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Seismic reflection tomography is a method for determining a subsurface velocity model from the traveltimes of seismic waves reflecting on geological interfaces. From an optimization viewpoint, the problem consists in minimizing a non-linear least-squares function measuring the mismatch between observed traveltimes and those calculated by ray tracing in this model. The introduction of a priori information on the model is crucial to reduce the under-determination. The contribution of this paper is to introduce a technique able to take into account geological a priori information in the reflection tomography problem expressed as inequality constraints in the optimization problem. This technique is based on a Gauss-Newton (GN) sequential quadratic programming approach. At each GN step, a solution to a convex quadratic optimization problem subject to linear constraints is computed thanks to an augmented Lagrangian algorithm. Our choice for this optimization method is motivated and its original aspects are described. First applications on real data sets are presented to illustrate the potential of the approach in practical use of reflection tomography.

I N T RO D U C T I O N

Geophysical methods for imaging a complex geological subsurface in petroleum exploration requires the determination of an accurate wave propagation velocity model. Seismic reflection tomography turns out to be an efficient method for doing this: it determines the seismic velocity distribution from the traveltimes associated with the seismic waves reflecting on geological surfaces. This inverse problem requires the solution to the specific forward problem, which consists in computing these traveltimes for a given subsurface model by a ray tracing method (based on a high-frequency approximation of the wave equation, see Červený 1989;[START_REF] Jurado | Fast 3D two-point raytracing for traveltime tomography[END_REF]. The inverse problem is formulated as the minimization of the least-squares function that measures the mismatch between traveltimes calculated by ray tracing and the observed traveltimes.

The main interests of reflection tomography are

(1) its flexibility for handling various types of traveltime data simultaneously (primary reflections but also multiple reflections, traveltimes associated with converted waves-PS data, surface seismic, well seismic), provided that the ray tracing allows the computation of such data,

(2) the low computational time of the forward operator, in comparison with the time needed for the calculation of the wave equation solutions,

(3) the reduced number of local minima of the inverse problem, in comparison with the seismic inversion based on the wave equation simulation (see for instance [START_REF] Symes | Stability and instability results for inverse problems in several-dimensional wave propagation[END_REF] for a study on the choice of the objective functional in seismic inversion to reduce the number of local minima), and

(4) its ability to integrate a priori geological information (via a least-squares formulation). This method has been successfully applied to numerous real data sets [START_REF] Ehinger | 3D tomographic velocity model determination for two North Sea case studies[END_REF][START_REF] Alerini | PP-PSstereotomography: application to the 2D-4C mahogany dataset, Gulf of Mexico[END_REF]Broto et al. 2003, among others). Nevertheless, the underdetermination of the inverse problem generally requires the introduction of additional information to reduce the number of admissible models. The Bayesian inversion allows the introduction of different type of data and a priori information, the associated uncertainties being modelled by probability distributions (see [START_REF] Tarantola | Inverse problem theory and methods for model parameter estimation[END_REF], for a detailed description of this approach). In practice, a classical least-squares formulation (assuming Gaussian probability densities) is used: penalty terms modelling a priori information are generally added to the seismic terms in the objective function with a delicate adjustment of the penalty weights (see [START_REF] Daalen | Velocity model building in shell-an overview[END_REF][START_REF] Krebs | Integrating velocity model estimation for accurate imaging[END_REF], among the most recent papers on tomography in oil industry).

The standard methodology to invert complex subsurface structures (model composed of several velocity fields and reflectors), a top-down layer-stripping approach, may be inadequate. This 670 C 2006 The Authors Journal compilation C 2006 RAS approach consists in inverting separately each velocity layers (with its associated reflectors) starting from the upper layer to the lower one. To limit bad data fitting for deeper layers, a global inversion approach, which consists of simultaneously inverting all the velocity layers and interfaces of the subsurface model, is recommended. But, this method is often discarded due to its convergence troubles: because of the underlying underdetermination, a global inversion of complex subsurface structures often leads to a non-admissible subsurface model on which the ray tracing method fails to compute the traveltimes. Additional constraints on the model (for instance, on layer thicknesses to avoid non-physical interface intersections) are necessary to avoid those non-admissible models. We believe that the possibility to introduce constraints in the optimization process can overcome part of those difficulties. Equality and inequality constraints can indeed model many different types of a priori information, especially inequality constraints may help for instance to match well data with a given uncertainty. An optimization approach that can face these constraints efficiently will then discharge the final user of the inversion seismic software from the cumbersome task of tuning the weights associated with the additional penalty terms in the objective function.

The goal of the paper is twofold. First, it presents our constrained nonlinear optimization method and motivates its appropriateness to constrained reflection tomography. A part of this algorithm is new and the novelty is presented in the technical Sections 3.3 and 3.4. Second, it illustrates the efficiency of the chosen constrained optimization method thanks to its application on a 2-D OBC real data set and then on a 3-D streamer real data set.

We recall the problem of interest and introduce the notation in Section 2. In Section 3, our Sequential Quadratic Programming (SQP) augmented Lagrangian approach for constrained reflection tomography problems is described and motivated. Numerical experiments on real data sets are detailed in Section 4. We conclude with Section 5.

T H E S E I S M I C R E F L E C T I O N T O M O G R A P H Y P RO B L E M

The unconstrained problem

Let us first recall the problem of interest and introduce the notation. The choice of the model representation is crucial for the efficiency of the methods used to solve the forward and inverse problems. [START_REF] Lailly | Smooth velocity models in reflection tomography for imaging complex geological structures[END_REF] have discussed the interest of different types of velocity models. We have chosen here a blocky model, where the velocity distribution is described by slowly varying layer velocities (or velocity blocks) delimited by interfaces. With this representation, we introduce explicitly a strong a priori information: the number of layers. The number of parameters describing the velocity variations is limited thanks to the explicit introduction of velocity discontinuities (the velocity within a layer varies smoothly). The model is thus composed of two kinds of parameters: those describing the velocity variations within the layers and those describing the geometry of the interfaces delimiting the layers. Parameters describing the velocity anisotropy can also be included (see [START_REF] Jurado | Fast 3D two-point raytracing for traveltime tomography[END_REF][START_REF] Stopin | Détermination de modèle de vitesses anisotropes par tomographie de réflexion des modes de compression et de cisaillement[END_REF], for more details).

The ith interface is represented by a cubic B-spline function (de Boor 1978; Inoue 1986) z i (x, y), whose coefficients define a vector z i (x and y are the horizontal coordinates). Similarly, the ith velocity field is represented by a cubic B-spline function v i (x, y, z) or v i (x, y) + k z with known scalar k (z is the vertical coordinate); the vector v i contains the velocity coefficients. For n v layer velocities and n z interfaces, we collect the coefficients v 1 , . . . , v nv in one vector v and the coefficients z 1 , . . . , z nz in one vector z. The model vector m ∈ R n is defined here as m = (v, z). The C 2 smoothness of the functions describing the model allows the exact computation of derivatives of the traveltimes with respect to the model, quantities useful for ray tracing and tomography.

Given a model m and an acquisition survey (locations of the sources and receivers) a vector of traveltimes T(m) of seismic reflected waves can be computed by ray tracing (see [START_REF] Jurado | Fast 3D two-point raytracing for traveltime tomography[END_REF]. The mapping T : R n → R t : m → T (m) is nonlinear. We assume that it is differentiable. In practice, this assumption may not be satisfied, in particular, the forward operator may even not be defined when rays escape from the region of interest or when a layer thickness vanishes (non-physical interface intersections as mentioned in the introduction).

Reflection traveltime tomography is the corresponding inverse problem: its purpose is to adjust m so that T (m) best matches a vector of traveltimes T obs ∈ R t (the observed traveltimes) picked on seismic data. Since [START_REF] Gauss | Theoria motus corporum coelestium[END_REF], it is both classical and natural to formulate such an inverse problem as a least-squares one:

min m ∈ R n 1 2 T (m) -T obs 2 , ( 1 
)
where • denotes the Euclidean norm.

The fact that the problem (1) may be ill-posed has been pointed out by many authors (see for instance Delprat-Jannaud [START_REF] Delprat-Jannaud | Ill-posed and well-posed formulations of the reflection travel time tomography problem[END_REF][START_REF] Bube | The null space of a generally anisotropic medium in linearized surface reflection tomography[END_REF]. To ensure well-posedness, a curvature regularization is often introduced [START_REF] Tikhonov | Solution of ill-posed problems[END_REF]. We use the sum of the squared L 2 -norms of all the second order partial derivatives of every velocity v i and reflector z i (see for instance [START_REF] Delprat-Jannaud | Ill-posed and well-posed formulations of the reflection travel time tomography problem[END_REF]. Such a regularization term can be written as m Rm, where R is a symmetric positive semidefinite matrix that only depends on the B-spline basis functions (it is independent of m). Thus, instead of the problem (1), we consider the regularized least-squares problem min

m∈R n f (m) := 1 2 T (m) -T obs 2 + σ 2 m R m , ( 2 
)
where the regularization weight σ is positive, and f : R n → R is called the cost function (or objective function). The choice of the parameter σ is a difficult task. In practice, we use the L-curve method (see [START_REF] Hansen | Analysis of discrete ill-posed problems by mean of the L-curve[END_REF], also called the continuation method [START_REF] Bube | A continuation approach to regularization for traveltime tomography[END_REF]: starting from a large regularization weight, we decrease it regularly to retrieve more and more varying models until the data are fitted with the expected accuracy. The solution model is thus the smoothest model that fits the data up to a certain precision. This methodology allows us to do stable inversions. In the sequel, when we consider the objective function of the problem (2), we assume that its regularization weight is fixed.

The unconstrained minimization problem of seismic reflection tomography, defined by (2), has the following features:

(1) the size of the data space and of the model space can be quite large (up to 10 6 traveltimes and 10 5 unknowns),

(2) the problem is ill-conditioned (Chauvier et al. 2004, have observed that the condition number of the approximated Hessian H k given by ( 5) below can go up to 10 9 for a matrix of order 500),

(3) a forward simulation, that is, a computation of T (m), is CPU time consuming because of the large number of source-receiver pairs, and (4) the traveltime operator T is nonlinear, revealing the complexity of wave propagation in the subsurface.

To minimize efficiently a function like f in (2), it is highly desirable to have its gradient available. In the present context, thanks to Fermat's principle [START_REF] Bishop | Tomographic determination of velocity and depth in laterally varying media[END_REF], it is inexpensive to compute row by row the Jacobian matrix J (m) of T at m. Recall that its (i, j)th element is the partial derivative

J (m) i j = ∂ T i ∂m j . ( 3 
)
The gradient of the objective is then obtained by the formula ∇ f (m) = J (m) (T (m) -T obs ) + σ Rm. It is also natural to ask whether one can compute the second derivatives of f . The answer is however negative. Therefore, using a pure Newton method to solve (2) is computationally infeasible. There are at least two classes of methods that can take advantage of the sole first-order derivatives:

(1) quasi-Newton (QN) methods and (2) Gauss-Newton (GN) methods.

Standard QN methods do not use the structure of the least-squares problems, but have a larger scope of application. They are used for solving least-squares problems when the computation of the Jacobian matrix J is much more time consuming than the computation of the residual vector T (m) -T obs (see [START_REF] Courtier | Variational assimilation of meteorological observations with the adjoint vorticity equation. II: Numerical results[END_REF][START_REF] Courtier | A strategy for operational implementation of 4D-Var, using an incremental approach[END_REF] typical example in meteorology). We have mentioned above that this is not our case. On the other hand, the GN methods fully take benefit of the Jacobian matrix J by taking J J as an approximation of the Hessian of the first term in f . This algorithm can exhibit slow convergence when the residual is large at the solution and when T is strongly nonlinear at the solution. This does not seem to be the case in the problem we consider. Sometimes GN and QN methods are combined to improve the approximation of the Hessian of the first part of f by J J (see [START_REF] Dennis | An adaptive nonlinear least squares algorithm[END_REF][START_REF] Yabe | Convergence of a factorized Broyden-like family for nonlinear least squares problems[END_REF] the references therein).

The above discussion motivates our choice of a classical linesearch GN method to solve the unconstrained optimization problem [START_REF] Chauvier | Implementation of an efficient preconditioned conjugate gradient in jerry[END_REF]. The kth iteration, k ≥ 0, proceeds as follows. Let m k be the approximate solution known at the beginning of the iteration. Note

T k := T (m k ) and J k := J (m k ). (4) 
First, an approximate solution d k to the following tangent quadratic problem is computed min

d∈R n 1 2 J k d + T k -T obs 2 + σ 2 (m k + d) R(m k + d).
This is the quadratic approximation of f about m k , in which the costly computation of the second derivatives of T has been neglected. By the choice of the positive semi-definite regularization matrix R, the Hessian of this quadratic function in d, namely

H k := J k J k + σ R, ( 5 
)
is usually positive definite. This property makes it possible to minimize the above quadratic function by a preconditioned conjugate gradient algorithm. The next model estimation is then obtained by the formula

m k+1 = m k + α k d k ,
where α k > 0 is a step-size computed by a line-search technique ensuring a sufficient decrease of f at each iteration.

This method is generally able to solve the minimization the problem (2). In some difficult cases, however, the line-search technique fails to force convergence of the sequence {m k } k≥0 to a solution. This difficulty may arise when the Hessian of f is very ill-conditioned and can often be overcome by using trust regions (see [START_REF] Conn | Trust-Region Methods[END_REF] instead of line-searches. The former method usually provides more stable and accurate results than the latter [START_REF] Delbos | A trustregion Gauss-Newton method for reflection tomography[END_REF]; see also [START_REF] Sebudandi | Non linear optimization for seismic traveltime tomography[END_REF]. In any case, we observe in practice that very few iterations are needed to get convergence, typically of the order of 10.

Formulation of the constrained problem

Let us now set down the formulation of the constrained seismic tomography problem. The constraints that can be introduced in the optimization problem could be nonlinear (for example, we could force the impact points of some rays on a given interface to be located in a particular area) but, in this study, we limit ourselves to linear constraints. Even though linearity brings algorithmic simplifications, the optimization problem is difficult to solve because of the large number (up to 10 4 ) and the variety of the constraints. These may be of various types:

(1) constraints of different physical natures: on the velocities, on the interface depths, or on the derivatives of these quantities,

(2) equality or inequality constraints (examples: fixed value of the velocity gradient, minimal depth of an interface), and

(3) local or global constraints (examples: local information coming from a well, interface slope in a particular region).

The constrained reflection tomography problem we consider is therefore formulated as the regularized least-squares problem (2) subject to linear constraints:

⎧ ⎪ ⎨ ⎪ ⎩ min m ∈ R n f (m) C E m = e l ≤ C I m ≤ u. (6)
In this problem, C E (resp. C I ) is an n E × n (resp. n I × n) matrix, e ∈ R n E , and the vectors l, u ∈ R n I satisfy l i < u i for all index i. We note

n C := n E + n I and n C := n E + 2n I .
It is said that an inequality constraint is active at m if it is satisfied with equality for this m. The inequality constraints of (6) can be active/inactive in 3 n I ways, since each of them can be either inactive or active at its lower or upper bound (three possibilities). This exponential amount is sometime referred to as the combinatorial aspect of an inequality constrained optimization problem. Determining which of the inequality constraints are active at a solution turns out to be a major difficulty for the algorithms.

First-order optimality conditions

Let m be a local solution to (6). Since f is assumed to be differentiable and the constraints are linear (thus qualified), there exist μ E ∈ R n E , μ l ∈ R n I , and μ u ∈ R n I such that the following Karush, Kuhn and Tucker conditions (KKT) hold These equations are fundamental in optimization and are the basis of many algorithmic approaches to solve (6). Figuring out their meaning is easier when there are only equality constraints. Then the first equation simply expresses the fact that the gradient ∇ f ( m) of the objective at m must lie in the range space of C E , which is perpendicular to the constraint manifold. This geometrical view of optimality looks quite natural. In the presence of inequality constraints the meaning of ( 7) is that, to be optimal, m must satisfy the constraints (see (b)) and the gradient ∇ f ( m) must be in the dual cone of the tangent cone to the feasible set of (6) at m; admittedly a more complex property. We refer the reader to the book of [START_REF] Fletcher | Practical Methods of Optimization[END_REF] or the review paper by [START_REF] Rockafellar | Lagrange multipliers and optimality[END_REF] to get more insight on ( 7).

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ (a) ∇ f ( m) + C E μ E + C I ( μ u -μ l ) = 0 (b) C E m = e, l ≤ C I m ≤ u (c) ( μ l , μ u ) ≥ 0 (d) μ l (C I m -l) = 0, μ u (C I m -u) = 0.
The vectors μ E , μ l , and μ u in ( 7) are called the Lagrange or KKT multipliers, and are associated with the equality and inequality constraints of (6). From (a) and (d) in ( 7), we see that they are used to decompose ∇ f ( m) on the gradients of the active constraints (some of the C i 's). It can be shown that μ i tells us how the optimal value f ( m) varies when the ith constraint is perturbed. Condition (a) can also be written

∇ m ( m, μ) = 0,
where μ := ( μ E , μ l , μ u ) and the function :

R n × R n C → R, called the Lagrangian of problem (6), is defined by (m, μ) = f (m) + μ E (C E m -e) -μ l (C I m -l) + μ u (C I m -u). ( 8 
)
We note μ I := μ l -μ u . Equations (d) in ( 7) are known as the complementarity conditions. They express the fact that a multiplier μ i associated with an inactive inequality constraint vanishes. For some problems, the converse is also true: active inequality constraints have positive multipliers. It is then said that strict complementarity holds at the solution:

l i < C i m ⇐⇒ ( μ l ) i = 0 C i m < u i ⇐⇒ ( μ u ) i = 0.

S O LV I N G T H E C O N S T R A I N E D S E I S M I C R E F L E C T I O N T O M O G R A P H Y P RO B L E M

In this section we motivate and describe the optimization method used to solve (6) or its optimality conditions (7). A more detailed description is given by [START_REF] Delbos | Problèmes d'optimisation non linéaire avec contraintes en tomographie de réflexion 3D[END_REF]. The operating diagram of the overall algorithm is presented in Fig. 1 and can help the reader to follow the different levels of the approach.

Motivation for the chosen algorithmic approach

Presently, numerical methods to solve a nonlinear optimization problem like (6) can by gathered into two classes:

(1) the class of penalty methods, which includes the augmented Lagrangian approaches and the interior point (IP) approaches and

(2) the class of direct Newtonian methods, which is mainly formed of the SQP approach.

Often, actual algorithms combine elements of the two classes, but their main features make them belonging to one of them.

In penalty methods, one minimizes a sequence of nonlinear functions, obtained by adding to the cost function in (6) terms penalizing more or less strongly the equality and/or inequality constraints as the iterations progress. For example, in the IP approaches, the inequality constraints are penalized in order to get rid of their combinatorial aspect, while the equality constraints are maintained, since they are easier to handle (see for instance [START_REF] Byrd | A trust region method based on interior point techniques for nonlinear programming[END_REF], and the references therein). The iterations minimizing approximately each penalty function are usually based on the Newton iteration, which requires finding the solution to a linear system. Therefore, the overall work of the optimization routine can be viewed as the one of solving a 'sequence of sequences' of linear systems. This simplified presentation is mainly valid far from a solution, since close to a solution satisfying some regularity assumptions, a single Newton step is often enough to minimize sufficiently the current penalty function (see Gould et al. 2000, for example). Now, each time a step is computed as a solution to a linear system, the nonlinear functions defining the optimization problem have to be evaluated in order to estimate the quality of the step. It is sensible to define an iteration of the penalty approach as formed of a step computation and an evaluation of the nonlinear functions.

On the other hand, an SQP algorithm is a Newtonian method applied to the optimality conditions, (7) in our case (see part III in [START_REF] Bonnans | Numerical Optimization-Theoretical and Practical Aspects[END_REF] e.g.). Therefore, there is no sequence of nonlinear optimization problems to solve approximately, like in penalty methods. As a result, it is likely that such an approach will need less iterations to achieve convergence. Since, here also, the nonlinear functions defining the optimization problem need to be computed at each iteration to validate the step, it is likely that less nonlinear function evaluations are required with an SQP approach, in comparison with a penalty approach. Nevertheless, each SQP iteration is more complex, since it requires solving a quadratic program (QP), which is an optimization problem, with a quadratic cost function and linear equality and inequality constraints.

The discussion above shows that the choice of the class of algorithms strongly depends on the features of the optimization problem to solve. The key issue is to balance the time spent in the simulator (to evaluate the functions defining the nonlinear optimization problem) and in the optimization procedure (to solve the linear systems or the QP). In the unconstrained seismic reflection tomography problem, we have said in Section 2.1 that most of the CPU time is spent in the evaluation of the traveltimes (simulation) and that the GN algorithm converges in very few iterations (around 10). When choosing the algorithmic approach for the constrained version of the problem, we anticipated that the number of iterations will also be small with a Newton-like algorithm and that, in the current state of their development, IP algorithms will be unlikely to converge in so few iterations. This is our main motivation for developing an SQPlike algorithm: to keep as small as possible the number of nonlinear function evaluations. This strategy could be questioned with a ray tracing using massive parallelization; we leave this topic for future investigations.

A Gauss-Newton sequential quadratic programming approach

We have already mentioned that the SQP algorithm is a Newtonlike method applied to the optimality conditions of the nonlinear optimization problem under consideration, (7) in our case. In its standard form, it then benefits from a local quadratic convergence. Let us specify this algorithm for the constrained seismic reflection tomography problem.

The main work at the kth iteration of an SQP algorithm consists in solving the following tangent QP in d (see Chapter 13 and (13.4) in [START_REF] Bonnans | Numerical Optimization-Theoretical and Practical Aspects[END_REF], in order to find the perturbation d k to be given to m k :

(QP k ) ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ min d∈R n F k (d) := g k d + 1 2 d H k d C E d = ẽk lk ≤ C I d ≤ ũk . ( 9 
)
The cost function of this problem has a hybrid nature. Its linear part is obtained by using the gradient of the cost function of (6) at m k , which is

g k = J k T k -T obs + σ R m k ,
where we used the notation in (4). Its quadratic part should use, ideally, the Hessian of the Lagrangian defined in (8), in order to get (quadratic) convergence. Since the constraints in (6) are linear, only the Hessian of f plays a role. Like for the unconstrained problem, we select the GN approximation H k (see ( 5)) of this Hessian in order to avoid the computation of the expensive second derivatives of T. The constraints of (9) are obtained by the linearization of the constraints of ( 6 

m k+1 := m k + d k . ( 10 
)
The SQP algorithm is actually a primal-dual method, since it also generates a sequence of multipliers {μ k } ∈ R n C , which aims at approximating the optimal multiplier associated with the constraints of (6). These multipliers are updated by

μ k+1 = μ QP k , ( 11 
)
where μ QP k is the triple formed of the multipliers (μ QP k ) E , (μ QP k ) l , and (μ QP k ) u , associated with the equality and inequality constraints of (QP k ). Because of the linearity of the constraints, these multipliers do not intervene in the tangent QP, but they are useful for testing optimality and for the globalization of the algorithm (Section 3.5).

The following property of the SQP algorithm deserves being quoted for the discussion in Section 3.3. When strict complementarity holds at a non-degenerate primal-dual solution ( m, μ) to (6) (see Section 2.3) and when the current iterate (m k , μ k ) is close enough to ( m, μ), the active constraints of the tangent QP are those that are active at the solution m (see Theorem 13.2 in [START_REF] Bonnans | Numerical Optimization-Theoretical and Practical Aspects[END_REF]. Therefore, the difficult task of determining which constraints are active at the solution to (QP k ) disappears once m k is close to m, since the constraint activity is unchanged from one tangent QP to the next one.

The technique used to solve the tangent QP is essential for the efficiency of the SQP approach. In particular, because of the property mentioned in the previous paragraph, it should take benefit of an a priori knowledge of the active constraints. In the next two sections, we concentrate on this topic, which is represented by the right-hand side blocks in Fig. 1. These sections have a strong algorithmic nature; the non-interested reader can skip them without loosing the leading strand of the algorithm. We come back to the globalization of SQP (the part of the algorithm that is depicted by the bottom block in the left-hand side of Fig. 1) in Section 3.5.

Solving the tangential quadratic problem by an augmented Lagrangian method

Because H k is positive semi-definite (and usually positive definite), the tangent QP problem (9) is convex. Such a problem has been the subject of many algorithmic studies; we mention the following techniques:

(1) active set (AS), (2) augmented Lagrangian (AL), and (3) interior points (IP).

Let us now motivate our choice of developing an AL algorithm to solve the QP in (9). The AS approach is often used to solve the QP's in the SQP algorithm. It has the advantage of being well defined, even when the problem is non-convex, and of being able to take advantage of an a priori knowledge of the active constraints at the solution. However, since this algorithm updates the active set one constraint at a time, it suffers from being rather slow when the active set is not correctly initialized and when there are many inequality constraints. For large problems, this can be a serious drawback and we have discarded this method for that reason. The IP algorithms are very efficient to solve convex QP's but, presently, they have some difficulty in taking benefit of a good knowledge of the active constraints as this is often the case after a few iterations of the SQP algorithm. On the other hand, the inherent ill-conditioning of the linear systems they generate and the necessity to use here iterative methods to solve them have appeared to us as deterrent factors.

The AL approach that we have implemented goes back to [START_REF] Hestenes | Multiplier and gradient methods[END_REF] and [START_REF] Powell | A method for nonlinear constraints in minimization problems[END_REF]. This is a well-established methodology, designed to solve nonlinear optimization problems, although its properties for minimizing a convex QP does not seem to have been fully explored (see [START_REF] Delbos | Global linear convergence of an augmented Lagrangian algorithm for solving convex quadratic optimization problems[END_REF]. It is adapted to large problems, since it can be implemented in such a way that it does not need any matrix factorization [START_REF] Fortin | Augmented Lagrangian Methods: Applications to the Numerical Solution of Boundary-Value Problems[END_REF][START_REF] Glowinski | Augmented Lagrangian and Operator Splitting Methods in Nonlinear Mechanics[END_REF]. In the context of seismic tomography problems, a version of the AL algorithm has been proposed by [START_REF] Glowinski | Constrained optimization in reflection tomography: the Augmented Lagrangian method[END_REF] to solve the tangent QP of the SQP method. The present contribution takes inspiration from that paper and goes further by improving the efficiency of its augmented Lagrangian QP solver. Let us detail the approach.

The QP ( 9) is first written in an equivalent form, using an auxiliary variable y ∈ R n I (we drop the index k for simplicity):

(QP ) ⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ min (d,y)∈R n ×R n I F(d) C E d = ẽ, C I d = y l ≤ y ≤ ũ.
Next, the AL associated with the equality constraints of that problem is considered. This is the function

L r : R n ×R n I ×R n C → R defined at d ∈ R n , y ∈ R n I , and λ = (λ E , λ I ) ∈ R n C by L r (d, y, λ) = F(d) + λ E (C E d -ẽ) + r 2 C E d -ẽ 2 + λ I (C I d -y) + r 2 C I d -y 2 .
The scalar r > 0 is known as the augmentation parameter and can be viewed as a weight scaling the penalization of the constraints of (QP ) in L r . A deeper (and more complex) interpretation of these parameters is given below, allowing the algorithm to change them regularly.

Algorithm 1. An AL algorithm to solve (9).

data : λ 0 ∈ R n C and r 0 > 0; begin for j = 0, 1, 2, . . . do if (C E d j ẽ) & (C I d j y j ) then return; by Algorithm 3, find a solution (d j+1 , y j+1 ) to min (d,y) L r j (d, y, λ j ) l ≤ y ≤ ũ; (12) if (12) is solved then λ j+1 E := λ j E + r j C E d j+1 -ẽ λ j+1 I := λ I j + r j C I d j+1 -y j+1 else
λ j+1 := λ j ; end choose a new augmentation parameter r j+1 > 0 by Algorithm 2; end end (13) The precise statement of our version of the AL algorithm to solve (9) or (QP ) can now be given: see Algorithm 1. This method, in particular the update of the multipliers by ( 13), has a nice interpretation in terms of the proximal point algorithm in the dual space (see [START_REF] Rockafellar | A dual approach to solving nonlinear programming problems by unconstrained optimization[END_REF]. It is not essential to give this interpretation here, but this one is very useful for proving the properties of the method, including its convergence. In this theory, the augmentation parameter r in the definition of L r is viewed as a step-size, damping the modification of the multipliers in (13). The factor of r = r j in this formula is indeed a negative subgradient of the dual function at λ j+1 . Note that these step-sizes r j can now change at each iteration of Algorithm 1, while the penalty approach behind the definition of L r makes the possibility of such a change less natural. On the other hand, it can be shown that the algorithm converges if (9) has a solution and if the sequence {r j } j≥0 is chosen bounded away from zero. If, in addition, r j is chosen larger than some positive Lipschitz constant L (usually unknown, unfortunately), the norm of the equality constraints converges globally linearly to zero: this is inequality (14) below, to which we will come back. Actually, the larger are the augmentation parameters r j , the faster is the convergence. The only limitation on a large value for r j comes from the ill-conditioning that such a value induces in the AL and the resulting difficulty or impossibility to solve (12). This is why a test for updating the multipliers by (13) has been introduced. For ensuring convergence, the test prevents the multipliers from being updated when ( 12) is not correctly solved (a heuristic less restrictive than this test is used by [START_REF] Delbos | Problèmes d'optimisation non linéaire avec contraintes en tomographie de réflexion 3D[END_REF].

Algorithm 1 is a dual method, since it essentially monitors the dual sequence {λ j } j≥0 ; the augmentation parameters r j and the primal variables (d j+1 , y j+1 ) are viewed as auxiliary quantities. The choice of the initial multiplier λ 0 depends on the outer SQP iteration index. When k = 0, Algorithm 1 simply takes λ 0 = 0, unless an estimate of the optimal multiplier is provided. When k > 0, Algorithm 1 takes for λ 0 the dual solution to the previous QP. A similar strategy is used for setting r 0 : when k = 0, r 0 is set to an arbitrary value (the effect of taking r 0 = 1 or r 0 = 10 4 is tested for the 3-D real data set in Section 4.2) and, when k > 0, r 0 is set to the value of r j at the end of the previous QP.

Algorithm 1 can be viewed as transforming ( 9) into a sequence of bound constrained convex quadratic subproblems of the form (12). These subproblems have a solution, as soon as ( 9) has a solution (see Proposition 3.3 in Delbos & Gilbert 2005, for a weaker condition). Clearly, the major part of the CPU time required by Algorithm 1 is spent in solving the bound constrained subproblems (12). We describe an algorithm for doing this efficiently in Section 3.4: Algorithm 3. Two facts contribute to the observed success of this method. First, a bound constrained QP is much easier to solve than ( 9), which has general linear constraints (see [START_REF] Moré | On the solution of large quadratic programming problems with bound constraints[END_REF], and the references therein). Second, because of its dual and constraint convergence, the AL algorithm usually identifies the active constraints of (9) in a finite number of iterations. Since often these active constraints are stable when m k is in some neighborhood of a solution, the combinatorial aspect of the bound constrained QP's rapidly decreases in intensity as the convergence progresses (and usually disappears after very few AL iterations).

We have already made it clear that the choice of the augmentation parameters r j is crucial for the efficiency of Algorithm 1. Two pitfalls have to be avoided: a too small value slows down the convergence, a too large value makes it difficult to find a solution to (12). It is usually not easy to determine an a priori appropriate value for the augmentation parameter, so that updating r j in the course of the AL iterations by observing the behaviour of the algorithm looks better. In our implementation of Algorithm 1, the update of r j at iteration j ≥ 1 is done by a heuristic close to the one given in Algorithm 2. This one deserves some explanations. Algorithm 2. A heuristics for updating r j in Algorithm 1. data : r j-1 , r j , ρ j , ρ des , κ j-1 , and κ j ; begin if (12) is solved then r j+1 := r j ; 1 if ρ j > ρ des then r j+1 := r j ρ j /ρ des ; else 2 r j+1 := r j /10; if (r j < r j-1 )&(κ j > κ j-1 ) then 3 stop [failure of Algorithm] end end end A too small value of r j can be deduced from the observation of ρ j := ν j+1 /ν j , where ν j := (C E d jẽ, C I d jy j ) is the Euclidean norm of the equality constraints of (QP ). It is indeed known from Theorem 4.5 of [START_REF] Delbos | Global linear convergence of an augmented Lagrangian algorithm for solving convex quadratic optimization problems[END_REF] that there is a constant L > 0 such that, for all j ≥ 1, there holds

ρ j ≤ min 1, L r j . ( 14 
)
This estimate is valid provided ( 12) is solved exactly. If such is the case and if ρ des ∈ (0, 1) is a given desired convergence rate for the constraint norm, a value ρ j > ρ des is then an incitement to increase the augmentation parameter. This update of r j is done in statement 1 of Algorithm 2. On the other hand, a difficulty to solve ( 12) can be detected by the impossibility to satisfy the optimality conditions of that problem at a given precision in a given number of preconditioned conjugate gradient (CG) iterations (the algorithm to solve (12), based on CG iterations, is explained in Section 3.4). The heuristics has also to decide whether a failure to solve ( 12) is due to a too large value of r j , in which case decreasing r j is appropriate (statement 2), or to an intrinsic excessive ill-conditioning of the problem, in which case a definitive failure is declared (statement 3). For this, it uses the sensitivity to r j of an estimate κ j of the condition number of the preconditioned Hessian

M r j := P -1/2 r j Q r j P -1/2 r j , where Q r j : = H +r j (C E C E + C I C I )
is the Hessian with respect to d of the criterion L r j of ( 12) and P r j ( Q r j ) is a preconditioner for Q r j . The estimate κ j makes use of the Rayleigh quotients of M r j computed during the preconditioned CG iterations. According to Proposition 2.3 of [START_REF] Fortin | Augmented Lagrangian Methods: Applications to the Numerical Solution of Boundary-Value Problems[END_REF], the condition number of Q r j grows asymptotically linearly with r j . The same law does not hold for M r j , since hopefully r j intervenes in P r j . Nevertheless, it is important to have an estimate of the condition number of M r j , not of Q r j , since it is M r j that governs the performance of the CG algorithm. In view of these comments, it seems reasonable to say that, if a preceding decrease of the augmentation parameter, r j < r j-1 , has resulted in an increase of the condition number estimate, κ j > κ j-1 , it is likely that a new decrease of r j will not improve the conditioning of problem ( 12). In that case and if it is not possible to solve (12) with r j , a decision to stop is taken in statement 3 of Algorithm 2; the problem is declared to be too hard to solve.

The actual heuristics for updating r j in our implementation of the AL algorithm has other safeguards, detailed by [START_REF] Delbos | Problèmes d'optimisation non linéaire avec contraintes en tomographie de réflexion 3D[END_REF], but the logic is essentially the one presented in Algorithm 2. Experiments with two different initial values r 0 of the augmentation parameter are shown in Section 4.2, illustrating the behaviour of the heuristics adapting r j .

To conclude the description of Algorithm 1, we still need to say a word on its stopping criterion and to specify the value of the multiplier μ QP k used in (11). There are many ways of showing that the stopping criterion makes sense. The shortest one here is probably to observe that a solution (d j+1 , y j+1 ) to (12) satisfying C E d j+1 = ẽ and C I d j+1 = y j+1 is actually a solution to (QP ); d j+1 is then a solution to (9). Finally, the optimality conditions of problems ( 9) and (QP ) show that one can take

μ QP k E = λ j+1 E , μ QP k l = max 0, λ j+1 I
, and

μ QP k u = max 0, -λ j+1 I
, where λ j+1 is the value of the multiplier on return from Algorithm 1 at the kth iteration of the SQP algorithm.

Solving the Lagrange problem by the GP-AS-CG algorithm

Problem ( 12) is solved in our software by a combination of the gradient projection (GP) algorithm, the active set (AS) method, and conjugate gradient (CG) iterations. This GP-AS-CG algorithm is a classical and efficient method for minimizing a large scale bound constrained convex quadratic function, see [START_REF] Moré | On the solution of large quadratic programming problems with bound constraints[END_REF], [START_REF] Friedlander | On the maximization of a concave quadratic function with box constraints[END_REF], [START_REF] Nocedal | Numerical Optimization[END_REF], and the references therein. We adapt it below to the special structure of problem ( 12), in which the variables d and y intervene differently in the objective and only y is constrained.

A brief description of the three ingredients of the GP-AS-CG algorithm is necessary for the understanding of the discussion below. The AS method solves ( 12) by maintaining fixed a varying choice of variables y i to their bounds, while minimizing the objective with respect to the other variables, which are supposed to satisfy the constraints. Each time the minimization would lead to a violation of some bounds, a displacement to the boundary of the feasible set is done and some new variables y i are fixed to their bounds. The minimization is pursued in this way up to complete minimization with respect to the remained free variables or (in our case) up to the realization of a Rosen-like stopping criterion. The GP algorithm intervenes at this point to inactivate a bunch of erroneously fixed variables and, possibly, to activate others. This GP-AS algorithm proceeds up to finding a solution to (12). Finally, CG iterations are used to minimize the objective on the faces of the feasible set that are activated by the GP-AS algorithm.

Minimizing the objective of ( 12) in (d, y) jointly can be inefficient, in particular when there are many inequality constraints in the original problem ( 6 written

(H + rC C)d -rC V y V = -g -C λ + rC E ẽ + rC W y W , -rC V d + r y V = λ V . ( 15 
)
Substituting the value of y V given by ( 15) into the first equation gives

H + rC W C W d = -g -C W λ W + rC E ẽ + rC W y W . ( 16 
)
This is the equation that is solved by the preconditioned CG algorithm. During this process, y V is updated so that ( 15) is continually verified. It can be shown that the directions modifying (d, y) are conjugate in R n × R n I with respect to the Hessian matrix of L r (•, •, λ), so that this method can be viewed as a conjugate direction algorithm that maintains the iterates in the affine subspace defined by equation ( 15). In this process, as soon as y V hits a new bound, the working set W is enlarged. Then a new CG process is started on the updated equations ( 16) and ( 15), from the (d, y) obtained so far. Note that the updated ( 15) is verified at the beginning of this new process, since it is obtained by deleting equations from (15) and since ( 15) was verified at the end of the previous CG process. We will see that ( 15) is also verified at the end of a GP phase of the algorithm, so that this equation makes no difficulty to be maintained all along the GP-AS-CG algorithm, provided this one starts by a GP phase.

The goal of the gradient projection (GP) phase of the algorithm is to change drastically the working set if this one is felt to be very different from the set of the active constraints at the solution. As explained below, the GP phase is actually an adapted version of a single iteration of the GP algorithm (see Bertsekas 1995 e.g.); more iterations would be useless in our case, as we will see. Its property mentioned above, which is observed in practice, is then also supported by the fact that the GP algorithm identifies the active constraints at the solution in a finite number of iterations when strict complementarity holds.

An iteration of the standard GP algorithm forces the decrease of the objective of (12) along the piecewise linear path obtained by projecting the steepest descent path on the feasible set (see Fig. 2). If P [ l, ũ] stands for the projection operator on [ l, ũ] in R n I , the projected steepest descent path emanating from the current iterate (d, y) is the mapping

p : (α > 0) → d -αg d P [ l, ũ] (y -αg y ) ,
where g d (resp. g y ) is the gradient of L r with respect to d (resp. y).

There holds

g y = -λ I -r (C I d -y).
In the standard GP algorithm, a local minimum or a step-size ensuring a sufficient decrease of the complex piecewise quadratic function α → L r ( p(α), λ) is usually taken. Because of the particularly simple structure of L r in y, we prefer maintaining dfixed and minimizing completely

α → L r d, P [ l, ũ] (y -αg y ), λ .
This is our second adaptation of the standard GP-AS-CG algorithm. It has the following interesting property. Because the Hessian of L r with respect to y is a multiple of the identity matrix, the new y is the projection on [ l, ũ] of the unconstrained minimizer of L r (d, •, λ):

y := P [ l, ũ] C I d + λ I r . ( 17 
)
Observe that, if W is now set to {i : y i = li or ũi }, equation ( 15) is satisfied, as claimed above. Algorithm 3 summarizes our version of the GP-AS-CG algorithm. The use of Rosen's stopping test for the CG iterations and other algorithmic details are not mentioned. See [START_REF] Delbos | Problèmes d'optimisation non linéaire avec contraintes en tomographie de réflexion 3D[END_REF] for further information on the implementation. Algorithm 3. The GP-AS-CG algorithm to solve (12). data : r , λ, d := 0; begin GP := true; while optimality of ( 12) is not satisfied do if GP then compute y by ( 17); update W := {i : y i = li or ũi } and V := I \W ; GP := false; else while lV < y V < ũV do use CG iterations to solve (16) in d, while updating y V to satisfy (15); end update the index sets W and V ; if W has not been enlarged then GP := true; end end end

Globalization by line-search

It is now time to remember that the constrained minimization problem (6) we want to solve is nonlinear and that, just as in unconstrained optimization, the update of the model m k by (10), where d k is the computed solution to the quadratic problem (QP k ), is unlikely to yield convergence if the initial estimate m 0 is not close enough to a solution. For forcing convergence from a remote starting model, we follow the standard globalization technique presented in Chapter 15 of [START_REF] Bonnans | Numerical Optimization-Theoretical and Practical Aspects[END_REF], which uses an exact penalty merit function. Using a filter method would have been an alternative, but we did not try it. We have also implemented a line-search technique, since the combination of trust regions with a QP approximately solved by an augmented Lagrangian algorithm is a technique that does not seem to have been explored. Due to its usefulness to solve the unconstrained tomography problem, we plan to investigate this possibility in a future research.

We use the exact penalty function τ : R n → R defined by

τ (m) = f (m) + τ (m), where τ (m) = i∈E τ i | C i m -e i | + i∈I τ i max(l i -C i m, 0, C i m -u i ),
in which the τ i 's are penalty weights. Exactness of the penalization means that a solution to ( 6) is also a minimizer of τ . To get that important property, the τ i 's need to be large enough, although finite. It is usual to update them at some iteration, so that they always satisfy

τ i ≥ μ QP k i + τ , for i ∈ E τ i ≥ max μ QP k l i , μ QP k u i + τ , for i ∈ I, ( 18 
)
where μ QP k is defined after (11) and τ > 0 is a small security threshold.

In our case, the convexity of the QP (9) defining d k and the inequalities (18) ensure that τ decreases along d k . A line-search along this direction is then possible. A step-size α k > 0, typically determined by backtracking, can be found such that for some small constant ω ∈ (0, 1/2):

τ (m k + α k d k ) ≤ τ (m k ) + α k ω k , ( 19 
)
where k := ∇ f (m k ) d kτ (m k ) can be shown to be negative when m k is not stationary. Now the model and the multiplier are updated by

m k+1 = m k + α k d k μ k+1 = μ k + α k μ QP k -μ k . ( 20 
)
Algorithm 4 summarizes the overall algorithm to solve problem (6). In this section, we present an application of constrained reflection tomography to one 2-D line of a 3-D 4C OBC (Ocean Bottom Cable) survey with PP and PS data from bp. 1 Broto et al. (2003) have already interpreted and studied this data set using an unconstrained inversion method. The velocity model is described by four velocity layers and five interfaces (cf Fig. 5 left). The isotropic assumption was satisfying until the last layer (layer which contains the last two interfaces h4 and h5). By applying the anisotropic inversion methodology of [START_REF] Stopin | Détermination de modèle de vitesses anisotropes par tomographie de réflexion des modes de compression et de cisaillement[END_REF] on the last layer, they obtained a model that fits the traveltimes better than any of the previous isotropic models and that, in addition, has more reliable velocity variations. Two parameters (η, δ) describe the velocity anisotropy: η can be seen as a measure of the an-ellipticity, whereas δ controls the near vertical velocity propagation of the P waves [START_REF] Thomsen | Weak elastic anisotropy[END_REF][START_REF] Stopin | Détermination de modèle de vitesses anisotropes par tomographie de réflexion des modes de compression et de cisaillement[END_REF].

The value of the δ anisotropy parameter has been obtained by a trial and error approach in order to match approximately the h5 depth given by well logs. Actually, the underdetermination of the inverse problem does not allow the joint inversion of the velocities, interfaces and anisotropy parameters (δ parameter is particularly undetermined, [START_REF] Stopin | Détermination de modèle de vitesses anisotropes par tomographie de réflexion des modes de compression et de cisaillement[END_REF]. This applied methodology is obviously not optimal. Indeed, the manual tuning of the anisotropy parameters requires a lot of time: an important numbers of anisotropic inversion with different pairs (η, δ) have to be performed before getting a satisfying result. Secondly, it is very hard to make this method accurate: we note a discrepancy of 150 meters for the reflector depth h5 compared to the depth given by the well logs data. Finally, it turned out impossible to determine the anisotropy parameter δ so that both the reflector depths of h4 and h5 given by the well logs are reasonably matched.

The solution we propose here is to compute a model using our constrained inversion method in order to fit the reflector depths given by the well, while considering (η, δ) as additional unknowns to determine. This consists in the inversion of Pand S-velocity variations (described by functions v(x, y, z)), of the geometries of interfaces h4 and h5 and of the two anisotropy parameters, i.e. inversion of 1024 parameters from 32 468 picked traveltimes (associated with reflections of PP waves and PS waves on h4 and h5). The estimated picking errors are the following: 5 ms for the PP traveltimes associated with reflections on h4 and h5 and 8 ms for the PS traveltimes associated with reflections on h5 (see Figs 3 and4). Those uncertainties are taken into account in the cost function (The Euclidian norm is weighted by the inverse of the square of the uncertainties).

In Tables 1 and2, we have respectively summed up the results of the final models obtained with the unconstrained and constrained inversions. The final model (Fig. 5 right) of the constrained inversion matches the traveltime data with the same accuracy (Fig. 6) than the result obtained by the unconstrained inversion (Fig. 5 left), and it strictly verifies the reflector depths given by the well logs. For this test, we have introduced equality constraints to match the reflector depths at well location, however inequality constraints could have been used to take into account the uncertainty on the well data. This solution has been obtained after only nine nonlinear SQP iterations.

We see that, the introduction of constraints at wells for the two reflectors h4 and h5 reduces the underdetermination and allows for a joint inversion of velocities, interfaces, and anisotropy parameters. The resulting model matches the traveltime (see Fig. 6) and well data. The values of its anisotropy parameters are very different from those obtained with the unconstrained inversion (Tables 1 andFigure 3). The RMS value of the traveltime misfits is 6.1ms.

2) and we observe velocity variations that were not present in the model obtained by reflection tomography. The depth migration of the data with the obtained velocity models would have been useful to compare the two results. In this paper, we limit ourselves to the application of the constrained optimization method.

3-D PP data set

During the European KIMASI project, reflection tomography was applied on a 3D North Sea data set from bp [START_REF] Ehinger | 3D tomographic velocity model determination for two North Sea case studies[END_REF] (2.5 km) and to the very poor ray aperture (despite the introduction of the intermediary reflector named layer 1). Several velocity parametrizations (Table 3) were inverted and led to solution models that match traveltime data with the same accuracy. These different tests are time consuming (each test is a whole inversion) and the reflector depths given by well data are not well retrieved, this information being not explicitly introduced in the inversion process. One of the resulting model is presented in Fig. 7.

To obtain a model consistent with well data, we propose to apply our developed constrained tomography inversion. The interface depths are constrained at five well locations and we constrain the range of variations of the vertical velocity gradient in the Tertiary layer thanks to well measurements (Table 4). As for the application on the first data set, the equality constraints on interface depths at well locations could have been relaxed by inequality constraints to model the uncertainty on the well data. A global inversion of the four velocity layers is preferred to the layer-stripping approach: it avoids bad data fitting for deeper layers due to errors in shallow layers. The simultaneous inversion of all the layers is guided by constraints on layer thicknesses to avoid any non-physical interface intersections: Fig. 8 shows an example of non-admissible model obtained by global unconstrained inversion (it presents non-physical interface intersections that make layers vanish in the pointed region and thus a large number of rays are discarded).

The experiment then consists in a global inversion of 127 569 traveltimes (with offsets ranging from 0 to 1.3 km for layer 1 interface and from 0 to 3 km for the other interfaces and with a picking error of 5 ms for the shallowest reflectors and of 7 ms for ichalk and bchalk interfaces) for 5960 unknowns describing 4 velocity layers and 5 interfaces, subject to 2300 constraints (Table 4). The constraints on the velocity variations (resp. on the layer thicknesses) are applied on a grid of 10 × 10 × 10 (resp. 20 × 20 points). The results are presented in Fig. 10: the obtained model matches the data with the same accuracy (Fig. 9) as the models obtained by [START_REF] Ehinger | 3D tomographic velocity model determination for two North Sea case studies[END_REF] and verifies all the introduced constraints (see Tables Interfaces (slice along x) obtained with a global inversion using the unconstrained reflection tomography. Difficulties are encountered during the GN iterations. Some iterates lead to non-admissible models in which the forward operator is not defined. For instance, the model found at iteration 7 presents non-physical intersections that make layers vanish in the pointed region and thus a large number of rays are discarded. The resulting discontinuity of the cost function leads to convergence troubles of the GN method.

4 and 3). The model obtained by unconstrained inversion (Fig. 7) and the model obtained by constrained inversion (Fig. 10) are very different: by the geometry of the interfaces and by the velocity variations within the layers. The introduction of constraints leads to local velocity variations at well locations that may perhaps be attenuated by a stronger regularization. As for the first application, we limit ourselves to the validation of the described optimization algorithm to handle numerous equality and inequality constraints. A depth migration step should help to analyse the obtained result. 4). The RMS value of the traveltime misfits is 6.5 ms.

The total number of conjugate gradient iterations for each GN step (the total number of conjugate gradient iterations takes into account all the iterations of augmented Lagrangian method) is less than 10 4 (less than twice the number of unknowns), which looks like a very good result for a problem with 2300 constraints. In this experiment, only six nonlinear SQP iterations are necessary to reach convergence.

The automatic adaptation of the augmentation parameter r j (see Algorithm 2 in Section 3.3) is illustrated in Fig. 11. The initial value r 0 can be chosen in a large interval. Algorithm 2 modifies r j in order to obtain a good convergence rate of the multipliers in the AL algorithm (Algorithm 1), without deterioration of the conditioning of the bound constrained problem (12).

C O N C L U S I O N

Reflection tomography often requires the introduction of additional a priori information on the model in order to reduce the underdetermination of the inverse problem. A nonlinear optimization method that can deal with inequality linear constraints on the model has been developed. This dedicated method has proved its efficiency on tomographic inversions of many synthetic examples with various types of constraints and of some real examples, including those related to the two real data sets presented in this paper. The number of GN iterations has the same order of magnitude than the number of GN iterations necessary in the unconstrained case (∼10 iterations). This and the fact that solving the forward problem is time 12) or increase r j to speed up the convergence of the constraint norm to zero (the desired convergence rate ρ des is fixed to 10 -3 ).

consuming were preponderant factors in favour of a SQP approach, instead of an interior point method. The chosen combination of the augmented Lagrangian relaxation and the active set method for solving the quadratic optimization subproblems is efficient even for a large number of constraints. An extension of the method to nonlinear constraints is currently tested. At last, the algorithm developed for updating the augmentation parameter discharges the user of the software from such a technical concern and allows an adequate choice of its value in terms of the convergence rate of the augmented Lagrangian algorithm.

Figure 1 .

 1 Figure 1. Operating diagram of the constrained optimization method.

  ) at m k . Writing C E (m k + d) = e and l ≤ C I (m k + d) ≤ u leads to the constraints of eq. (9) with ẽk := e -C E m k , lk := l -C I m k , and ũk := u -C I m k . Let d k be a solution to (QP k ). Near a solution, the SQP algorithm updates the primal variables m k by

  Figure 2. A 2-D view of one iteration of the gradient projection (GP) algorithm: the ellipses are the level curves of the objective function, the vector -G is its negative gradient at the current iterate, and the shadow box represents the feasible set.

Algorithm 4 .

 4 The overall algorithm to solve (6). data : m 0 , μ 0 ; begin for k = 0, 1, 2, . . . do if optimality of (6) holds at (m k , μ k ) then stop; compute (d k , μ QP k ) a primal-dual solution to (12) by Algorithm 1; update τ to satisfy (18); determine a step-size α k > 0 by backtracking, in order to satisfy (19); update (m k+1 , μ k+1 ) by (20);

  Figure 3. Picked traveltimes associated with reflections on h4 versus offset and receiver location.

Figure 4 .Figure 5 .

 45 Figure 4. Picked traveltimes associated with reflections on h5 versus offset and receiver location. (PP data: left, PS data: right)

Figure 6 .

 6 Figure 6. Distributions of traveltime misfits associated with all reflectors for model obtained with unconstrained inversion (left) and for model obtained with constrained inversion (right).

Figure 7 .

 7 Figure7. Velocity model (slices along x (left) and along y directions at one of the five well locations) obtained with a layer-stripping approach using the unconstrained reflection tomography. This model corresponds to the v(x, y, z) velocity parameterization (see Table3). The RMS value of the traveltime misfits is 6.1ms.

  . A P-velocity model was obtained thanks to a top-down layer-stripping approach where lateral and vertical velocity variations within Tertiary, Paleocene and Cretaceous units (this last layer being divided in two velocity layers) have been determined sequentially. A strong velocity underdetermination in the upper Tertiary layer was detected during the inversion process due to the large layer thickness C 2006 The Authors, GJI, 164, 670-684 Journal compilation C 2006 RAS

Figure 8 .

 8 Figure 8. Interfaces (slice along x) obtained with a global inversion using the unconstrained reflection tomography. Difficulties are encounteredduring the GN iterations. Some iterates lead to non-admissible models in which the forward operator is not defined. For instance, the model found at iteration 7 presents non-physical intersections that make layers vanish in the pointed region and thus a large number of rays are discarded. The resulting discontinuity of the cost function leads to convergence troubles of the GN method.

Figure 9 .

 9 Figure 9. Distributions of traveltime misfits associated with all reflectors for model obtained with unconstrained inversion (left) and for model obtained with constrained inversion (right).

Figure 10 .

 10 Figure10. Velocity model (slices along x (left) and along y directions at one of the five well locations) obtained with a global inversion using the constrained reflection tomography (constraints described in Table4). The RMS value of the traveltime misfits is 6.5 ms.

Figure 11 .

 11 Figure 11. Automatic adaptation of augmentation parameter r j : two experiments are performed, with an initial augmentation parameter either set to r 0 = 1 (left) or to r 0 = 10 4 (right). Algorithm 2 adapts r j during the AL iterations. It may decrease its value to improve the conditioning of problem (12) or increase r j to speed up the convergence of the constraint norm to zero (the desired convergence rate ρ des is fixed to 10 -3 ).

Table 1 .

 1 Inversion results of the unconstrained inversion.

	Layer 4	RMS of	Depth mismatch	η	δ
		traveltime	at well location		
		misfits			
	h4-PP	3.6 ms	190 m		
	h5-PP	4.6 ms	150 m	6.2 per cent	2 per cent
	h5-PS	9.8 ms			

Table 2 .

 2 Inversion results of the constrained inversion.

Table 3 .

 3 The different velocity parametrizations tested for the inversion of the Tertiary layer (in the layer-stripping approach applied by[START_REF] Ehinger | 3D tomographic velocity model determination for two North Sea case studies[END_REF] for the unconstrained inversion and in a global constrained approach (last line of the table).

		Tertiary velocity parameterization	RMS of traveltime misfits	Mean depth mismatch at the
					five well locations
	Velocity type	Vertical velocity gradient	Layer 1	Top of Paleocene	
	V 0 (x, y)	fixed to 0/s	4.3 ms	4.2 ms	96 m
	V 0 (x, y) + 0.2z	fixed to 0.2/s	3.4 ms	4.6 ms	300 m
	V (x, y, z) without constraints	inverted ∼0.01/s	4.1 ms	4.4 ms	100 m
	V (x, y, z) with constraints	inverted ∼0.18/s	3.9 ms	4.4 ms	0 m

Table 4 .

 4 Description of the equality and inequality constraints introduced in the inversion. We succeed to obtain a model that matches the data and the 2300 constraints.

		Constraints	Model obtained with the	Model obtained with the
			UNCONSTRAINED inversion	CONSTRAINED inversion
	Mean depth	tpal	96 m	0 m
	mismatch at the 5	tchalk	132 m	0 m
	well locations	bchalk	140 m	0 m
	Vertical velocity	0.1 < k < 0.3/s	k = 0/s	k ∼ 0.18/s
	gradient in Tertiary			
	Velocity range	2.5 < vpal < 4 km s -1	ok	ok
		3.5 < vichalk < 5.7 km s -1	ok	ok
		4.2 < vchalk < 5.8 km s -1	ok	ok

C 2006 The Authors, GJI, 164, 670-684 Journal compilationC 2006 RAS 

4C refers to the 4 components, 1 hydrophone and 3 orthogonal geophones, that allow both compressional (P) and shear wave data (S) to be recorded.
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