdetermination, a global inversion

of complex subsurface structures often leads to a non-admissible

subsurface model on which the ray tracing method fails to compute

the traveltimes. Additional constraints on the model (for instance,

on layer thicknesses to avoid non-physical interface intersections)

are necessary to avoid those non-admissible models. We believe

that the possibility to introduce constraints in the optimization pro-

cess can overcome part of those difficulties. Equality and inequality

constraints can indeed model many different types of a priori infor-

mation, especially inequality constraints may help for instance to

match well data with a given uncertainty. An optimization approach

that can face these constraints efficiently will then discharge the final

user of the inversion seismic software from the cumbersome task of

tuning the weights associated with the additional penalty terms in

the objective function.

The goal of the paper is twofold. First, it presents our constrained

nonlinear optimization method and motivates its appropriateness

to constrained reflection tomography. A part of this algorithm is

new and the novelty is presented in the technical Sections 3.3 and

3.4. Second, it illustrates the efficiency of the chosen constrained

optimization method thanks to its application on a 2-D OBC real

data set and then on a 3-D streamer real data set.

We recall the problem of interest and introduce the notation in

Section 2. In Section 3, our Sequential Quadratic Programming

(SQP) augmented Lagrangian approach for constrained reflection

tomography problems is described and motivated. Numerical exper-

iments on real data sets are detailed in Section 4. We conclude with

Section 5.

2 T H E S E I S M I C R E F L E C T I O N

T O M O G R A P H Y P RO B L E M

2.1 The unconstrained problem

Let us first recall the problem of interest and introduce the notation.

The choice of the model representation is crucial for the efficiency of

the methods used to solve the forward and inverse problems. Lailly

& Sinoquet (1996) have discussed the interest of different types of

velocity models. We have chosen here a blocky model, where the ve-

locity distribution is described by slowly varying layer velocities (or

velocity blocks) delimited by interfaces. With this representation,

we introduce explicitly a strong a priori information: the number of

layers. The number of parameters describing the velocity variations

is limited thanks to the explicit introduction of velocity discontinu-

ities (the velocity within a layer varies smoothly). The model is thus

composed of two kinds of parameters: those describing the velocity

variations within the layers and those describing the geometry of the

interfaces delimiting the layers. Parameters describing the velocity

anisotropy can also be included (see Jurado et al. 1998; Stopin 2001,

for more details).

The ith interface is represented by a cubic B-spline function (de

Boor 1978; Inoue 1986) ẑi (x, y), whose coefficients define a vector

z i (x and y are the horizontal coordinates). Similarly, the ith veloc-

ity field is represented by a cubic B-spline function v̂i (x, y, z) or

v̂i (x, y) + k z with known scalar k (z is the vertical coordinate);

the vector v i contains the velocity coefficients. For nv layer veloci-

ties and nz interfaces, we collect the coefficients v1, . . . , vnv in one

vector v and the coefficients z1, . . . , znz in one vector z. The model
vector m ∈ R

n is defined here as m = (v, z). The C2 smoothness of

the functions describing the model allows the exact computation of

derivatives of the traveltimes with respect to the model, quantities

useful for ray tracing and tomography.

Given a model m and an acquisition survey (locations of the

sources and receivers) a vector of traveltimes T(m) of seismic re-

flected waves can be computed by ray tracing (see Jurado et al.
1998). The mapping T : R

n → R
t : m �→ T (m) is nonlinear. We as-

sume that it is differentiable. In practice, this assumption may not be

satisfied, in particular, the forward operator may even not be defined

when rays escape from the region of interest or when a layer thick-

ness vanishes (non-physical interface intersections as mentioned in

the introduction).

Reflection traveltime tomography is the corresponding inverse

problem: its purpose is to adjust m so that T (m) best matches a

vector of traveltimes T obs ∈ R
t (the observed traveltimes) picked

on seismic data. Since Gauss (1809), it is both classical and natural

to formulate such an inverse problem as a least-squares one:

min
m ∈ Rn

1

2
‖ T (m) − T obs ‖2, (1)

where ‖ · ‖ denotes the Euclidean norm.

The fact that the problem (1) may be ill-posed has been pointed

out by many authors (see for instance Delprat-Jannaud & Lailly

1993; Bube & Meadows 1999). To ensure well-posedness, a curva-

ture regularization is often introduced (Tikhonov & Arsenin 1977).

We use the sum of the squared L2-norms of all the second order

partial derivatives of every velocity v̂i and reflector ẑi (see for in-

stance Delprat-Jannaud & Lailly 1993). Such a regularization term

can be written as m� Rm, where R is a symmetric positive semidef-

inite matrix that only depends on the B-spline basis functions (it is

independent of m). Thus, instead of the problem (1), we consider

the regularized least-squares problem

min
m∈Rn

(
f (m) := 1

2

∥∥ T (m) − T obs
∥∥2 + σ

2
m� R m

)
, (2)

where the regularization weight σ is positive, and f : R
n → R

is called the cost function (or objective function). The choice of

the parameter σ is a difficult task. In practice, we use the L-curve

method (see Hansen 1992), also called the continuation method

(Bube & Langan 1994): starting from a large regularization weight,

we decrease it regularly to retrieve more and more varying models

until the data are fitted with the expected accuracy. The solution

model is thus the smoothest model that fits the data up to a certain

precision. This methodology allows us to do stable inversions. In

the sequel, when we consider the objective function of the problem

(2), we assume that its regularization weight is fixed.

The unconstrained minimization problem of seismic reflection

tomography, defined by (2), has the following features:

(1) the size of the data space and of the model space can be quite

large (up to 106 traveltimes and 105 unknowns),

(2) the problem is ill-conditioned (Chauvier et al. 2004, have

observed that the condition number of the approximated Hessian

Hk given by (5) below can go up to 109 for a matrix of order

500),

(3) a forward simulation, that is, a computation of T (m), is CPU

time consuming because of the large number of source-receiver

pairs, and
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(4) the traveltime operator T is nonlinear, revealing the complex-

ity of wave propagation in the subsurface.

To minimize efficiently a function like f in (2), it is highly desir-

able to have its gradient available. In the present context, thanks to

Fermat’s principle (Bishop et al. 1985), it is inexpensive to compute

row by row the Jacobian matrix J (m) of T at m. Recall that its (i ,
j)th element is the partial derivative

J (m)i j = ∂Ti

∂m j
. (3)

The gradient of the objective is then obtained by the formula

∇ f (m) = J (m)�(T (m) − T obs) + σ Rm. It is also natural to ask

whether one can compute the second derivatives of f . The answer is

however negative. Therefore, using a pure Newton method to solve

(2) is computationally infeasible.

There are at least two classes of methods that can take advantage

of the sole first-order derivatives:

(1) quasi-Newton (QN) methods and

(2) Gauss–Newton (GN) methods.

Standard QN methods do not use the structure of the least-squares

problems, but have a larger scope of application. They are used for

solving least-squares problems when the computation of the Jaco-

bian matrix J is much more time consuming than the computation

of the residual vector T (m) − T obs (see Courtier & Talagrand 1987;

Courtier et al. 1994, for a typical example in meteorology). We have

mentioned above that this is not our case. On the other hand, the GN

methods fully take benefit of the Jacobian matrix J by taking J � J
as an approximation of the Hessian of the first term in f . This algo-

rithm can exhibit slow convergence when the residual is large at the

solution and when T is strongly nonlinear at the solution. This does

not seem to be the case in the problem we consider. Sometimes GN

and QN methods are combined to improve the approximation of the

Hessian of the first part of f by J � J (see Dennis et al. 1981; Yabe

& Yamaki 1995, and the references therein).

The above discussion motivates our choice of a classical line-

search GN method to solve the unconstrained optimization problem

(Chauvier et al. 2000). The kth iteration, k ≥ 0, proceeds as follows.

Let mk be the approximate solution known at the beginning of the

iteration. Note

Tk := T (mk) and Jk := J (mk). (4)

First, an approximate solution dk to the following tangent quadratic
problem is computed

min
d∈Rn

1

2

∥∥ Jkd + Tk − T obs
∥∥2 + σ

2
(mk + d)� R(mk + d).

This is the quadratic approximation of f about mk , in which the costly

computation of the second derivatives of T has been neglected. By

the choice of the positive semi-definite regularization matrix R, the

Hessian of this quadratic function in d, namely

Hk := J �
k Jk + σ R, (5)

is usually positive definite. This property makes it possible to min-

imize the above quadratic function by a preconditioned conjugate

gradient algorithm. The next model estimation is then obtained by

the formula

mk+1 = mk + αkdk,

where αk > 0 is a step-size computed by a line-search technique

ensuring a sufficient decrease of f at each iteration.

This method is generally able to solve the minimization the prob-

lem (2). In some difficult cases, however, the line-search tech-

nique fails to force convergence of the sequence {mk}k≥0 to a

solution. This difficulty may arise when the Hessian of f is very

ill-conditioned and can often be overcome by using trust regions

(see Conn et al. 2000) instead of line-searches. The former method

usually provides more stable and accurate results than the latter

(Delbos et al. 2001; see also Sebudandi & Toint 1993). In any case,

we observe in practice that very few iterations are needed to get

convergence, typically of the order of 10.

2.2 Formulation of the constrained problem

Let us now set down the formulation of the constrained seismic to-

mography problem. The constraints that can be introduced in the

optimization problem could be nonlinear (for example, we could

force the impact points of some rays on a given interface to be lo-

cated in a particular area) but, in this study, we limit ourselves to

linear constraints. Even though linearity brings algorithmic simpli-

fications, the optimization problem is difficult to solve because of

the large number (up to 104) and the variety of the constraints. These

may be of various types:

(1) constraints of different physical natures: on the velocities, on

the interface depths, or on the derivatives of these quantities,

(2) equality or inequality constraints (examples: fixed value of

the velocity gradient, minimal depth of an interface), and

(3) local or global constraints (examples: local information com-

ing from a well, interface slope in a particular region).

The constrained reflection tomography problem we consider is

therefore formulated as the regularized least-squares problem (2)

subject to linear constraints:⎧⎪⎨⎪⎩
min

m ∈ Rn
f (m)

CEm = e
l ≤ CI m ≤ u.

(6)

In this problem, CE (resp. CI ) is an nE × n (resp. nI × n) matrix,

e ∈ R
nE , and the vectors l, u ∈ R

nI satisfy li < ui for all index i.
We note

nC := nE + nI and n′
C := nE + 2nI .

It is said that an inequality constraint is active at m if it is satisfied

with equality for this m. The inequality constraints of (6) can be

active/inactive in 3nI ways, since each of them can be either inac-

tive or active at its lower or upper bound (three possibilities). This

exponential amount is sometime referred to as the combinatorial
aspect of an inequality constrained optimization problem. Deter-

mining which of the inequality constraints are active at a solution

turns out to be a major difficulty for the algorithms.

2.3 First-order optimality conditions

Let m̂ be a local solution to (6). Since f is assumed to be differ-

entiable and the constraints are linear (thus qualified), there exist

μ̂E ∈ R
nE , μ̂l ∈ R

nI , and μ̂u ∈ R
nI such that the following Karush,

Kuhn and Tucker conditions (KKT) hold⎧⎪⎪⎨⎪⎪⎩
(a) ∇ f (m̂) + C�

E μ̂E + C�
I (μ̂u − μ̂l ) = 0

(b) CEm̂ = e, l ≤ CI m̂ ≤ u
(c) (μ̂l , μ̂u) ≥ 0

(d) μ̂�
l (CI m̂ − l) = 0, μ̂�

u (CI m̂ − u) = 0.

(7)
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These equations are fundamental in optimization and are the ba-

sis of many algorithmic approaches to solve (6). Figuring out their

meaning is easier when there are only equality constraints. Then

the first equation simply expresses the fact that the gradient ∇ f (m̂)

of the objective at m̂ must lie in the range space of C�
E , which is

perpendicular to the constraint manifold. This geometrical view of

optimality looks quite natural. In the presence of inequality con-

straints the meaning of (7) is that, to be optimal, m̂ must satisfy the

constraints (see (b)) and the gradient ∇ f (m̂) must be in the dual

cone of the tangent cone to the feasible set of (6) at m̂; admittedly a

more complex property. We refer the reader to the book of Fletcher

(1987) or the review paper by Rockafellar (1993) to get more insight

on (7).

The vectors μ̂E , μ̂l , and μ̂u in (7) are called the Lagrange or

KKT multipliers, and are associated with the equality and inequality

constraints of (6). From (a) and (d) in (7), we see that they are used to

decompose ∇ f (m̂) on the gradients of the active constraints (some

of the C�
i ’s). It can be shown that μ̂i tells us how the optimal value

f (m̂) varies when the ith constraint is perturbed. Condition (a) can

also be written

∇m�(m̂, μ̂) = 0,

where μ̂ := (μ̂E , μ̂l , μ̂u) and the function � : R
n × R

n′
C �→ R,

called the Lagrangian of problem (6), is defined by

�(m, μ) = f (m) + μ�
E (CEm − e)

− μ�
l (CI m − l) + μ�

u (CI m − u). (8)

We note μ̂I := μ̂l − μ̂u .

Equations (d) in (7) are known as the complementarity conditions.

They express the fact that a multiplier μ̂i associated with an inactive

inequality constraint vanishes. For some problems, the converse is

also true: active inequality constraints have positive multipliers. It

is then said that strict complementarity holds at the solution:

li < Ci m̂ ⇐⇒ (μ̂l )i = 0

Ci m̂ < ui ⇐⇒ (μ̂u)i = 0.

3 S O LV I N G T H E C O N S T R A I N E D

S E I S M I C R E F L E C T I O N T O M O G R A P H Y

P RO B L E M

In this section we motivate and describe the optimization method

used to solve (6) or its optimality conditions (7). A more detailed

description is given by Delbos (2004). The operating diagram of the

overall algorithm is presented in Fig. 1 and can help the reader to

follow the different levels of the approach.

3.1 Motivation for the chosen algorithmic approach

Presently, numerical methods to solve a nonlinear optimization

problem like (6) can by gathered into two classes:

(1) the class of penalty methods, which includes the augmented

Lagrangian approaches and the interior point (IP) approaches and

(2) the class of direct Newtonian methods, which is mainly

formed of the SQP approach.

Often, actual algorithms combine elements of the two classes, but

their main features make them belonging to one of them.

In penalty methods, one minimizes a sequence of nonlinear func-

tions, obtained by adding to the cost function in (6) terms penalizing

Figure 1. Operating diagram of the constrained optimization method.

more or less strongly the equality and/or inequality constraints as

the iterations progress. For example, in the IP approaches, the in-

equality constraints are penalized in order to get rid of their combi-

natorial aspect, while the equality constraints are maintained, since

they are easier to handle (see for instance Byrd et al. 2000, and the

references therein). The iterations minimizing approximately each

penalty function are usually based on the Newton iteration, which

requires finding the solution to a linear system. Therefore, the over-

all work of the optimization routine can be viewed as the one of

solving a ‘sequence of sequences’ of linear systems. This simpli-

fied presentation is mainly valid far from a solution, since close to

a solution satisfying some regularity assumptions, a single Newton

step is often enough to minimize sufficiently the current penalty

function (see Gould et al. 2000, for example). Now, each time a step

is computed as a solution to a linear system, the nonlinear functions

defining the optimization problem have to be evaluated in order to

estimate the quality of the step. It is sensible to define an iteration

of the penalty approach as formed of a step computation and an

evaluation of the nonlinear functions.

On the other hand, an SQP algorithm is a Newtonian method

applied to the optimality conditions, (7) in our case (see part III in

Bonnans et al. (2003) e.g.). Therefore, there is no sequence of non-

linear optimization problems to solve approximately, like in penalty

methods. As a result, it is likely that such an approach will need less

iterations to achieve convergence. Since, here also, the nonlinear

functions defining the optimization problem need to be computed

at each iteration to validate the step, it is likely that less nonlinear

function evaluations are required with an SQP approach, in compar-

ison with a penalty approach. Nevertheless, each SQP iteration is

more complex, since it requires solving a quadratic program (QP),

which is an optimization problem, with a quadratic cost function

and linear equality and inequality constraints.

The discussion above shows that the choice of the class of algo-

rithms strongly depends on the features of the optimization problem

to solve. The key issue is to balance the time spent in the simu-

lator (to evaluate the functions defining the nonlinear optimization

problem) and in the optimization procedure (to solve the linear sys-

tems or the QP). In the unconstrained seismic reflection tomography

problem, we have said in Section 2.1 that most of the CPU time is

spent in the evaluation of the traveltimes (simulation) and that the

GN algorithm converges in very few iterations (around 10). When
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choosing the algorithmic approach for the constrained version of the

problem, we anticipated that the number of iterations will also be

small with a Newton-like algorithm and that, in the current state of

their development, IP algorithms will be unlikely to converge in so

few iterations. This is our main motivation for developing an SQP-

like algorithm: to keep as small as possible the number of nonlinear

function evaluations. This strategy could be questioned with a ray

tracing using massive parallelization; we leave this topic for future

investigations.

3.2 A Gauss–Newton sequential quadratic programming

approach

We have already mentioned that the SQP algorithm is a Newton-

like method applied to the optimality conditions of the nonlinear

optimization problem under consideration, (7) in our case. In its

standard form, it then benefits from a local quadratic convergence.

Let us specify this algorithm for the constrained seismic reflection

tomography problem.

The main work at the kth iteration of an SQP algorithm consists

in solving the following tangent QP in d (see Chapter 13 and (13.4)

in Bonnans et al. 2003), in order to find the perturbation dk to be

given to mk :

(QPk)

⎧⎪⎪⎨⎪⎪⎩
min
d∈Rn

(
Fk(d) := g�

k d + 1

2
d� Hkd

)
CEd = ẽk

l̃k ≤ CI d ≤ ũk .

(9)

The cost function of this problem has a hybrid nature. Its linear part

is obtained by using the gradient of the cost function of (6) at mk ,

which is

gk = J �
k

(
Tk − T obs

) + σ R mk,

where we used the notation in (4). Its quadratic part should use,

ideally, the Hessian of the Lagrangian � defined in (8), in or-

der to get (quadratic) convergence. Since the constraints in (6)

are linear, only the Hessian of f plays a role. Like for the un-

constrained problem, we select the GN approximation Hk (see

(5)) of this Hessian in order to avoid the computation of the ex-

pensive second derivatives of T . The constraints of (9) are obtained

by the linearization of the constraints of (6) at mk . Writing CE(mk

+ d) = e and l ≤ CI (mk + d) ≤ u leads to the constraints of eq. (9)

with

ẽk := e − CEmk, l̃k := l − CI mk, and ũk := u − CI mk .

Let dk be a solution to (QPk). Near a solution, the SQP algorithm

updates the primal variables mk by

mk+1 := mk + dk . (10)

The SQP algorithm is actually a primal-dual method, since it also

generates a sequence of multipliers {μk} ∈ R
n′

C , which aims at

approximating the optimal multiplier associated with the constraints

of (6). These multipliers are updated by

μk+1 = μ
QP

k , (11)

where μ
QP
k is the triple formed of the multipliers (μ

QP
k )E , (μ

QP
k )l ,

and (μ
QP
k )u , associated with the equality and inequality constraints

of (QPk). Because of the linearity of the constraints, these multipliers

do not intervene in the tangent QP, but they are useful for testing

optimality and for the globalization of the algorithm (Section 3.5).

The following property of the SQP algorithm deserves being

quoted for the discussion in Section 3.3. When strict complementar-

ity holds at a non-degenerate primal–dual solution (m̂, μ̂) to (6) (see

Section 2.3) and when the current iterate (mk , μk) is close enough

to (m̂, μ̂), the active constraints of the tangent QP are those that are

active at the solution m̂ (see Theorem 13.2 in Bonnans et al. 2003).

Therefore, the difficult task of determining which constraints are

active at the solution to (QPk) disappears once mk is close to m̂,

since the constraint activity is unchanged from one tangent QP to

the next one.

The technique used to solve the tangent QP is essential for the

efficiency of the SQP approach. In particular, because of the property

mentioned in the previous paragraph, it should take benefit of an a
priori knowledge of the active constraints. In the next two sections,

we concentrate on this topic, which is represented by the right-hand

side blocks in Fig. 1. These sections have a strong algorithmic nature;

the non-interested reader can skip them without loosing the leading

strand of the algorithm. We come back to the globalization of SQP

(the part of the algorithm that is depicted by the bottom block in the

left-hand side of Fig. 1) in Section 3.5.

3.3 Solving the tangential quadratic problem by an

augmented Lagrangian method

Because Hk is positive semi-definite (and usually positive definite),

the tangent QP problem (9) is convex. Such a problem has been

the subject of many algorithmic studies; we mention the following

techniques:

(1) active set (AS),

(2) augmented Lagrangian (AL), and

(3) interior points (IP).

Let us now motivate our choice of developing an AL algorithm

to solve the QP in (9). The AS approach is often used to solve the

QP’s in the SQP algorithm. It has the advantage of being well de-

fined, even when the problem is non-convex, and of being able to take

advantage of an a priori knowledge of the active constraints at the so-

lution. However, since this algorithm updates the active set one con-

straint at a time, it suffers from being rather slow when the active

set is not correctly initialized and when there are many inequality

constraints. For large problems, this can be a serious drawback and

we have discarded this method for that reason. The IP algorithms are

very efficient to solve convex QP’s but, presently, they have some

difficulty in taking benefit of a good knowledge of the active con-

straints as this is often the case after a few iterations of the SQP

algorithm. On the other hand, the inherent ill-conditioning of the

linear systems they generate and the necessity to use here iterative

methods to solve them have appeared to us as deterrent factors.

The AL approach that we have implemented goes back to

Hestenes (1969) and Powell (1969). This is a well-established

methodology, designed to solve nonlinear optimization problems,

although its properties for minimizing a convex QP does not seem

to have been fully explored (see Delbos & Gilbert 2005). It is adapted

to large problems, since it can be implemented in such a way that it

does not need any matrix factorization (Fortin & Glowinski 1983;

Glowinski & Le Tallec 1989). In the context of seismic tomogra-

phy problems, a version of the AL algorithm has been proposed by

Glowinski & Tran (1993) to solve the tangent QP of the SQP method.

The present contribution takes inspiration from that paper and goes

further by improving the efficiency of its augmented Lagrangian QP

solver. Let us detail the approach.
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The QP (9) is first written in an equivalent form, using an auxiliary

variable y ∈ R
nI (we drop the index k for simplicity):

(QP′)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
min

(d,y)∈Rn×R
nI

F(d)

CEd = ẽ, CI d = y

l̃ ≤ y ≤ ũ.

Next, the AL associated with the equality constraints of that problem

is considered. This is the functionLr : R
n ×R

nI ×R
nC �→ R defined

at d ∈ R
n, y ∈ R

nI , and λ = (λE , λI ) ∈ R
nC by

Lr (d, y, λ) = F(d) + λ�
E (CEd − ẽ) + r

2
‖ CEd − ẽ ‖2

+ λ�
I (CI d − y) + r

2
‖ CI d − y ‖2 .

The scalar r > 0 is known as the augmentation parameter and can

be viewed as a weight scaling the penalization of the constraints of

(QP′) in Lr . A deeper (and more complex) interpretation of these

parameters is given below, allowing the algorithm to change them

regularly.

Algorithm 1. An AL algorithm to solve (9).

data : λ0 ∈ R
nC and r 0 > 0;

begin
for j = 0, 1, 2, . . . do

if (CEd j � ẽ) & (CI d j � y j ) then return;

by Algorithm 3, find a solution (d j+1, y j+1) to{
min(d,y) Lr j (d, y, λ j )

l̃ ≤ y ≤ ũ;

(12)

if (12) is solved then{
λ

j+1
E := λ

j
E + r j

(
CEd j+1 − ẽ

)
λ

j+1
I := λI

j + r j
(
CI d j+1 − y j+1

)
else

λ j+1 := λ j ;

end
choose a new augmentation parameter r j+1 > 0 by

Algorithm 2;

end
end

(13)

The precise statement of our version of the AL algorithm to solve

(9) or (QP′) can now be given: see Algorithm 1. This method, in

particular the update of the multipliers by (13), has a nice interpre-

tation in terms of the proximal point algorithm in the dual space

(see Rockafellar 1973). It is not essential to give this interpretation

here, but this one is very useful for proving the properties of the

method, including its convergence. In this theory, the augmentation

parameter r in the definition of Lr is viewed as a step-size, damping

the modification of the multipliers in (13). The factor of r = r j in

this formula is indeed a negative subgradient of the dual function at

λ j+1. Note that these step-sizes r j can now change at each iteration

of Algorithm 1, while the penalty approach behind the definition

of Lr makes the possibility of such a change less natural. On the

other hand, it can be shown that the algorithm converges if (9) has a

solution and if the sequence {r j} j≥0 is chosen bounded away from

zero. If, in addition, r j is chosen larger than some positive Lipschitz

constant L (usually unknown, unfortunately), the norm of the equal-

ity constraints converges globally linearly to zero: this is inequality

(14) below, to which we will come back. Actually, the larger are the

augmentation parameters r j, the faster is the convergence. The only

limitation on a large value for r j comes from the ill-conditioning

that such a value induces in the AL and the resulting difficulty or

impossibility to solve (12). This is why a test for updating the mul-

tipliers by (13) has been introduced. For ensuring convergence, the

test prevents the multipliers from being updated when (12) is not

correctly solved (a heuristic less restrictive than this test is used by

Delbos 2004).

Algorithm 1 is a dual method, since it essentially monitors the dual

sequence {λ j} j≥0; the augmentation parameters r j and the primal

variables (d j+1, y j+1) are viewed as auxiliary quantities. The choice

of the initial multiplier λ0 depends on the outer SQP iteration index.

When k = 0, Algorithm 1 simply takes λ0 = 0, unless an estimate of

the optimal multiplier is provided. When k > 0, Algorithm 1 takes

for λ0 the dual solution to the previous QP. A similar strategy is used

for setting r 0: when k = 0, r 0 is set to an arbitrary value (the effect

of taking r 0 = 1 or r 0 = 104 is tested for the 3-D real data set in Sec-

tion 4.2) and, when k > 0, r 0 is set to the value of r j at the end of the

previous QP.

Algorithm 1 can be viewed as transforming (9) into a sequence

of bound constrained convex quadratic subproblems of the form

(12). These subproblems have a solution, as soon as (9) has a so-

lution (see Proposition 3.3 in Delbos & Gilbert 2005, for a weaker

condition). Clearly, the major part of the CPU time required by Al-

gorithm 1 is spent in solving the bound constrained subproblems

(12). We describe an algorithm for doing this efficiently in Section

3.4: Algorithm 3. Two facts contribute to the observed success of

this method. First, a bound constrained QP is much easier to solve

than (9), which has general linear constraints (see Moré & Toraldo

1991, and the references therein). Second, because of its dual and

constraint convergence, the AL algorithm usually identifies the ac-

tive constraints of (9) in a finite number of iterations. Since often

these active constraints are stable when mk is in some neighborhood

of a solution, the combinatorial aspect of the bound constrained

QP’s rapidly decreases in intensity as the convergence progresses

(and usually disappears after very few AL iterations).

We have already made it clear that the choice of the augmentation

parameters r j is crucial for the efficiency of Algorithm 1. Two pitfalls

have to be avoided: a too small value slows down the convergence,

a too large value makes it difficult to find a solution to (12). It is

usually not easy to determine an a priori appropriate value for the

augmentation parameter, so that updating r j in the course of the AL

iterations by observing the behaviour of the algorithm looks better.

In our implementation of Algorithm 1, the update of r j at iteration

j ≥ 1 is done by a heuristic close to the one given in Algorithm 2.

This one deserves some explanations.

Algorithm 2. A heuristics for updating r j in Algorithm 1.

data : r j−1, r j , ρ j , ρdes, κ
j−1, and κ j ;

begin
if (12) is solved then

r j+1 := r j ;

1 if ρ j > ρdes then r j+1 := r jρ j/ρdes;

else
2 r j+1 := r j/10;

if (r j < r j−1)&(κ j > κ j−1) then
3 stop [failure of Algorithm]

end
end

end
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A too small value of r j can be deduced from the observation of ρ j

:= ν j+1/ν j , where ν j := ‖(CEd j − ẽ, CI d j − y j )‖ is the Euclidean

norm of the equality constraints of (QP′). It is indeed known from

Theorem 4.5 of Delbos & Gilbert (2005) that there is a constant

L > 0 such that, for all j ≥ 1, there holds

ρ j ≤ min

(
1,

L

r j

)
. (14)

This estimate is valid provided (12) is solved exactly. If such is the

case and if ρ des ∈ (0, 1) is a given desired convergence rate for the

constraint norm, a value ρ j > ρ des is then an incitement to increase

the augmentation parameter. This update of r j is done in statement

1 of Algorithm 2.

On the other hand, a difficulty to solve (12) can be detected by

the impossibility to satisfy the optimality conditions of that problem

at a given precision in a given number of preconditioned conjugate

gradient (CG) iterations (the algorithm to solve (12), based on CG

iterations, is explained in Section 3.4). The heuristics has also to

decide whether a failure to solve (12) is due to a too large value

of r j, in which case decreasing r j is appropriate (statement 2), or

to an intrinsic excessive ill-conditioning of the problem, in which

case a definitive failure is declared (statement 3). For this, it uses

the sensitivity to r j of an estimate κ j of the condition number of the

preconditioned Hessian

Mr j := P−1/2

r j Qr j P−1/2

r j ,

where Qr j : = H+r j (C�
E CE + C�

I CI ) is the Hessian with respect

to d of the criterion Lr j of (12) and P r j (�Qr j ) is a preconditioner

for Qrj . The estimate κ j makes use of the Rayleigh quotients of M rj

computed during the preconditioned CG iterations. According to

Proposition 2.3 of Fortin & Glowinski (1983), the condition number

of Qrj grows asymptotically linearly with r j. The same law does not

hold for M rj , since hopefully r j intervenes in Prj . Nevertheless, it

is important to have an estimate of the condition number of M rj ,

not of Qrj , since it is M rj that governs the performance of the CG

algorithm. In view of these comments, it seems reasonable to say

that, if a preceding decrease of the augmentation parameter, r j <

r j−1, has resulted in an increase of the condition number estimate,

κ j > κ j−1, it is likely that a new decrease of r j will not improve the

conditioning of problem (12). In that case and if it is not possible

to solve (12) with r j, a decision to stop is taken in statement 3 of

Algorithm 2; the problem is declared to be too hard to solve.

The actual heuristics for updating r j in our implementation of

the AL algorithm has other safeguards, detailed by Delbos (2004),

but the logic is essentially the one presented in Algorithm 2. Ex-

periments with two different initial values r 0 of the augmentation

parameter are shown in Section 4.2, illustrating the behaviour of the

heuristics adapting r j.

To conclude the description of Algorithm 1, we still need to say

a word on its stopping criterion and to specify the value of the

multiplier μ
QP
k used in (11). There are many ways of showing that

the stopping criterion makes sense. The shortest one here is probably

to observe that a solution (d j+1, y j+1) to (12) satisfying CEd j+1 = ẽ
and CI d j+1 = y j+1 is actually a solution to (QP′); d j+1 is then a

solution to (9). Finally, the optimality conditions of problems (9)

and (QP′) show that one can take(
μ

QP

k

)
E

= λ
j+1
E ,(

μ
QP

k

)
l

= max
(
0, λ

j+1
I

)
, and

(
μ

QP

k

)
u

= max
(
0, −λ

j+1
I

)
,

where λ j+1 is the value of the multiplier on return from Algorithm

1 at the kth iteration of the SQP algorithm.

3.4 Solving the Lagrange problem by the GP–AS–CG

algorithm

Problem (12) is solved in our software by a combination of the

gradient projection (GP) algorithm, the active set (AS) method, and

conjugate gradient (CG) iterations. This GP–AS–CG algorithm is

a classical and efficient method for minimizing a large scale bound

constrained convex quadratic function, see Moré. & Toraldo (1991),

Friedlander & Martı́nez (1994), Nocedal & Wright (1999), and the

references therein. We adapt it below to the special structure of

problem (12), in which the variables d and y intervene differently in

the objective and only y is constrained.

A brief description of the three ingredients of the GP–AS–CG

algorithm is necessary for the understanding of the discussion below.

The AS method solves (12) by maintaining fixed a varying choice

of variables yi to their bounds, while minimizing the objective with

respect to the other variables, which are supposed to satisfy the

constraints. Each time the minimization would lead to a violation

of some bounds, a displacement to the boundary of the feasible set

is done and some new variables yi are fixed to their bounds. The

minimization is pursued in this way up to complete minimization

with respect to the remained free variables or (in our case) up to

the realization of a Rosen-like stopping criterion. The GP algorithm

intervenes at this point to inactivate a bunch of erroneously fixed

variables and, possibly, to activate others. This GP–AS algorithm

proceeds up to finding a solution to (12). Finally, CG iterations are

used to minimize the objective on the faces of the feasible set that

are activated by the GP–AS algorithm.

Minimizing the objective of (12) in (d, y) jointly can be ineffi-

cient, in particular when there are many inequality constraints in

the original problem (6), since then the presence of the auxiliary

variable y increases significantly the number of unknowns. Our first

adaptation of the GP–AS–CG algorithm consists in setting up a

minimization in d only, while y is adapted to follow the change in

d. Let us clarify this. Suppose that W ⊂ I is the working set at

a given stage of the algorithm, that is the set of indices i of the

variables yi that are fixed at one of the bounds l̃i or ũi . We note

C := (C�
E C�

I )�, V := I\W, W̄ := E ∪ W , and denote by CV

(resp. CW̄ ) the matrix obtained from CI (resp. from C) by selecting

its rows with index in V (resp. in W̄ ). For the current working set W ,

the algorithm has to solve (we drop the index j of the AL algorithm)

min
(d,yV )

Lr (d, y, λ).

with implicit bound constraints on yV ∈ [l̃V , ũV ] and with

yW fixed. The optimality conditions of this problem can be

Figure 2. A 2-D view of one iteration of the gradient projection (GP)

algorithm: the ellipses are the level curves of the objective function, the

vector −G is its negative gradient at the current iterate, and the shadow box

represents the feasible set.
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written

(H + rC�C)d − rC�
V yV = −g − C�λ + rC�

E ẽ + rC�
W yW ,

− rCV d + r yV = λV . (15)

Substituting the value of yV given by (15) into the first equation

gives(
H + rC�

W̄ CW̄

)
d = −g − C�

W̄ λW̄ + rC�
E ẽ + rC�

W yW . (16)

This is the equation that is solved by the preconditioned CG algo-

rithm. During this process, yV is updated so that (15) is continually

verified. It can be shown that the directions modifying (d, y) are con-

jugate in R
n × R

nI with respect to the Hessian matrix of Lr (·, ·, λ),

so that this method can be viewed as a conjugate direction algorithm

that maintains the iterates in the affine subspace defined by equation

(15).

In this process, as soon as yV hits a new bound, the working set W
is enlarged. Then a new CG process is started on the updated equa-

tions (16) and (15), from the (d , y) obtained so far. Note that the

updated (15) is verified at the beginning of this new process, since

it is obtained by deleting equations from (15) and since (15) was

verified at the end of the previous CG process. We will see that

(15) is also verified at the end of a GP phase of the algorithm, so

that this equation makes no difficulty to be maintained all along the

GP–AS–CG algorithm, provided this one starts by a GP phase.

The goal of the gradient projection (GP) phase of the algorithm

is to change drastically the working set if this one is felt to be very

different from the set of the active constraints at the solution. As

explained below, the GP phase is actually an adapted version of

a single iteration of the GP algorithm (see Bertsekas 1995 e.g.);

more iterations would be useless in our case, as we will see. Its

property mentioned above, which is observed in practice, is then

also supported by the fact that the GP algorithm identifies the active

constraints at the solution in a finite number of iterations when strict

complementarity holds.

An iteration of the standard GP algorithm forces the decrease

of the objective of (12) along the piecewise linear path obtained

by projecting the steepest descent path on the feasible set (see

Fig. 2). If P[l̃,ũ] stands for the projection operator on [l̃, ũ] in R
nI , the

projected steepest descent path emanating from the current iterate

(d, y) is the mapping

p : (α > 0) �→
(

d − αgd

P[l̃,ũ](y − αgy)

)
,

where gd (resp. gy) is the gradient of Lr with respect to d (resp. y).

There holds

gy = −λI − r (CI d − y).

In the standard GP algorithm, a local minimum or a step-size ensur-

ing a sufficient decrease of the complex piecewise quadratic function

α �→ Lr (p(α), λ) is usually taken. Because of the particularly sim-

ple structure ofLr in y, we prefer maintaining dfixed and minimizing

completely

α �→ Lr

(
d, P[l̃,ũ](y − αgy), λ

)
.

This is our second adaptation of the standard GP–AS–CG algorithm.

It has the following interesting property. Because the Hessian of Lr

with respect to y is a multiple of the identity matrix, the new y is the

projection on [l̃, ũ] of the unconstrained minimizer of Lr (d, ·, λ):

y := P[l̃,ũ]

(
CI d + λI

r

)
. (17)

Observe that, if W is now set to {i : yi = l̃i or ũi }, equation (15) is

satisfied, as claimed above.

Algorithm 3 summarizes our version of the GP–AS–CG algo-

rithm. The use of Rosen’s stopping test for the CG iterations and

other algorithmic details are not mentioned. See Delbos (2004) for

further information on the implementation.

Algorithm 3. The GP–AS–CG algorithm to solve (12).

data : r , λ, d := 0;

begin
GP := true;

while optimality of (12) is not satisfied do
if GP then

compute y by (17);

update W := {i : yi = l̃i or ũi } and V := I\W ;

GP := false;

else
while l̃V < yV < ũV do

use CG iterations to solve (16) in d, while

updating yV to satisfy (15);

end
update the index sets W and V ;

if W has not been enlarged then GP := true;

end
end

end

3.5 Globalization by line-search

It is now time to remember that the constrained minimization prob-

lem (6) we want to solve is nonlinear and that, just as in uncon-

strained optimization, the update of the model mk by (10), where dk

is the computed solution to the quadratic problem (QPk), is unlikely

to yield convergence if the initial estimate m 0 is not close enough to

a solution. For forcing convergence from a remote starting model,

we follow the standard globalization technique presented in Chapter

15 of Bonnans et al. (2003), which uses an exact penalty merit func-

tion. Using a filter method would have been an alternative, but we

did not try it. We have also implemented a line-search technique,

since the combination of trust regions with a QP approximately

solved by an augmented Lagrangian algorithm is a technique that

does not seem to have been explored. Due to its usefulness to solve

the unconstrained tomography problem, we plan to investigate this

possibility in a future research.

We use the exact penalty function 
τ : R
n → R defined by


τ (m) = f (m) + �τ (m),

where

�τ (m) =
∑
i∈E

τi | Ci m − ei |

+
∑
i∈I

τi max(li − Ci m, 0, Ci m − ui ),

in which the τ i ’s are penalty weights. Exactness of the penalization

means that a solution to (6) is also a minimizer of 
τ . To get that

important property, the τ i ’s need to be large enough, although finite.

It is usual to update them at some iteration, so that they always satisfy{
τi ≥ ∣∣(μQP

k

)
i

∣∣ + τ̄ , for i ∈ E

τi ≥ max
(∣∣((μQP

k

)
l

)
i

∣∣, ∣∣((μQP

k

)
u

)
i

∣∣) + τ̄ , for i ∈ I,
(18)
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where μ
QP
k is defined after (11) and τ̄ > 0 is a small security thresh-

old.

In our case, the convexity of the QP (9) defining dk and the in-

equalities (18) ensure that 
τ decreases along dk . A line-search

along this direction is then possible. A step-size αk > 0, typically

determined by backtracking, can be found such that for some small

constant ω ∈ (0, 1/2):


τ (mk + αkdk) ≤ 
τ (mk) + αkω�k, (19)

where �k := ∇ f (mk)�dk − �τ (mk) can be shown to be negative

when mk is not stationary. Now the model and the multiplier are

updated by{
mk+1 = mk + αkdk

μk+1 = μk + αk

(
μ

QP

k − μk

)
.

(20)

Algorithm 4 summarizes the overall algorithm to solve

problem (6).

Algorithm 4. The overall algorithm to solve (6).

data : m0, μ0;

begin
for k = 0, 1, 2, . . . do

if optimality of (6) holds at (mk, μk) then stop;

compute (dk, μ
QP

k ) a primal-dual solution to (12) by

Algorithm 1;

update τ to satisfy (18);

determine a step-size αk > 0 by backtracking,

in order to satisfy (19);

update (mk+1, μk+1) by (20);

end
end

4 A P P L I C AT I O N S O F T H E

C O N S T R A I N E D R E F L E C T I O N

T O M O G R A P H Y O N R E A L DATA S E T S

4.1 2-D PP/PS data set

In this section, we present an application of constrained reflection

tomography to one 2-D line of a 3-D 4C OBC (Ocean Bottom Ca-

ble) survey with PP and PS data from bp.1 Broto et al. (2003) have

already interpreted and studied this data set using an unconstrained

inversion method. The velocity model is described by four velocity

layers and five interfaces (cf Fig. 5 left). The isotropic assumption

was satisfying until the last layer (layer which contains the last two

interfaces h4 and h5). By applying the anisotropic inversion method-

ology of Stopin (2001) on the last layer, they obtained a model that

fits the traveltimes better than any of the previous isotropic models

and that, in addition, has more reliable velocity variations. Two pa-

rameters (η, δ) describe the velocity anisotropy: η can be seen as

a measure of the an-ellipticity, whereas δ controls the near vertical

velocity propagation of the P waves (Thomsen 1986; Stopin 2001).

The value of the δ anisotropy parameter has been obtained by

a trial and error approach in order to match approximately the h5

depth given by well logs. Actually, the underdetermination of the

14C refers to the 4 components, 1 hydrophone and 3 orthogonal geophones,

that allow both compressional (P) and shear wave data (S) to be recorded.

inverse problem does not allow the joint inversion of the velocities,

interfaces and anisotropy parameters (δ parameter is particularly un-

determined, Stopin 2001). This applied methodology is obviously

not optimal. Indeed, the manual tuning of the anisotropy parameters

requires a lot of time: an important numbers of anisotropic inver-

sion with different pairs (η, δ) have to be performed before getting

a satisfying result. Secondly, it is very hard to make this method ac-

curate: we note a discrepancy of 150 meters for the reflector depth

h5 compared to the depth given by the well logs data. Finally, it

turned out impossible to determine the anisotropy parameter δ so

that both the reflector depths of h4 and h5 given by the well logs are

reasonably matched.

The solution we propose here is to compute a model using our

constrained inversion method in order to fit the reflector depths given

by the well, while considering (η, δ) as additional unknowns to deter-

mine. This consists in the inversion of P- and S-velocity variations

(described by functions v(x , y, z)), of the geometries of interfaces

h4 and h5 and of the two anisotropy parameters, i.e. inversion of

1024 parameters from 32 468 picked traveltimes (associated with

reflections of PP waves and PS waves on h4 and h5). The estimated

picking errors are the following: 5 ms for the PP traveltimes associ-

ated with reflections on h4 and h5 and 8 ms for the PS traveltimes

associated with reflections on h5 (see Figs 3 and 4). Those uncer-

tainties are taken into account in the cost function (The Euclidian

norm is weighted by the inverse of the square of the uncertainties).

In Tables 1 and 2, we have respectively summed up the results

of the final models obtained with the unconstrained and constrained

inversions. The final model (Fig. 5 right) of the constrained inversion

matches the traveltime data with the same accuracy (Fig. 6) than the

result obtained by the unconstrained inversion (Fig. 5 left), and it

strictly verifies the reflector depths given by the well logs. For this

test, we have introduced equality constraints to match the reflector

depths at well location, however inequality constraints could have

been used to take into account the uncertainty on the well data. This

solution has been obtained after only nine nonlinear SQP iterations.

We see that, the introduction of constraints at wells for the two

reflectors h4 and h5 reduces the underdetermination and allows for

a joint inversion of velocities, interfaces, and anisotropy parame-

ters. The resulting model matches the traveltime (see Fig. 6) and

well data. The values of its anisotropy parameters are very different

from those obtained with the unconstrained inversion (Tables 1 and

Figure 3. Picked traveltimes associated with reflections on h4 versus offset

and receiver location.
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Figure 4. Picked traveltimes associated with reflections on h5 versus offset and receiver location. (PP data: left, PS data: right)

Figure 5. The velocity models (Vp and Vs) on the left hand side are computed with the unconstrained inversion method; those on the right hand side are

computed with the constrained inversion method. The white crosses locate reflector depths measured from the deviated well logs, which are imposed as

constraints. These additional constraints allows the software to determine the anisotropy parameters in the same run.
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Figure 6. Distributions of traveltime misfits associated with all reflectors for model obtained with unconstrained inversion (left) and for model obtained with

constrained inversion (right).

Table 1. Inversion results of the unconstrained inversion.

Layer 4 RMS of Depth mismatch η δ

traveltime at well location

misfits

h4-PP 3.6 ms 190 m

h5-PP 4.6 ms 150 m 6.2 per cent 2 per cent

h5-PS 9.8 ms

Table 2. Inversion results of the constrained inversion.

Layer 4 RMS of Depth mismatch η δ

traveltime at well location

misfits

h4-PP 6.3 ms 0 m

h5-PP 3.9 ms 0 m 8.2 per cent 15.9 per cent

h5-PS 8.1 ms

Figure 7. Velocity model (slices along x (left) and along y directions at one of the five well locations) obtained with a layer-stripping approach using the

unconstrained reflection tomography. This model corresponds to the v(x , y, z) velocity parameterization (see Table 3). The RMS value of the traveltime misfits

is 6.1ms.

2) and we observe velocity variations that were not present in the

model obtained by reflection tomography. The depth migration of

the data with the obtained velocity models would have been useful

to compare the two results. In this paper, we limit ourselves to the

application of the constrained optimization method.

4.2 3-D PP data set

During the European KIMASI project, reflection tomography was

applied on a 3D North Sea data set from bp (Ehinger et al. 2001). A

P-velocity model was obtained thanks to a top-down layer-stripping

approach where lateral and vertical velocity variations within

Tertiary, Paleocene and Cretaceous units (this last layer being di-

vided in two velocity layers) have been determined sequentially. A

strong velocity underdetermination in the upper Tertiary layer was

detected during the inversion process due to the large layer thickness
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Table 3. The different velocity parametrizations tested for the inversion of the Tertiary layer (in the layer-stripping approach applied by Ehinger

et al. 2001) for the unconstrained inversion and in a global constrained approach (last line of the table).

Tertiary velocity parameterization RMS of traveltime misfits Mean depth mismatch at the

five well locations

Velocity type Vertical velocity gradient Layer 1 Top of Paleocene

V 0(x , y) fixed to 0/s 4.3 ms 4.2 ms 96 m

V 0(x , y) + 0.2z fixed to 0.2/s 3.4 ms 4.6 ms 300 m

V (x , y, z) without constraints inverted ∼0.01/s 4.1 ms 4.4 ms 100 m

V (x, y, z) with constraints inverted ∼0.18/s 3.9 ms 4.4 ms 0 m

Table 4. Description of the equality and inequality constraints introduced in the inversion. We succeed to obtain a model that matches the data

and the 2300 constraints.

Constraints Model obtained with the Model obtained with the

UNCONSTRAINED inversion CONSTRAINED inversion

Mean depth tpal 96 m 0 m

mismatch at the 5 tchalk 132 m 0 m

well locations bchalk 140 m 0 m

Vertical velocity 0.1 < k < 0.3/s k = 0/s k ∼ 0.18/s

gradient in Tertiary

Velocity range 2.5 < vpal < 4 km s−1 ok ok

3.5 < vichalk < 5.7 km s−1 ok ok

4.2 < vchalk < 5.8 km s−1 ok ok

(2.5 km) and to the very poor ray aperture (despite the introduc-

tion of the intermediary reflector named layer 1). Several velocity

parametrizations (Table 3) were inverted and led to solution models

that match traveltime data with the same accuracy. These different

tests are time consuming (each test is a whole inversion) and the

reflector depths given by well data are not well retrieved, this infor-

mation being not explicitly introduced in the inversion process. One

of the resulting model is presented in Fig. 7.

To obtain a model consistent with well data, we propose to ap-

ply our developed constrained tomography inversion. The interface

depths are constrained at five well locations and we constrain the

range of variations of the vertical velocity gradient in the Tertiary

layer thanks to well measurements (Table 4). As for the application

on the first data set, the equality constraints on interface depths at

well locations could have been relaxed by inequality constraints to

model the uncertainty on the well data. A global inversion of the

four velocity layers is preferred to the layer-stripping approach: it

avoids bad data fitting for deeper layers due to errors in shallow

layers. The simultaneous inversion of all the layers is guided by

constraints on layer thicknesses to avoid any non-physical interface

intersections: Fig. 8 shows an example of non-admissible model ob-

tained by global unconstrained inversion (it presents non-physical

interface intersections that make layers vanish in the pointed region

and thus a large number of rays are discarded).

The experiment then consists in a global inversion of 127 569

traveltimes (with offsets ranging from 0 to 1.3 km for layer 1 inter-

face and from 0 to 3 km for the other interfaces and with a picking

error of 5 ms for the shallowest reflectors and of 7 ms for ichalk and

bchalk interfaces) for 5960 unknowns describing 4 velocity layers

and 5 interfaces, subject to 2300 constraints (Table 4). The con-

straints on the velocity variations (resp. on the layer thicknesses)

are applied on a grid of 10 × 10 × 10 (resp. 20 × 20 points). The

results are presented in Fig. 10: the obtained model matches the data

with the same accuracy (Fig. 9) as the models obtained by Ehinger

et al. (2001) and verifies all the introduced constraints (see Tables

Figure 8. Interfaces (slice along x) obtained with a global inversion us-

ing the unconstrained reflection tomography. Difficulties are encountered

during the GN iterations. Some iterates lead to non-admissible models in

which the forward operator is not defined. For instance, the model found at

iteration 7 presents non-physical intersections that make layers vanish in the

pointed region and thus a large number of rays are discarded. The resulting

discontinuity of the cost function leads to convergence troubles of the GN

method.

4 and 3). The model obtained by unconstrained inversion (Fig. 7)

and the model obtained by constrained inversion (Fig. 10) are very

different: by the geometry of the interfaces and by the velocity varia-

tions within the layers. The introduction of constraints leads to local

velocity variations at well locations that may perhaps be attenuated

by a stronger regularization. As for the first application, we limit

ourselves to the validation of the described optimization algorithm

to handle numerous equality and inequality constraints. A depth

migration step should help to analyse the obtained result.
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Figure 9. Distributions of traveltime misfits associated with all reflectors for model obtained with unconstrained inversion (left) and for model obtained with

constrained inversion (right).

Figure 10. Velocity model (slices along x (left) and along y directions at one of the five well locations) obtained with a global inversion using the constrained

reflection tomography (constraints described in Table 4). The RMS value of the traveltime misfits is 6.5 ms.

The total number of conjugate gradient iterations for each GN

step (the total number of conjugate gradient iterations takes into

account all the iterations of augmented Lagrangian method) is less

than 104 (less than twice the number of unknowns), which looks

like a very good result for a problem with 2300 constraints. In this

experiment, only six nonlinear SQP iterations are necessary to reach

convergence.

The automatic adaptation of the augmentation parameter r j (see

Algorithm 2 in Section 3.3) is illustrated in Fig. 11. The initial value

r 0 can be chosen in a large interval. Algorithm 2 modifies r j in

order to obtain a good convergence rate of the multipliers in the AL

algorithm (Algorithm 1), without deterioration of the conditioning

of the bound constrained problem (12).

5 C O N C L U S I O N

Reflection tomography often requires the introduction of additional

a priori information on the model in order to reduce the underdeter-

mination of the inverse problem. A nonlinear optimization method

that can deal with inequality linear constraints on the model has

been developed. This dedicated method has proved its efficiency

on tomographic inversions of many synthetic examples with vari-

ous types of constraints and of some real examples, including those

related to the two real data sets presented in this paper. The number

of GN iterations has the same order of magnitude than the number

of GN iterations necessary in the unconstrained case (∼10 itera-

tions). This and the fact that solving the forward problem is time
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Figure 11. Automatic adaptation of augmentation parameter r j: two experiments are performed, with an initial augmentation parameter either set to r0 = 1

(left) or to r0 = 104 (right). Algorithm 2 adapts r j during the AL iterations. It may decrease its value to improve the conditioning of problem (12) or increase

r j to speed up the convergence of the constraint norm to zero (the desired convergence rate ρdes is fixed to 10−3).

consuming were preponderant factors in favour of a SQP approach,

instead of an interior point method. The chosen combination of the

augmented Lagrangian relaxation and the active set method for solv-

ing the quadratic optimization subproblems is efficient even for a

large number of constraints. An extension of the method to nonlinear

constraints is currently tested. At last, the algorithm developed for

updating the augmentation parameter discharges the user of the soft-

ware from such a technical concern and allows an adequate choice

of its value in terms of the convergence rate of the augmented La-

grangian algorithm.
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C̆ervený, V., 1989. Ray tracing in factorized anisotropic inhomogeneous

media, Geophys. J. Int., 99, 91–100.

Chauvier, L., Masson, R. & Sinoquet, D., 2000. Implementation of

an efficient preconditioned conjugate gradient in jerry, KIM An-
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